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General Aviation (GA) accidents constitute the majority of aviation related accidents. In the United 

States, there have been over 7,000 GA accidents compared to 190 airline accidents in the last 8 

years. Flight data analysis has helped reduce the accident rate in commercial aviation. Similarly, 

safety analysis based on flight data can help GA be safer. The FAA mandates flight data recorders 

for multi-engine and turbine powered aircraft, but nearly 80% of General Aviation consists of 

single engine, of which only a small portion contain any form of data recording device. GA aircraft 

flight data recorders are costly for operating pilots. Low-cost flight recorders are few and rarely 

used in GA safety analysis due to lack of accuracy compared to the certified on-board equipment. 

In this thesis, I investigate the feasibility of using a low-cost Attitude and Heading Reference 

System (AHRS) to detect hazardous states in GA aircraft. I considered the case of roll angles and 

found that the low-cost device has significant measurement errors. I developed models to correct 

the roll angle error as well as methods to improve the detection of hazardous roll angles. I devised 

a method to evaluate the time accuracy along with the angle accuracy and showed that despite the 

errors, the low-cost device can provide partial hazardous state detection information. 
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1. INTRODUCTION  

General Aviation (GA) is all civil aviation operations other than scheduled air services and non-

scheduled air transport operations for remuneration or hire [ICAO, 2009]. In the FAA's General 

Aviation Information [FAA, 2008], GA flights are described as flights conducted by operators 

other than Title 14 of the Code of Federal Regulations (14 CFR) part 121 or part 135 certificate 

holders. There are over 211,000 GA aircraft in U.S., flying over 24.8 million flight hours to about 

5,000 U.S. public airports [GAMA, 2017]. 

 

However, GA lags commercial aviation in terms of safety. There have been over 7000 GA 

accidents compared to 190 airline accidents in the last 8 years. Over the past 10 years, the FAA 

has taken several initiatives to reduce GA accidents. From 2005 to 2016, the number of total GA 

accidents and fatal accidents decreased by 57% [FAA, 2018]. However, fatal GA accidents still 

made up 94% of all fatal accidents in aviation in 2016 [NTSB, 2016]. GA safety, though better 

than it was in 2005, is still far from the safety levels achieved by commercial aviation. The 

reduction in fatal accident rates is an indication of steps taken in the right direction, but more steps 

need to be taken to further decrease the GA accident rate. 

 

Aircraft data is crucial in analyzing and identifying risk. With programs such as the Aviation Safety 

Information Analysis and Sharing Program (ASIAS) and the óGot Data? External Data Initiativeô, 

the FAA has shown the need for good quality data in GA safety analysis to improve the safety of 

GA [FAA, 2018]. 
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1.1 Flight Data in General Aviation 

Flight Operational Quality Assurance (FOQA), also known as Flight Data Management (FDM), 

has had a role in commercial aviation since the 1960s. FOQA is a voluntary safety program that is 

designed to make commercial aviation safer by allowing commercial airlines and pilots to share 

de-identified aggregated information with the FAA so that the FAA can monitor national trends in 

aircraft operations and address operational risk issues (e.g., flight operations, air traffic control 

(ATC), and airports) [AC No: 120-82, 2004]. A Flight Safety Foundation study found that airlines 

with an active FDM program have accident rates that are 50% lower than carriers without FOQA, 

and carriers that have used FOQA for the longest also have the fewest accidents [Lau, 2007]. We 

could potentially decrease the large number of GA accidents by implementing the FOQA 

philosophy in GA. The General Aviation Joint Steering Committee (GAJSC) has emphasized the 

need for FOQA and flight data for proactive safety analysis through FAAôs Aviation Safety 

Information Analysis and Sharing (ASIAS) [FAA, 2018].  

 

However, FOQA for GA faces several road blocks: 

¶ FOQA requires in-flight aircraft information recording devices. Commercial aircraft have 

a variety of sensors and recording devices to enable FOQA. Regulations do not require 

small, single engine GA aircraft to be equipped with Flight Data Recorders (FDRs). As per 

14 CFR 91.609, only multiengine, turbine-powered airplane or rotorcraft having a 

passenger seating configuration of 10 or more that have been manufactured after October 

11, 1991 are required to have a flight data recorder, and only those with a passenger seating 

configuration of 6 or more are required to have a cockpit voice recorder. 
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¶ Many GA aircraft do not have any electronic avionic system. Quick Access Recorders 

(QAR) help collect raw flight data by directly connecting to the aircraft avionic system. 

One can use a QAR to collect flight data irrespective of a flight data recorder being on-

board or not. Without an electronic avionic system containing digital flight data, in-flight 

data acquisition is difficult in GA.  

¶ A GA aircraft equipped with an on-board Electronic Flight Instrument System (EFIS) can 

record aircraft data. EFIS flight data from GA aircraft include GPS data, Attitude, Heading 

Reference System (AHRS) data, communication/navigation information, and engine 

information.  However, only new GA aircraft contain EFIS, and the cost of retrofitting an 

old GA aircraft with a new EFIS is over $10,000. Many of the GA operators are the pilots 

who either rent or own the aircraft. Unlike airline operators, most of these GA pilots do not 

have any financial return on investment on the purchase of expensive in-flight data 

recorders. 

 

Independent Flight Data Recorders (iFDR) and Electronic Flight Bag (EFB) applications can 

record flight data external to the avionic system on-board. iFDRs and EFBs do not require any 

certification, but the FAA has provided advisory guidelines for their use [AC No: 91.21-1D, 2017; 

AC No: 120-76C, 2014]. iFDR, also known as Lightweight Aircraft Recording Systems, are low-

cost devices that do not connect to on-board aircraft systems. They collect flight data using their 

own sensors. For example, iFDRs include video or sound recording devices to record cockpit 

instruments. EFB applications can record GPS, traffic and weather data, but they require external 

Attitude Heading and Reference Systems (AHRS) to provide aircraft orientation. Pilots can 
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connect commercial portable AHRS devices to the handheld device system applications and 

potentially record data, but these devices cost approximately $1,000 per system.  

1.2 Data in the Safety Analysis of General Aviation 

GA safety analyses in the literature primarily use EFIS flight data. Previous safety analyses have 

used Garmin G1000 EFIS data to identify phases of flight [Goblet et al., 2015], to detect safety 

events during the approach phase of flight [Fala and Marais, 2016], and to detect anomalies in GA 

operations [Puranik and Mavris, 2018]; and the Vision 1000 camera to record and create flight 

tests for a helicopter [Kuo et al., 2017]. 

 

Since many GA aircraft do not have an EFIS and many pilots cannot afford expensive on-board 

equipment, we need low-cost flight data recording options to enable more widespread GA safety 

analysis. Several researchers have investigated the use of low-cost sensors to collect flight data in 

GA. Neuhart et al. (2009) acquired flight test data of a Cessna 172S aircraft using low-cost, 

custom-made hardware and software for simulation validation. The study used over ten types of 

sensors to monitor pilot inputs, engine performance, control surface deflections, and 

environmental conditions. The researchers concluded that the flight test data set was of sufficient 

content and quality to validate a simulation with good fidelity, with a special focus on stability and 

control characteristics. Valasek et al. (2017) used low-cost Inertial Measurement Units (IMUs) to 

characterize the derived angle-of-attack (AOA). This study directly used IMU sensor data and not 

the attitude and heading derived from the IMU (see section 2.1.1). The researchers found that in 

the case of low sensor noise, the derived AOA tracked the true AOA, but they had insufficient data 

to draw conclusions in the case of large sensor errors. Albéri et al. (2017) tested the accuracy of 

low-cost GNSS, radar and barometric sensors for in-flight altitude measurements for airborne radio 
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metric surveys. The researchers equipped an aircraft with seven altimetric sensors (three low-cost 

GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers), and 

found that over the sea, two barometric altimeters together with the radar altimeter performed the 

most accurate measurement of flight altitude over the sea in the 35ï66m range. The study shows 

how increasing redundancy in low-cost data collection can increase accuracy. Bonadonna et al. 

(2015) recommended the design requirements for a low-cost flight data recorder to obtain and 

analyze flight data as described in a pilot operating handbook (POH) of an experimental aircraft. 

They recommend the use of Garmin Virb to video monitor the flight data and use low-cost 

microcontrollers such as the Arduino Mega to collect and process the video data. 

 

Researchers so far have used and analyzed low-cost sensors in aircraft data collection. In the 

examples above, the low-cost data collection led to simulator validation, angle-of-attack derivation 

and generating a POH for experimental aircraft. The question remains: Can we use the data 

collected via low-cost sensors for GA safety analysis in the same manner as the data used from an 

EFIS such as the Garmin G1000? 

1.3  Research Goals and Thesis Objectives 

In our research, we investigated the feasibility of using roll angle collected from a low-cost AHRS 

(the Stratux) to detect the hazardous state of high roll angles (  ʟ> 45°) for a GA aircraft compared 

to the detection when using the data from a Garmin G1000. 

 

We explored the technical knowledge requirements for building a low-cost AHRS and whether 

one could build a low-cost AHRS using open source software and hobbyist hardware for GA safety 

analysis (Section 2).  
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In section 3 we assembled a low cost AHRS (the Stratux) unit and collected flight data for 29 

training flights on SR-20 aircraft at Purdue University. We also collected the flight data from the 

on-board Garmin G1000 on the same aircraft for those 29 flights. We tested the Stratux in detecting 

high roll angles (ʟ > 45°) in comparison to the Garmin G1000. We considered the data from the 

G1000 on-board the SR-20 aircraft to provide the best obtainable measurement of the actual roll 

angle. The error between the Stratux roll angle and the G1000 roll angle was large and varied with 

angle. We examined different types of mathematical models that could help to correct the error in 

the Stratux roll angle measurements. We also varied the definition of the hazardous roll limit (45°) 

when applied to the Stratux to improve detections of the hazardous state. 

Beyond the hazardous roll angle limit of 45°, risk may increase because of higher deviation from 

the limit or due to longer time spent at hazardous roll angles. We developed a method to evaluate 

the time accuracy along with the angle accuracy in section 4  

We provide the results of our research in section 5 and the potential future work required 

(Section 6). 
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2. ATTITUDE HEADING AND REFERENCE SYSTEM (AHRS)  

Attitude Heading and Reference Systems (AHRS) are commonly used in commercial and business 

aircraft. The AHRS information is used in displaying the aircraft attitude on a glass cockpit primary 

flight display and in the aircraftôs autopilot. It provides aircraft attitude through pitch and roll 

angles. The AHRS also provides the aircraft heading angle. The pitch, roll, and heading angles are 

important information in determining whether the aircraft is in an unsafe state. 

 

Currently, portable commercial AHRS for general aviation can provide information to handheld 

devices, such as a tablets or smartphones. The information can be portrayed through a system 

application in the form of a primary flight display or an electronic attitude indicator. The market 

price for a portable AHRS ranges from $800 to $1,500. These portable AHRS are often found in 

combination with ADS-B In receivers. The high cost of the commercial portable AHRS is due to 

multiple complexities of an AHRS device and the accuracy level required, as discussed in this 

chapter. 

2.1 AHRS Anatomy 

An inertial measurement unit (IMU) consists of an accelerometer and a gyroscope. A Magnetic, 

Angular Rate and Gravity (MARG) is an IMU with a magnetometer. An AHRS device is an IMU 

or a MARG and a processing unit containing the attitude estimation logic. In academic research 

the difference between IMUs, MARGs and AHRSs is well established, but in the consumer market 

IMUs and MARGs are treated as the same and referred to as IMUs. The primary difference 

between an AHRS and an IMU is that an IMU only provides sensor data. It does not contain 
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estimation algorithms for computing attitude or heading. Figure 1 shows a structural composition 

of an AHRS unit used in aviation. 

 

Figure 1: High Level Schematic Diagram of an AHRS 

 

Sensors are of various types and grade. Sensor type defines the fundamental methodology used in 

sensing. Use of optical fibers in fiber optic gyros (FOGs), laser in accelerometers, and micro 

electromechanical systems (MEMS) are a few examples. The grade of the sensor depends on the 

accuracy and level of noise in the sensor output. The grade can be improved by calibrating the 

sensor output for known or estimated noise. Low-cost sensors are often also called automotive 

grade sensors or consumer grade sensors. Sensors used in aviation are higher in accuracy and 

reliability than automotive grade sensors and are referred to as industrial grade sensors. 

 

Some low-cost commercial IMUs available in the market are also rudimentary AHRS devices 

since they contain a microcontroller and basic level of estimation logic for obtaining attitude 

information. The attitude information is noisy and provides highly erroneous values over time 

when the body accelerates with respect to an inertial frame. 
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2.1.1 Attitude, Attitude Estimation, and Sensor Fusion Algorithm 

In this section we review the definition of aircraft attitude and explore the algorithms that are used 

to estimate aircraft attitude from sensor data. 

2.1.1.1 Attitude or Orientation  

Attitude is described between two frames. One is an inertial frame which is fixed in time and is 

not rotating or accelerating. The second frame is the object or body frame for which we measure 

the orientation. The two coordinate frames have orthogonal right-handed axes, and the position 

and orientation of each frame can be described with respect to one another. 

 

In aircraft attitude estimation the local navigation frame (also known as the local geodetic or 

tangent plane) is the inertial frame. In aviation, the local navigation frame, shown in Figure 2, is 

in the North-East-Down format. It is described by the z-axis pointing towards the direction of 

gravity and the x-axis orthogonal to the z-axis pointing towards the magnetic North Pole. By the 

right-hand rule, the y-axis becomes the axis pointing to the east and orthogonal to both x and z-

axes. 
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Figure 2: The local navigation frame in North-East-Up format compared to the Earth-Centered, 

Earth-Fixed (ECEF) frame.  

 

The body frame (denoted by superscript b in Figure 3) has the same origin as that of the local 

navigation frame and it lies within the body for which we intend to find the attitude. The axes are 

fixed with respect to the body. In the case of an aircraft, the origin is the center of gravity. The x-

axis is the axis pointing from the center of gravity to the nose of the aircraft. It is the roll axis of 

the aircraft. The y-axis points from the center of gravity to the right wingtip and is the pitch axis 

of the aircraft. The z-axis, by the right-hand rule, is downwards and orthogonal to the other two 

axes and is the yaw axis of the aircraft. 
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Figure 3: Body frame axes for an aircraft. 

 

The attitude of the body frame is the degree of angular rotation of the body frame with respect to 

the inertial local navigation frame. There are several methods to describe attitude. The three 

commonly used methods are: 

¶ Euler Angles: Euler Angles are the consecutive rotations of the body frame about inertial 

frame axes starting with both frames coinciding to finally reach the body frame attitude. 

There are two intermediate frames between the initial and final state of the body frame. 

The first rotation is about the common z-axis and is the óyawô. The second rotation is the 

ópitchô rotation about the common y-axis is the first intermediate frame. Finally, the órollô 

rotation about the common x-axis is the second intermediate frame. The vector containing 

the 3 angles is called the set of Euler Angles. It is intuitive and easy to visualize attitude 

using the Euler angle representation. The final output of an AHRS is in Euler angle 

representation. However, the Euler angle representation poses mathematical problems in 

computation. At +90° pitch, the yaw and roll angle become indistinguishable. This 

phenomenon is known as a ógimbal lockô [Paul D. Groves, 2008]. 
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¶ Coordinate Transformation Matrix: The coordinate transformation matrix, or the rotation 

matrix, is a 3x3 orthogonal matrix (CiĄb) that transforms a vector in the inertial frame (xi) 

to a vector in the body frame (xb). 

 ὼ ὅO ὼz 
(1) 

One can show the coordinate transformation as a matrix of cosines of angles between the 

unit vectors of the frames, due to which these matrices are also called Direct Cosine 

Matrices (DCM). The coordinate transformation matrix representation of attitude can be 

manipulated easily. We can achieve several rotations by simply multiplying the matrices 

of each rotation. To find the original vector we need to use the inverse of the matrix. 

However, the coordinate transformation matrix is computationally intensive [Paul D. 

Groves, 2008]. 

¶ Quaternions: Quaternions are hypercomplex representations of attitude. An attitude 

represented by Quaternions consists of a vector containing four elements: q = (q0, q1, q2, 

q3), where q0 is the scalar component of the Quaternion and represents the magnitude of 

the rotation. The remaining three elements of the vector are complex components of the 

quaternion and represent the axis about which the rotation takes place. Quaternion algebra 

is complicated but has low computational requirements. The mathematical problem of 

ógimbal lockô is avoided during attitude computation using the Quaternion representation.  

 

The three methods of attitude representation are interchangeable in form. Due to this flexibility, 

the majority of the AHRS attitude estimation logic performs the computation in Quaternion form 

and outputs the result in either Euler angles or Coordinate transformation matrix form. 
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2.1.1.2 Attitude Estimation and Sensor Fusion Algorithm 

Attitude estimation and sensor fusion is a large research field on its own. We can estimate attitude 

from angular rate and from vector observations [Madgwick, 2010]. We can also compute attitude 

at a time t by numerical integration of the angular rate from the gyroscope with time, provided we 

know the initial attitude.  

 

The accelerometer and magnetometer measure the magnitude and direction of the reference frame 

with respect to the body frame. ñSingle-frameò algorithms estimate attitude based on 

measurements taken at a single time [Markley and Mortari, 2000]. The first person to propose the 

problem relating to single frame attitude estimation was Grace Wabha in 1965 [Wabha, 1965]. 

Wabhaôs problem was to find the optimal 3x3 rotational matrix to minimize the cost function: 

L(M)for nÓ 2. In equation 2, xi and xb denote the unit vectors in the inertial reference frame and 

the body frame respectively. ai are the weights used for the weighted optimization: 

  ὒὓ
ρ

ς
ᶻ ὥᶻὼ ὓὼ  

(2) 

Several solutions exist in the literature to the Wabha Problem. The popular solutions are the Three-

Axis-Attitude-Determination (TRIAD), Quaternion Estimator (QUEST), Davenportôs q-method, 

Fast Optimal Matrix Algorithm (FOAM), Single Value Decomposition (SVD) and Polar 

Decomposition (PD) [Valenti et al., 2015]. 

 

Errors in attitude estimation may be due to several factors. Sensor noise errors arise based on the 

type and grade of the sensors and calibration performed compared to the level of accuracy required. 

Errors may also be due to external factors such as a strong local magnetic field impacting the 
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output of a magnetometer. Numerical integration of gyroscope angular rate also integrates the 

gyroscopic errors and propagates them with time.  

 

If the body frame accelerates or performs dynamic turns with respect to the inertial reference 

frame, then the accelerometer measures the body frame accelerations and the acceleration due to 

gravity. From the accelerometer measurements, the acceleration due to gravity and the body 

acceleration are indistinguishable and the orientation vectors in the direction of gravity are skewed. 

In such cases, body frame position and velocity estimation are required to estimate body frame 

acceleration and thereby find accurate gravity vectors to be used in attitude estimation. In many 

aerospace applications a GPS is used in combination with the given sensors to correct vector 

measurements. 

 

To negate the impact due to large possibilities of errors and obtain accurate attitude, the attitude 

estimations from angular rate, vector measurements, and GPS data are fused together. The choice 

of fusion algorithm used is based on accuracy of estimation achievable, the processing capabilities, 

and the execution time. Primarily, the industry uses Kalman Filters and the Extended Kalman 

Filters as fusion algorithms [XSENS, 2018] [Vectornav, 2018] [Madgwick, 2010]. The literature 

provides several alternatives and improvements to the Kalman Filter as a sensor fusion algorithm 

[Valenti et al., 2015]. 

2.1.2 Sensor Calibration 

Different user levels define calibration differently. In general, calibration means ñsensor 

calibrationò. At a system user level, calibration defines the final setup for use. In this case, the 
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AHRS calibration is defined as the orientation of placement within the aircraft to determine the 

initial orientation and thereby correct future responses.  

 

Low-cost sensors produce a lot of noise. Sensors from the same manufacturer may provide 

different results for the same input. All sensors require three primary calibrations: 

¶ Sensor Bias: The output for zero input. Gyroscope bias varies with time and is called the 

gyroscopic random drift/walk. 

¶ Scale Factor: The sensor output response to a known input. 

¶ Axis misalignment: Interdependency of sensor axis readings. 

Different operational temperature and vibration ranges require all the above calibrations. The 

magnetometer requires two additional calibrations: 

¶ Hard Iron: Known fixed magnetic field influencing sensor output. 

¶ Soft Iron: Varying magnetic field influencing the sensor output. 

 

These calibrations require expensive equipment and extensive technical knowledge. Many 

commercial companies use low-cost sensors for AHRS but spend thousands of dollars in 

calibrating every MEMS sensor they use. The calibration is one of the main drivers of the high 

cost of commercial AHRS units. 

2.2 Garmin G1000 and GRS 77 

A popular EFIS is the Garmin G1000 Integrated Avionics system used in several General Aviation 

aircraft. Integrated avionics consists of multiple Line Replaceable Units (LRUs). The GRS77 is 

the Attitude and Heading Reference System LRU within the G1000 [Garmin, 2015]. GMU44 is 

an external magnetometer LRU which senses and provides local magnetic field information to 
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support the function of the GRS77 [Garmin, 2010]. Garmin uses the SAE AS 8001 as the minimum 

performance standard for bank (roll) and pitch instruments [Garmin, 2010]. 

 

The GRS77 installation manual provides the operational limits and accuracy: The GRS 77/GMU 

44 is capable of maneuvers through a range of 360° in bank (roll) and pitch. The rotation rate 

capability is ±200° per second. However, ARINC 429 angular rate output messages are limited to 

±128° per second. Bank (roll) error and pitch error are within ±1.25° over the range of 30° 

bank(roll) , left and right, and 15° pitch nose up and nose down. Heading is accurate to within 2° 

in straight and level flight [Garmin, 2010]. 

2.3 Survey of Low-cost IMU and AHRS 

Microelectromechanical systems (MEMS) are a technology used to create tiny integrated devices 

or systems that combine electrical and mechanical components [PRIME Faraday Partnership, 

2002]. MEMS are fabricated using integrated circuit (IC) batch processing techniques and can 

range in size from a few micrometers to millimeters. MEMS devices (or systems) can sense, 

control, and actuate on the micro scale, and generate effects on the macro scale.  

 

MEMS have many applications in the automotive, electrical, medical, and defense industries. 

Advancement in MEMS technology has reduced the size, weight, power consumption, and cost of 

the sensors used in IMUs. Sensor sizes range from 0.001mm to 0.1mm [PRIME Faraday 

Partnership, 2002; Dejan, 2018]. 

 

In comparison to more expensive Fiber Optic IMU sensors, MEMS IMU sensors have degraded 

performance [KVH Industries, 2014]. However, due to their low cost, size and weight, MEMS 
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IMUs have become very popular in the consumer market. Nearly all smartphones, hobby drones 

and UAVs, and pedometers use low-cost MEMS IMU sensors. 

2.3.1 MEMS Sensor Landscape 

An AHRS unit requires an IMU with at least a 3-axis accelerometer, 3-axis gyroscope. An IMU 

containing a 3-axis accelerometer, 3-axis gyroscope is termed as an IMU with 6 degrees-of-

freedom (DOF). Addition of a 3-axis magnetometer increases the DOF to nine. In the consumer 

market, the maximum DOF of an IMU is 10. A 10 DOF IMU contains a 3-axis accelerometer, 3-

axis gyroscope, 3-axis magnetometer, and a barometer that senses temperature and pressure. We 

explored the available low-cost IMUs with six or more degrees of freedom in the consumer market.  

 

The major smart phones (e.g., iPhone, Samsung S8) all use similar grade MEMS sensors. All the 

MEMS IMU devices cost less than $5 and are created by a small number of manufacturers. 

Hobbyist and Do-It-Yourself (DIY) electronic companies, such as SparkFun and Adafruit, make 

MEMS sensors available to the common consumer by putting MEMS sensors onto surface 

mounted technology (SMT) boards called óevaluationô sensor boards or breakout boards. Figure 4 

shows the size comparison of a breakout board and a USB cable. 

 

Figure 4: IMU Breakout Board and Sensor size compared to micro USB 
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Some of the breakout boards contain a microcontroller. If there isnôt a microcontroller, one can be 

soldered on through the appropriate breakout points. The breakout boards containing MEMS IMUs 

cost about $50. APPENDIX A lists the Sensors and IMU boards available in the market as of 

September 2017. Robotics hobbyists typically use the breakout board because it provides breakout 

pins to connect additional sensors or a microcontroller to the IMUs. The microcontrollers on 

breakout boards can often be coded using an Integrated Development Environment (IDE). 

Example code and firmware for breakout boards are available in open source for hobbyists to 

retrieve sensor data and use the IMU. However, each manufacturer has their own IDE, which is an 

additional effort for the end user while evaluating different IMU boards with different 

microcontrollers.  

 

DIY electronic equipment manufacturers market their products based on the degrees-of-freedom 

of the IMU, the complexity of motion sensing algorithms available in open source, the accuracy 

and range of sensors, and the available communication mechanisms on board. Universal 

Asynchronous Receiver/Transmitter (UART), Serial Peripheral Interface (SPI) and Inter-

Integrated Circuit (I2C) are the commonly available Interfaces with I2C being the newest 

technology and the most popular. I2C data communication consists of 2 buses (SDA and SLA), 

and a user can connect several ómasterô and óslaveô devices to the same bus. Therefore, a user can 

attach more than one processing unit to the same IMU. 

2.3.2 Hobbyist Unmanned Aerial Vehicle (UAV) Market 

Autopilots and Flight controllers are popular in the UAV world. There are many high quality, 

reasonably priced options. Open source forums such as Ardupilot provide material, guidelines, 

instruction, and resources in building a UAV. The autopilots commonly used in UAV fixed wings 
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are Pixhawk and Navio+. They both contain multiple IMUs and produce AHRS data for control 

of the aircraft. However, since these systems are primarily focused on the UAV market, decoupling 

AHRS data from UAV autopilot system for a GA aircraft has the following disadvantages: 

¶ Higher cost than conventional IMUs and microcontrollers due to additional capabilities. 

¶ Requires additional installation of Ground control systems, which vary depending upon 

requirements in the UAS world. 

¶ Pixhawk systems work once the autopilot is connected to a remote control. Leads to higher 

equipment cost which are truly not necessary for AHRS information in GA. Navio+ do 

provide AHRS code, but no documentation exists on accessibility of just the AHRS data. 

2.3.3 Survey of Open Source AHRS Software 

The most popular open source, orientation and sensor filter algorithms are Mahony and Madwig 

filters [Townsend, 2018; X-IO Technologies, 2018]. Implementations of these algorithms are 

available in MATLAB, C and C#. The Madwig and Mahony filters provide good orientation 

estimation with low computational time and are popular for small-scale UAV and robotic 

applications [Madgwick, 2010; Mahony et al., 2008]. However, these filters do not consider non-

inertial acceleration and cannot be used in applications where large centripetal accelerations are 

experienced in the body frame. To determine non-inertial acceleration, an external GPS unit or 

Pitot-static system information is required [Mahony et al., 2011]. 

 

Orientation algorithms consisting of Kalman filter (KF) and Extended Kalman filter (EKF) as 

sensor fusion algorithms are available in the open literature and implementations are available on 

open source platforms. However, the open source implementations have the following drawbacks: 
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¶ An implementation exists but the applicable hardware is unknown. The interface linking 

hardware to the estimation algorithm is not present or is unique to a certain type of 

hardware. 

¶ They are not well maintained, as there is no link to a commercial entity. KF and EKF 

require processing power greater than what is commonly available to a robotics enthusiast. 

2.4 Stratux: Open Source AHRS for GA 

We acquired a low-cost device which currently has users from the GA community and is easy to 

build. Stratux is a low-cost ADS-B In receiver and AHRS that pilots can build on their own. The 

hardware for building the Stratux is inexpensive and can be acquired from various suppliers on 

hobby websites or popular e-retailers. The Stratux software is open source. [Stratux, 2018]. We 

are interested in the AHRS data from the Stratux in this research. The net cost of our Stratux was 

$146.  Figure 5 shows the assembled hardware components of the Stratux and their relative sizes 

to a ruler and a quarter. The Stratux does not have an internal power unit and requires an external 

battery. We used a MI 10400mAh power bank to power the Stratux during flight tests. 
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Figure 5: The Stratux consists of a Raspberry Pi microcontroller, two antennae, a GPS unit, an 

IMU, and the SD card with the software. 

 

A user can download the Stratux software on an 8GB (or greater) SD card, plug the SD card into 

the Raspberry Pi, power the Stratux and use the device. The Stratux software is written in óGoô 

language. óGoô is an open source programming language created by Google. For our research we 

used stratux-v1.4r5 and stratux-v1.4r4 versions of the Stratux software. The Stratux software 

through the Raspberry Pi creates a Wi-Fi network. A user can connect handheld devices to this 

Wi-Fi. Similar to the commercially available portable ADS-B and AHRS devices, a user can 

access Stratux data through majority of the popular Electronic-Flight-Bag (EFB) applications and 

also visualize Stratux data without any application by accessing the Stratux webpage 

(http://192.168.10.1). Figure 6 shows a screenshot of the AHRS information displayed on a 

browser on a smart phone. 
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Figure 6: A screen shot of a Google Pixel 5 browser page showing the Stratux AHRS 

information. 

 

Even though the Stratux has an SD card onboard, it does not record any flight data. It only records 

system debug information. Stratux provides flight data over the Wi-Fi network using the GDL90 

protocol over port 4000. It also provides certain specific data sets over webservers [Stratux App 

Integration, 2018]. The webserver http://192.168.10.1/getSituation provides the GPS and AHRS 

information. To record the Stratux flight data a user would have to use an existing EFB application 

or build an application and use the existing infrastructure to record and store the data. 

  

http://192.168.10.1/getSituation
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3. DETECTING HAZARDOUS STATES USING THE STRATUX 

States are segments of time wherein a system exhibits a particular behavior. A hazardous state is 

a system state that may lead to an accident or an incident if corrective action is not taken and the 

system remains in the hazardous state for extended time [Rao and Marais, 2016]. A high roll angle 

( )ʟ is an example of such a hazardous state. For example, on January 25th, 2017 a Cirrus SR-22 

airplane crashed while on the right turn to the final approach leg to runway 32 at the Stinson 

Municipal Airport in San Antonio, Texas. The aircraft was approaching the runway at a calibrated 

speed of 103 knots, at 200 feet above the ground and in an approximate roll angle of 48° and 

entered a descent which exceeded 1,800 fpm. The report concluded that the aircraft crashed due to 

the aircraft stalling at high roll angle and excessive side slip [NTSB, 2018]. Corporate flight 

operational quality assurance (C-FOQA) of unstable approaches from 2009 also identified high 

roll angle for given height as the third most frequent cause for unstable approaches [Darby, 2010]. 

 

The definition of hazardous roll angle depends on operation, pilot certification, and phase of flight. 

We propose future work to determine hazardous roll angles from GA ASIAS in section 5.5. The 

Stratux provides the aircraft roll and pitch information. The analysis here is based on detecting 

angles beyond a user-defined hazardous roll angle limit , beyond which we consider the flight to 

be risky. 

 

For the scope of this research we assumed the Garmin G1000 AHRS as the ógold standardô. The 

Garmin G1000 has errors (see section 2.2), but the errors are within the FAAôs minimum 

performance standards. There was no method via which we could find the exact errors of the 

Garmin G1000 from which we received the data. Due to the lack of a higher accuracy system 
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available in the GA aircraft we flight tested and the prevalent use of Garmin G1000 for safety 

analysis in GA, we used the Garmin G1000 AHRS values as the truth. 

3.1 Experimental Setup and Data Collection 

Even though the Stratux provides roll and pitch data, there is no recording capability. We 

developed an Android application, the Stratux Logger, to collect GPS and AHRS information from 

the Stratux webserver. APPENDIX B provides the list of the variables and their descriptions. 

Figure 7 shows the screenshot of the Android application on a Google Pixel 5 phone. The G1000 

records data every 1 second and the Stratux Logger application collects data every 900 millisecond. 

Therefore, the Stratux has at least one data point within the 1 second interval of G1000 data. The 

application stores the data in ócsvô format. 

 

Figure 7: The User Interface (UI) of the Stratux Logger application on the Google Pixel 5 

 

We placed the Google Pixel-5 phone with the Stratux Logger application and the Stratux in the 

baggage area of three different SR-20 aircraft at Purdue University. Figure 8 shows the Styrofoam 
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mount on which we placed the Stratux and phone to strap it down to the aircraft. We visually 

aligned the Stratux longitudinal axis with the aircraft longitudinal axis. 

 

Figure 8: The mount ensures that the location and direction of the equipment is consistent in all 

flight tests. 

 

The Stratux Logger application collected flight data from 29 training flights. Flights included 

training aircraft maneuver techniques and cross-country flights. The Stratux does not have an 

internal power unit. We used an external power bank of 10400 mAh to power the Stratux. The 

battery lasts for approximately 7 hours per day. 

There were some seasonal hindrances to the data collection process. During the winter, the weather 

was often not suited for training flights. During the summer, the smartphone recording the Stratux 

data would shut down due to overheating. 

 

An SD card on-board the aircraft recorded the Garmin G1000 data. We downloaded the required 

files from the SD card. Table 1 contains the differences between the Stratux and G1000 data 

collected. The differences exist due to our experimental setup (recording time and collection 

method) and due to the inherent nature of the system (GPS time format and additional sensor data). 
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Table 1: Differences between the Stratux data collection and the G1000 data collection 

Stratux G1000 

Data is recorded throughout the day. A data 

dump contains multiple flights. 

Data is recorded only when engine is turned 

on. A data dump contains information from 

engine start to engine shutdown. 

Data is recorded every 0.9 seconds. Data is recorded every 1 second. 

GPS time is in UTC. GPS time is local (EST). 

Stratux has no information from aircraft 

sensors. (E.g.: Engine parameters, IAS). Total 

of 39 unique flight data variables. 

G1000 data contains aircraft sensor data. (E.g.: 

Engine parameters, IAS). Total of 69 unique 

flight data variables. 

3.2 Stratux Data Processing 

We read the G1000 and the Stratux csv files into MATLAB. We created two data structures for 

the Stratux and the G1000, as shown in Figure 9. Flights contain data points within each variable. 

For example, flight 1 has 6003 data points in each variable. 

 

Figure 9: Each data structure contained flight variable information. 

 

For the Stratux, we converted the Zulu time to local time. We added a new variable which provides 

a common date and time format for the Stratux and the G1000. 
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3.2.1 Segregating Flights 

A single G1000 data file recorded the data from the moment the G1000 was switched on to the 

time it was switched off. We define a flight as the time between the start time recorded on a G1000 

data sheet and the last time on that data sheet. We created substructures of each flight into the main 

G1000 family of structures. A single Stratux data file recorded data for the entire day. Calculating 

flight time is complex. Without a reference, the duration or identification of flight can only be 

based on GPS ground speed or altitude. We read the Stratux data per day and then used the GPS 

time and date in both the Stratux and the G1000 to identify the corresponding G1000 recorded 

flights in Stratux. The extra data on the Stratux is useless as it represents the aircraft in an idle state 

on the ramp and so we discarded it. Similar to the G1000 family structure, we divided the Stratux 

family structure into the identified flights. 

3.2.2 Syncing G1000 and Stratux data 

The Stratux and the G1000 have different recording times. Therefore, there were unequal data 

recordings for the same flight time. Further, both systems have inbuilt errors in recording where 

the time or information is duplicated. The Stratux also has data recording in milliseconds, whereas 

the G1000 time accuracy is only to 1 second. We therefore rounded all Stratux times up to the start 

of each next second using Matlabôs ñdateshiftò function. For all repeated time instances, we only 

considered the maximum value of the variable data for both the Stratux and the G1000. Since the 

G1000 is our ógold standardô we find all the unique times recorded on the G1000 in Stratux for 

each flight. However, if the Stratux time was missing, then we could not use the corresponding 

G1000 data for comparison. We snipped the Stratux and the G1000 flight data structures in one-

to-one mapping of data which has a mean time difference of 1.0232 seconds between data points 

per flight. We acknowledge that the syncing and snipping of data may introduce errors, but it is 
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necessary for valid comparison of the data from two different sources. We attempted rounding the 

Stratux time up to the next second and taking the mean of variable data of non-unique time 

recordings but did not see any unreasonable or significant variation in data. From here on, we 

accepted any errors that may have been introduced and performed our analysis. For the 29 flights, 

the number of data points in each variable, after data processing, is 115,867. 

3.3 Characteristics of the Roll Angle Data from the Stratux and the G1000 

As discussed earlier, the variable of interest is the roll angle. Figure 10 shows the processed roll 

data for the first flight.  

 

Figure 10: The direction sign associated with the angle is the same in both the G1000 and the 

Stratux. Right turns are positive and left turns are negative. 

3.3.1 Error Definition  

The angle error is defined by equation 3. The error is positive when the magnitude of the G1000 

roll angle is greater than the magnitude of the Stratux roll angle. To maintain this characteristic of 
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the error, we modified the error equation with respect to the relative direction of roll between the 

G1000 and the Stratux.  

 Ὡὶὶέὶ‰  ‰  
(3) 

Table 2 provides the mean and variance of the error for right and left turning angles. We performed 

1- way ANOVA test for positive angle errors and negative angle errors. The p-value for the 

analysis was 2.7329*10-43, thereby proving that the two means are not equal. Thus, we cannot use 

the absolute value of roll angle to model the Stratux roll angles, since the error for left and right 

roll angles are statistically different. 

Table 2: Mean and Variance of Errors for positive and negative roll angles 

 Mean Variance 

Angles >= 0 (Right Turns) 0.4275 2.7034 

Angles < 0 (Left Turns) 0.2844 3.4963 

 

 

Figure 11: The roll angle error between the Stratux and the G1000 has large variations. 
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Figure 11 shows the error distribution from all data points with respect to the G1000 roll angles. 

The error between the Stratux and the G1000 is not symmetric about 0°. A hazardous roll angle 

limit is the same for positive and negative roll angles. However, this asymmetry means that the 

error at a positive hazardous roll angle limit is different from the error at a negative hazardous roll 

angle limit . We show in section 0 how the error helps define hazardous roll angle limits for the 

Stratux. 

3.4 Comparison of the Stratux roll data and the G1000 roll data 

In this research, we want to identify if we can use the roll angle data as measured by the Stratux in 

GA safety analysis, similarly to how we use roll angle data from the G1000. It is therefore 

necessary to establish if the Stratux roll angle and the G1000 roll angle are different and if the 

error between them is greater than the standards for a non-gimbal AHRS unit. Figure 12 shows the 

distribution of data based on angle for all the data points we collected. 

 

Figure 12: Stratux (Left - a) and G1000 (Right - b) roll data histogram distribution show the 

large concentration of data in lower magnitude angles 
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Figure 11 suggests that the Stratux roll angle is erroneous compared to the G1000 roll angle. We 

need to know whether we have sufficient data points for all angles from ī60° to +60° to prove that 

the Stratux and the G1000 roll angles are not equivalent. We set our null hypothesis as the Stratux 

roll angles are equivalent to the G1000 roll angles. To define our null hypothesis, we considered 

the minimum operational performance standards (MOPS) for non-gimbal, on-board AHRS 

systems. 

3.4.1 Standard DO-334 

The RTCA DO-334 document provides the MOPS for on-board AHRS. It is intended for 

equipment that does not use gimbaled sensors and for equipment that outputs attitude (pitch and 

roll) [RTCA DO-334, 2012]. This document describes that strap down AHRS for an aircraft can 

be of six different categories, A1 to A6. Each category has static and dynamic accuracy associated 

with it. The lower the category value, the more stringent the accuracy requirement for the strap 

down AHRS. The highest allowable error is 2.5° for Category A4 and A5 as per FAA TSO C201 

[AC No: 20-181, 2014; Krak, 2014]. 

3.4.2 Power Analysis 

If the Stratux roll and G1000 roll are equivalent, then the error between the Stratux and G1000 

should have a mean of 0° and a maximum standard deviation of 2.5°. We set the mean error = 0° 

and a standard deviation of 2.5°as our null hypothesis. However, the error behavior is not the same 

for the entire range of observable angle as shown in Figure 11. Therefore, we test our null 

hypothesis for every 5° interval from ī60° to +60°. We use the data from the first 5 flights as our 

sample data. The alternate hypothesis is that the G1000 and Stratux roll angles are not equivalent. 

We use mean error from the sample data at each 5° interval as the alternate hypothesis. We 

performed a power analysis of power = 0.9 (the probability of the alternate hypothesis being true 
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given that the null hypothesis is rejected) to determine how many data points we need to establish 

that the Stratux roll angle is not equivalent to the G1000 roll. If the number of data points we 

collected from 29 test flights came short of the required data points from the power analysis, then 

either we need more data to prove the inaccuracy between the Stratux and the G1000, or the Stratux 

and G1000 roll angles are equivalent for GA safety analysis. 

 

Table 3 shows the required number of data points from power analysis, compared to the number 

of data points we collected for two intervals of roll angles. The Stratux matches G1000 values 

more closely at roll angles of lower magnitude than angles of higher magnitude. Therefore, we 

require fewer data points to reject the null hypothesis at angles of higher magnitude and more data 

points at lower magnitude. Our power analysis show that we have sufficient data from the 29 

flights to prove that the Stratux roll angle and the G1000 roll angle are not equivalent for all angles 

ranging from ī60° to +60°. 

Table 3: Required number data points from power analysis compared to the number of data 

points we collected for two intervals of roll angles 

Range of Roll Angle Required Number of Data 

Points 

Data Points we collected 

from 29 flights 

-40° to -45° 22 234 

20° to 25° 642 1347 

3.4.3 Cross-Correlation and Time Shift between the Stratux and the G1000 

We have identified that the Stratux roll angle data and the G1000 roll angle data are not equivalent. 

The error comparison of the data in sections 3.3.1 and 3.4.2 above is at each data point with no 

information from nearby points. Roll data for both the Stratux and theG1000 are over a time period. 

The Stratux may be different from the G1000 because the response from Stratux is either leading 

(early) or lagging (delay), and the Stratux and the G1000 will be equivalent if the Stratux output 
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is shifted based on the lead or lag. We therefore need to check if the Stratux and the G1000 have 

a time difference in between the roll angle outputs. 

 

Cross-correlation is a way of identifying potential correlation between two, time series signals.  

Figure 13 shows the cross-correlation for all roll angles collected. The lag on the x-axis is the time 

shift between the two data points from the two signals for which we find the correlation. Lag = 0, 

is the same data point for G1000 and Stratux, lag = 1 is the next data point on Stratux and so on. 

 

Figure 13: Maximum cross-correlations between the G1000 and the Stratux roll angles occurs at 

Lag = 0. 

In the Figure 13, the maximum cross-correlation occurs at lag = 0, which shows that there is no 

time shift in the signal between the Stratux and G1000. 

3.5 Roll Angle Error Chara cteristics 

Figure 12 shows that we have a lot of data points between ī20° and +20°. Angles greater than +40° 

and less than ī40Á have fewer data points. The error distribution shown in Figure 11 indicates that 
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the error between the G1000 and the Stratux is not constant, but rather varies depending upon the 

angle measured. 

 

To find the behavior of the error, we first fit a linear regression model to the error data, as shown 

by the red line in Figure 14 and equation 4. 

 

Figure 14: Linear fit for Error vs the G1000 roll angles 

 

 Ὡὶὶέὶ ὥϽה  ὦ (4) 

Table 4: Co-efficient values of the linear fit for the error 

Coefficients Coefficient Value 95% Confidence Interval 

a -0.000697 -0.001879, 0.0004846 

b 0.36741 0.3574, 0.3775 

 

For the roll error to be independent upon the observed angle, the confidence interval of the slope 

of the fit cannot contain zero. Table 4 shows that the confidence interval of the coefficient of óaô 

includes 0, the fit suggests that the error is independent of the G1000 Roll Angle. That is, the error 



49 

 

is independent of the angle measured. However, the r2 value (1.1537·10-5) for the fit is poor and 

that the result cannot be trusted. 

 

We created 13 intervals of 10Á from ī65Á to +65Á and fit linear models to the corresponding errors. 

Figure 15 shows the linear fits for two of the 13 intervals and Table 5 provides the statistical results 

of the two linear fits. 

 

Figure 15: (a) Linear fit of the error for the G1000 roll angle interval of 35° to 45°. (b) Linear fit 

of the error for the G1000 roll angle interval of ī61Á to ī55Á. 

 

Table 5: 95% CI of the slope of the linear fits and the r2 values, for the two angle intervals shown 

in Figure 15 

Angle Bins a 95% Confidence 

Interval  

R2 Value 

35° to 45° 0.3974 0.08389, 0.711 0.0341 

ī65Á to ī55Á 0.9234 0.1192, 1.728 0.1650 

 

The 95%confidence interval of the slope of the linear fits shown in Table 5 indicates that the errors 

varies with observed angle in the given intervals. Out of the 13 angle intervals, 9 intervals showed 
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a significance of the angle on the error and 4 indicated independence of error from the angle. Since 

the error is not uniform for all observed angles, we conclude that Stratux roll output accuracy 

changes with observed angles. 

3.6 Detecting Hazardous Bank Angle 

We used the Private Pilot-Airman Certification Standards [FAA, 2018] banking (rolling) 

maneuvers limit of 45° as the safe roll angle limit to test whether it is feasible to use the Stratux to 

detect hazardous roll angles in post-flight analysis. We assume that the G1000 roll angle data is an 

accurate measurement of the actual behavior of the system and we tested whether the Stratux 

captured the same state as the G1000. If the Stratux roll angle magnitude was less than 45° when 

the G1000 roll angle magnitude was greater than 45Á, then the Stratux had a óMissed Detectionô. 

If the Stratux roll angle magnitude was greater than 45° when the G1000 roll angle magnitude was 

less than 45°, then the Stratux had a óFalse Alarmô. Figure 16 shows that the Stratux data missed 

nearly half of the hazardous states in flight 1 and flight 7, and almost all the hazardous states in 

flight 3 and flight 5. We expected the Stratux to perform poorly in detecting hazardous state due 

to the large errors shown in Figure 11. Therefore we need to either improve the Stratux roll angles 

or change the definition of the hazardous limit applied to the Stratux to have better detection 

accuracy when using the Stratux. 
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Figure 16: Missed Detections and False Alarms of the Stratux compared to the G1000 for a 

hazardous roll angle limit of 45°. 

3.6.1 Improve Stratux roll angles 

To correct the errors in the Stratux angles, we used three different types of models: (1) a continuous 

linear model that maps the Stratux roll angles to the G1000 roll angles, (2) piecewise transfer 

functions to model the error and then correct the Stratux roll angles, and (3) piecewise polynomials 

that map the Stratux roll angles to the G1000 roll angles. In our research, we do not search for the 

óbest fitô model for the Stratux but investigate whether it is possible to improve the detection of 

higher roll angles using a Stratux device. 

3.6.1.1 Model 1: Continuous Linear Model  

We used a continuous linear model to improve Stratux roll angle as shown by equation 5. Figure 

17shows the linear function that fits the Stratux roll angle data to the G1000 roll angle data. 

 ‰ ὥz ‰ ὧ (5) 

The coefficients a and c characterize the linear model. a = 1.009 and c = 0.1276 provided a fit with 

an RMSE value of 1.7762 and r2 = 0.9563. Statistically, one would consider the fit to be a good fit. 

However, the Stratux and G1000 roll data have an unequal distribution of data recorded for all roll 
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angles. We have more data points for lower magnitude roll angles than for higher magnitude roll 

angles. The statistical results of the linear fit can be attributed to the large number of data points 

at the lower magnitude angles. 

 

Figure 17: Single Linear Model of the G1000 roll angle from the Stratux roll angles 

 

3.6.1.2 Model 2: Error Model for Stratux Roll Angles using piecewise Fourier Transfer 

We split the range of the Stratux roll data into thirteen intervals from ī65Á to +65Á of 10Á each. 

Since our goal is to correct Stratux errors, we use the Stratux roll angles to create the intervals 

rather than the G1000. We model the error as a function of the Stratux roll angle for each interval. 

Models for each interval are independent of the other, piecewise, and discontinuous. Equation 6 

shows the Fourier transfer function type that captures the error characteristics. The number of 

function parameters varies based on the interval for which we chose the model. 

 Ὡὶὶέὶ ὥ ὥ ÃÏÓύ ‰ ὦ ÓÉÎύ ‰ Ễ  (6) 
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In equation 7, we add the improved error back to the observed Stratux angle to find the improved 

Stratux roll angle: 

 ‰ ‰ Ὡὶὶέὶ  (7) 

Figure 18 shows the error models for the thirteen intervals. The amplitudes of the transfer functions 

are higher at higher magnitude roll angles because the error variations are large and because of the 

lack of data at very high angles. 

 

Figure 18: Models for the Error from 10° intervals of the Stratux roll angles 

 

3.6.1.3 Model 3: G1000 Roll Angle Model for Stratux Roll Angles using piecewise 

Polynomial functions 

With model 3 we modify the Stratux roll to directly mimic the G1000 roll angles; unlike model 2 

where we used the error to find the improved Stratux indirectly. Similar to model 2, we split the 

Stratux roll angles into thirteen intervals from ī65° to +65° of 10° each. Equation 8 shows the 

polynomial function type for each of the thirteen intervals. As with model 2, all polynomial models 

for each interval are independent of each other, piecewise and discontinuous. The number of 

parameters varies based on the interval for which we chose the model. Figure 19 shows the thirteen 
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models for each interval. The number of parameters of the polynomial increase for higher 

magnitude angles due to high error and lack of data points. 

 ‰ ὴ ὴ ‰ ὴ ‰ ὴ ‰ Ễ (8) 

 

Figure 19: Models for the G1000 roll angles from 10° intervals of the Stratux roll angles 

 

3.6.1.4 Results on Training Set 

We created the models using the roll angle data from a random selection of 24 flights (training 

data set) out of the 29 flights. We reserve 5 flights to test the models (test data set) later in section 

5. Table 6 shows a comparison of óMissed Detections (MD)ô and óFalse Alarms (FA)ô between 

original Stratux values and the three models discussed above for all flights having at least one 

instance of the hazardous state (HS). Model 1, despite being a statistically good fit, does not 

improve detection of high roll angles. Model 1 cannot improve the Stratux roll angle values at high 

magnitude angles and thus cannot detect the hazardous states. Model 2 and Model 3 both improve 

upon the missed detections, but also increase false alarms. Since in Model 2 and Model 3, different 

implementations and function types gave similar results, we conclude that piecewise models 
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reduce missed detections but increase false alarms. Since the piecewise models show 

improvements, we choose Model 3 for further investigation.  

Table 6: Comparison of Missed Detections (MD) and False Alarms (FA) between the actual 

Stratux roll angle data and three models to improve the Stratux roll angles on training data set. 

No. of 

Flights 

with HS 

(  ʟG1000 

>45°) 

Actual Stratux 

Roll Angle Data 

Model 1: 

Continuous 

Linear Fit  

Model 2: 

Piecewise Fourier 

Transfer Function 

Model  

Model 3: 

Piecewise 

Polynomial 

Function Model 

MD FA MD FA MD FA MD FA 

1 47 2 42 4 29 14 27 13 

2 14 6 13 9 8 25 8 26 

3 16 7 16 7 12 17 12 20 

4 15 2 15 2 11 3 11 3 

5 40 0 39 0 21 3 21 3 

6 14 0 12 0 3 0 5 1 

7 2 0 2 0 0 1 0 1 

8 15 10 14 14 7 19 9 22 

9 5 0 2 0 0 1 0 1 

10 5 1 5 1 2 3 1 3 

 

3.6.2 Changing Roll Angle Safety Limit for Stratux  

For comparing the roll angle detection accuracy of the Stratux to the G1000 we used 45° as our 

roll angle limit. This limit is a óhardô limit, in that there is no error buffer. For example, if the 

G1000 angle was 45.1° and the Stratux was 45°, we would consider the Stratux to have missed the 

detection. We also know that the Stratux roll angles are erroneous compared to the G1000 roll 

angles. Therefore, if we use a hard limit for the G1000, we must consider a ózone of uncertaintyô 

about that angle when applying the limit to the Stratux. We refer to these adjusted limits as the 

ósoftô limits.  
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We used the error samples at every 1Á interval of the G1000 roll angles ranging from ī60Á to +60Á 

to find the mean error at each interval. Equation 9 defines the hazardous state limits for Stratux 

(soft limits): 

 ὛέὪὸ ὒὭάὭὸ  ὌὥὶὨ ὒὭάὭὸ  ‘  (9) 

Using equation 9, we redefine the óMissed Detection and óFalse Alarmô errors based on the soft 

limits for +45Á and ī45Á: 

¶ If the G1000 roll angle magnitude is greater than |45°| and the Stratux roll angle magnitude 

is less than |45°|, but greater than the magnitude of the ñinnerò soft limit (lower magnitude 

limit) , then we cannot say for certain that the Stratux missed detecting a hazardous state. 

¶ If the G1000 roll angle magnitude is less than |45°| and the Stratux roll angle magnitude is 

greater than |45°|, but less than the magnitude of the ñouterò soft limit (higher magnitude 

limit) , then we cannot say for certain that the Stratux has falsely detected a hazardous state. 

 

Figure 20 shows the instances of all angles greater than 43° in flight number 5. For ease of 

visualization, we have removed time from the x-axis and so each instance is not equally spaced in 

time. We chose 43° to have a zoomed-in view of instances near the hazardous state. The solid 

black lines indicate the hard limits and the dashed black lines indicate the soft limits. We refer to 

the lower magnitude limits as the óinner soft limitô and the higher magnitude limits as the óouter 

soft limitô. Since the error distribution is not symmetric about 0Á, the same hard limit for negative 

and positive roll angles has different soft limits for the Stratux. The zones of uncertainty are 

marked by translucent red bands. We consider the Stratux angles that lie within the red bands as 

correct detections. 
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Figure 20: Change of Hard limits to Soft (Red Bands) Limits for the Stratux for an example 

flight data. 

 

Figure 21 shows the results for missed detections and false alarms, similar to that of Figure 16. 

However, in the case of Figure 21 we use the actual Stratux and the soft limits, resulting in a 

decrease in missed detections and false alarms. 

 

Figure 21: Missed Detections and False Alarms of actual Stratux roll angles compared to the 

G1000 roll angles when we use soft limits of 45°. 

 
















































































