Supporting information to “Humans adapt their anticipatory eye movements to the volatility of visual motion properties”

Chloé Pasturel∗, Anna Montagnini∗, Laurent Udo Perrinet∗†

Note: Equation numbers are those appearing in the main text. More information available at https://github.com/laurentperrinet/PasturelMontagniniPerrinet2020.

1 Appendix : leaky integrator

Given a series of observations \(\{x^i_0\}_{0 \leq i \leq t} \) with \(\forall i, x^i_0 \in \{0, 1\} \), we defined

\[
\hat{x}^t_1 = (1 - 1/\tau)^{t+1} \cdot \hat{x}^{t=0} + 1/\tau \cdot \sum_{0 \leq i \leq t} (1 - 1/\tau)^i \cdot x^t_0^{t-i} \\
= (1 - h)^{t+1} \cdot \hat{x}^{t=0} + h \cdot \sum_{0 \leq i \leq t} (1 - h)^i \cdot x^t_0^{t-i}
\]

If we write it for trial \(t - 1 \), we have

\[
\hat{x}^{t-1}_1 = (1 - h)^t \cdot \hat{x}^{t=0} + h \cdot \sum_{0 \leq i \leq t-1} (1 - h)^i \cdot x^t_0^{t-1-i} \\
= (1 - h)^t \cdot \hat{x}^{t=0} + h \cdot \sum_{1 \leq j \leq t} (1 - h)^j \cdot x^t_0^{t-j} \\
(1 - h) \cdot \hat{x}^{t-1}_1 = (1 - h)^{t+1} \cdot \hat{x}^{t=0} + h \cdot \sum_{1 \leq i \leq t} (1 - h)^i \cdot x^t_0^{t-i}
\]

It follows that the integrative formula above becomes an iterative relation:

\[
\hat{x}^t_1 = (1 - h)^{t+1} \cdot \hat{x}^{t=0} + h \cdot \sum_{0 \leq i \leq t} (1 - 1/\tau)^i \cdot x^t_0^{t-i} \\
= (1 - h)^{t+1} \cdot \hat{x}^{t=0} + h \cdot x^t_0 + h \cdot \sum_{1 \leq i \leq t} (1 - h)^i \cdot x^t_0^{t-i} \\
= h \cdot x^t_0 + (1 - h) \cdot \hat{x}^{t-1}_1
\]

∗Institut de Neurosciences de la Timone (UMR 7289), Aix Marseille Univ, CNRS - Marseille, France
†Corresponding author:Laurent.Perrinet@univ-amu.fr
such that finally
\[\hat{x}_t = (1 - h) \cdot \hat{x}_{t-1} + h \cdot x_0 \]
As a result, the definitions in Equations (2) and (3) are equivalent.

2 The Bernoulli, binomial and Beta distributions

Let us define some basic concepts. A Bernoulli trial is the outcome of a binary random variable \(x \) knowing a probability bias \(\mu \) (with \(0 \geq \mu \geq 1 \)) and can be formalized as:
\[Pr(x|\mu) = \mu^x \cdot (1 - \mu)^{1-x} \]
The binomial distribution is defined as the probability that the sum \(X \) of \(\nu \) independent Bernoulli trials is \(k \):
\[Pr(k; \nu, \mu) = Pr(X = k) = \binom{\nu}{k} \cdot \mu^k \cdot (1 - \mu)^{\nu-k} \]
Knowing such a model for \(X \), it can be of interest to find an estimate of the parameter of the Bernoulli trial, that is of the probability bias \(\mu \). This distribution function is called the conjugate of the binomial distribution which is the Beta-distribution. For example, the beta distribution can be used in Bayesian analysis to describe initial knowledge concerning probability of success such as the probability that a product will successfully complete a stress test. The beta distribution is a suitable model for the random behavior of percentages and proportions.

It is usually defined using shape parameters \(\alpha \) and \(\beta \):
\[Pr(p|\alpha, \beta) = \frac{1}{B(\alpha, \beta)} \cdot p^{\alpha-1} \cdot (1-p)^{\beta-1} \]
Note that here, the variable is the probability bias \(p \). The normalization constant \(B(\alpha, \beta) \) is given by the beta function. By definition:
\[\alpha = \mu \cdot \nu \]
\[\beta = (1 - \mu) \cdot \nu \]
Inversely, \(\alpha + \beta = \nu \) and \(\mu = \frac{\alpha}{\alpha + \beta} = 1 - \frac{\beta}{\alpha + \beta} \)

3 Appendix 2: BBCP algorithm

To summarize, the algorithm that we presented is an implementation of the “Bayesian Online Changepoint Detection” by ? extended for the class of binary inputs. Using the definition of the run-length (see Section “Binary Bayesian Change-Point (BBCP) detection model” in the main text), the flow-chart of the algorithm is:

1. Initialize
 - \(P(r_0 > 0) = 0 \) or \(P(r_0 = 0) = 1 \) and
The steps to achieve the update rule are:

Finally we obtain Equation (5):

$$\mu_0^{(0)} = \mu_{\text{prior}} \text{ and } \nu_0^{(0)} = \nu_{\text{prior}}$$

2. Observe New Datum \(x_0 \in \{0, 1\} \),

(a) Evaluate Predictive Probability \(\pi^{(r)}_t = P(x^t_0|\mu^t_0, \nu^t_0) \).
(b) Calculate Growth Probabilities \(P(r_t = r_{t-1} + 1, x_{0:t}) = P(r_{t-1}, x_{0:t-1})\pi^{(r)}_t (1 - h) \),
(c) Calculate Changepoint Probabilities \(P(r_t = 0, x_{0:t}) = \sum_{r_{t-1}} P(r_{t-1}, x_{0:t-1})\pi^{(r)}_t \cdot h \),
(d) Calculate Evidence \(P(x_{0:t}) = \sum_{r_{t-1}} P(r_t, x_{0:t}) \).
(e) Determine run-length Distribution \(P(r_t|x_{0:t}) = P(r_t, x_{0:t})/P(x_{0:t}) \).

3. Update sufficient statistics

- at a switch \(\mu^{(0)}_{t+1} = \mu_{\text{prior}}, \nu^{(0)}_{t+1} = \nu_{\text{prior}} \),
- else, \(\nu^{(r+1)}_{t+1} = \nu^{(r)}_t + 1 \) and \(\nu^{(r+1)}_{t+1} \cdot \mu^{(r+1)}_{t+1} = \nu^{(r)}_t \cdot \mu^{(r)}_t + x^{t}_0 \).

4. Return to step 2.

In the following, we detail some intermediate steps and highlight some key differences with their implementation. We also provide a python implementation of the algorithm, which is available at https://github.com/laurentperrinet/bayesianchangepoint.

3.1 Initialization

Note that the prior distribution is itself a Beta distribution: \(\mathcal{P} \propto B(p; \mu_{\text{prior}}, \nu_{\text{prior}}) \). It will by symmetry be unbiased: \(\mu_{\text{prior}} = 0.5 \). Concerning the shape, it can be for instance the uniform distribution \(\mathcal{U} \) on \([0, 1]\), that is \(\nu_{\text{prior}} = 2 \) or Jeffrey’s prior \(\mathcal{J} \), that is \(\nu_{\text{prior}} = 1 \). We chose the latter for the generation of trials as the uniform distribution would yield more samples around \(p = 0.5 \). Qualitatively, this would result in more difficult task in discriminating a probability bias from another. Jeffrey’s prior was more adapted to that task.

3.2 Prediction: run-length distribution

The steps to achieve the update rule are:

\[
Pr(x^t_0|x^{0:t-1}_0) = \sum_{r^t} Pr(x^t_0|r^t, x^{0:t-1}_0) \cdot \beta^{(r)}_t
\]

\[
Pr(x^t_0|x^{0:t-1}_0) = \sum_{r^t} Pr(x^t_0|r^t, x^{0:t-1}_0) \cdot Pr(r^t|x^{0:t-1}_0)
\]

with \(Pr(r^t|x^{0:t-1}_0) \propto \sum_{r^{t-1}} Pr(r^t|r^{t-1}) \cdot Pr(x^t_0|r^{t-1}, x^{0:t-1}_0) \cdot Pr(r^{t-1}|x^{0:t-2}_0) \)

Finally we obtain Equation (5):

\[
\beta^{(r)}_t \propto \sum_{r^{t-1}} Pr(r^t|r^{t-1}) \cdot Pr(x^t_0|r^{t-1}, x^{0:t-1}_0) \cdot \beta^{(r)}_{t-1}
\]
3.3 Prediction: sufficient statistics

The recursive formulation in Equations (9) and (10) comes from the expression

\[\nu_t^{(r)} \cdot \mu_t^{(r)} = \sum_{i=t-r-1}^{t-1} x_0^i \]

and therefore

\[\nu_{t+1}^{(r+1)} \cdot \mu_{t+1}^{(r+1)} = \sum_{i=t+1-r-1}^{t+1-1} x_0^i \]

\[= \sum_{i=t-r-1}^t x_0^i \]

\[= \nu_t^{(r)} \cdot \mu_t^{(r)} + x_0^t \]

3.4 Quantitative evaluation

To quantitatively evaluate our results with respect to another probability bias, we computed in Equation (13) the cost as the Kullback-Leibler divergence \(KL(\hat{p}|p) \) between samples \(\hat{p} \) and model \(p \) under the hypothesis of a Bernoulli trial:

\[KL(\hat{p}|p) = \hat{p} \cdot \log \left(\frac{\hat{p}}{p} \right) + (1 - \hat{p}) \cdot \log \left(\frac{1 - \hat{p}}{1-p} \right). \] (1)

4 Appendix: likelihood function

We want to compute \(L(r|o) = Pr(o|r,p,\pi) \) where \(o \in \{0,1\} \) such that we can evaluate Predictive Probability \(\pi_{0:t} = P(x_0^t|\mu_t^{(r)},\nu_t^{(r)}) \) in the algorithm above with \(\mu_t^{(r)} \) and \(\nu_t^{(r)} \) the sufficient statistics at trial \(t \) for node \((r) \). The likelihood of observing \(o = 1 \) is that of a binomial (conjugate of a Beta distribution) of

- mean rate of choosing hypothesis \(o = 1 \) equal to \(\frac{p \cdot r + o}{r+1} \),
- number of choices where \(o = 1 \) equals to \(p \cdot r + 1 \).

More generally, by observing \(o \), the new rate is \(p' = \frac{p \cdot r + o}{r+1} \).

4.1 Mathematical derivation

The likelihood will give the probability of this novel rate given the known parameters and their update (in particular \(r' = r + 1 \)):

since both likelihood sum to 1, the likelihood of drawing o in the set \{0, 1\} is equal to

\[
\mathcal{L}(r|o) = \frac{L(r|o)}{L(r|o = 1) + L(r|o = 0)}
\]

\[
= \frac{(p \cdot r + o)^{p \cdot r + o} \cdot ((1 - p) \cdot r + 1 - o)^{(1-p) \cdot r + 1 - o}}{(p \cdot r + 1)^{p \cdot r + 1} \cdot ((1 - p) \cdot r + 1)^{(1-p) \cdot r + 1}}
\]

This can also be written by isolating the part which depends on o and for a given run-length and knowing sufficient statistics describing the sufficient statistics at each node r:

\[
\mathcal{L}(r|o) = \frac{1}{Z} \cdot (p \cdot r + o)^{p \cdot r + o} \cdot ((1 - p) \cdot r + 1 - o)^{(1-p) \cdot r + 1 - o}
\]

with Z such that \(\mathcal{L}(r|o = 1) + \mathcal{L}(r|o = 0) = 1 \), that is Equation (11).

4.2 Python code

```python
def likelihood(o, p, r):
    \n    Knowing $p$ and $r$, the sufficient statistics of the beta distribution $B(\alpha, \beta)$ :
    $\alpha = p \cdot r$
    $\beta = (1-p) \cdot r$
    
    the likelihood of observing $o=1$ is that of a binomial of
    - mean rate of choosing hypothesis "$o=1" = (p \cdot r + o) / (r+1)$
    - number of choices where "$o=1" equals to $p \cdot r + 1$

    since both likelihood sum to 1, the likelihood of drawing o in the set \{0, 1\} is
equal to

    \[
    \mathcal{L}(o, p, r):
    P = (1-o) \ast (1 - 1 / (p \ast r + 1))^{(p \ast r)} \ast ((1-p) \ast r + 1)
    P += o \ast (1 - 1 / ((1-p) \ast r + 1))^{(1-p) \ast r} \ast (p \ast r + 1)
    \]
```
return P

L_yes = L(o, p, r)
L_no = L(1-o, p, r)
return L_yes / (L_yes + L_no)

See the code online at https://github.com/laurentperrinet/bayesianchangepoint.

4.3 Properties

This function has some properties, notably symmetries:

- for certain outcomes, \(\forall r > 0, \mathcal{L}(o|p = 0, r) = 1 - o \) and \(\mathcal{L}(o|p = 1, r) = o \),
- if \(r = 0 \), the likelihood is uniform \(\mathcal{L}(o) = 1/2 \),
- \(Pr(o|p, r) = Pr(1 - o|1 - p, r) \).

Note also that as \(r \) grows, the likelihood gets sharper.