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ABSTRACT 

Author: Shamloo, Farzin. PhD 
Institution: Purdue University 
Degree Received: May 2019 
Title: A Study of Rule-Based Categorization With Redundancy 
Committee Chair: Sebastien Hélie 
 

In tasks with more than one path to succeed, it is possible that participants’ strategies 

vary and therefore, participants should not be analyzed as a homogeneous group. This 

thesis investigates individual differences in a two-dimensional categorization task with 

redundancy (i.e., a task where any of the two dimensions by itself suffices for perfect 

performance). Individual differences in learned knowledge and used knowledge are 

considered and studied. Participants first performed a categorization task with 

redundancy (training phase), and afterward were asked to do categorizations in which the 

previously redundant knowledge becomes decisive (testing phase). Using the data from 

the testing phase, dimension(s) learned by each participant were determined and the 

response patterns of each participant in the training phase was used to determine which 

dimension(s) were used. The used knowledge was assessed using two separate analyses, 

both of which look at accuracy and response time patterns, but in different ways.  

Analysis 1 uses iterative decision bound modeling and RT-distance hypothesis and 

Analysis 2 uses the stochastic version of general recognition theory. In Analysis 1, more 

errors and slower response times close to a decision bound perpendicular to a dimension 

indicate that a participant is using that dimension. Analysis 2 goes a step further and in 

addition to determining which dimension(s) are used, specifies in what way they were 

used (i.e., identifying the strategy of each participant). Possible strategies are described 

heuristically (unidimensional, time efficient and conservative) and then each heuristic is 

translated into a drift diffusion model by the unique way that strategy is assumed to affect 

trial-by-trial difficulty of the task. Finally, a model selection criterion is used to pick the 

strategy that is used by each participant.   
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                                   (a)                                                                    (b) 

 

 
                                                                     (c) 
 
 
Figure 33. Posterior samples of DDMs for BW-BW and OR-OR participants. a) Posterior 

samples of boundary separation. b) Posterior samples of drift rate. c) Posterior samples of 

non-decision time. 
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BW-BW vs. Both-BW 

 Figure 34 shows participants that are going to be compared. The green circles are 

BW-BW participants (i.e., learned bar width and used bar width) and red circles are 

Both-BW participants (i.e., learned both dimensions and used only bar width).  

 Figure 35a and 35b show mean accuracy and RT of each group during the five 

blocks of training respectively. Two separate Bayesian linear mixed models with block 

(1, 2, …, 5) and group (BW-BW vs Both-BW) as fixed effects and participant as random 

effect were fitted, one with accuracy as dependent variable and one with RT as dependent 

variable. Model’s estimate for the effect of BW-BW on accuracy is 0.84 and the estimate 

for Both-BW is 0.88 (difference of 4% in accuracy). Figure 35c shows the posterior 

samples of group factor’s coefficient in the model with accuracy as dependent variable. 

More than 96% of the posterior samples of the Both-BW coefficient are bigger than BW-

BW coefficients. On the other hand, model’s estimate for the effect of BW-BW on RT is 

1354.78 and the estimate for Both-BW is 1434.07 (difference of 79 ms in RT). Figure 

35d shows the posterior samples of group factor’s coefficient in the model with RT as 

dependent variable. Overall, Figure 35 suggests that Both_BW participants are more 

accurate compared to BW-BW, but not faster. 

The differences between the two groups are explored using a hierarchical DDM. 

Figure 36 shows the posterior samples of three parameters of the DDM. As shown by the 

figure, the main difference seems to be between the non-decision time components 

(Figure 36c; over 98% of Both-BW posterior samples were bigger than the BW-BW 

posterior samples). Additionally, around 89% of boundary separation posterior samples  
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Figure 34. Comparing participants that learned and used bar width (green circles) and 

participants that learned both dimensions but used only bar width (red circles). 
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                             (a)                                                                  (b) 

 

 
                             (c)                                                                   (d) 

 
 

Figure 35. Comparing BW-BW and Both-BW participants. a) Mean accuracy of 

participants in each block (each circle represents a participant). b) Mean RT of 

participants in each block (each circle represents a participant). c) Posterior samples of 

each group, when dependent variable is mean accuracy. d) Posterior samples of each 

group, when dependent variable is mean RT. 
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                            (a)                                                                    (b) 

 

 
                                                                    (c) 
 
 
Figure 36. Posterior samples of DDMs for BW-BW and Both-BW participants. a) Posterior 

samples of boundary separation. b) Posterior samples of drift rate. c) Posterior samples of non-

decision time. 
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from Both-BW are bigger than BW-BW (Figure 36a) and around 78% of drift rate 

posterior samples from Both-BW are bigger than BW-BW (Figure 36b). 

 A possible explanation for Both-BW participants having a higher non-decision 

time component can be given using the concept of workload capacity (a SFT 

terminology). SFT assumes three possibilities for the effect of adding sources of 

information: degradation of performance (limited capacity), no change in performance 

(unlimited capacity) and better performance (super capacity). The reason that Both-BW 

participants have higher non-decision time component compared to BW-BW participants 

might be caused by additional workload of latently learning the orientation dimension. 

OR-OR vs. Both-OR 

 Figure 37 shows participants that are going to be compared. The blue circles are 

OR-OR participants (i.e., learned orientation width and used orientation) and red circles 

are Both-OR participants (i.e., learned both dimensions and used only orientation).  

 Figure 38a and 38b show mean accuracy and RT of each group during the five 

blocks of training respectively. Two separate Bayesian linear mixed models with block 

(1, 2, …, 5) and group (OR-OR vs Both-OR) as fixed effects and participant as random 

effect were fitted, one with accuracy as dependent variable and one with RT as dependent 

variable. Model’s estimate for the effect of OR-OR on accuracy is 0.88 and the estimate 

for Both-OR is also 0.88 (no difference in accuracy). Figure 38c shows the posterior 

samples of group factor’s coefficient in the model with accuracy as dependent variable. 

On the other hand, model’s estimate for the effect of OR-OR on RT is 1152.07 and the 

estimate for Both-OR is 1337.64 (difference of 185 ms in RT). More than 99% of the  



119 

 

 

 

 

 

 
 
 

Figure 37. Comparing participants that learned and used orientation (blue circles) and 

participants that learned both dimensions but used only orientation (red circles). 
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                              (a)                                                                  (b) 

   
                              (c)                                                               (d) 

 
 

Figure 38. Comparing OR-OR and Both-OR participants. a) Mean accuracy of 

participants in each block (each circle represents a participant). b) Mean RT of 

participants in each block (each circle represents a participant). c) Posterior samples of 

each group, when dependent variable is mean accuracy. d) Posterior samples of each 

group, when dependent variable is mean RT. 
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posterior samples of the Both-OR coefficient are bigger than OR-OR coefficients. Figure 

36d shows the posterior samples of group factor’s coefficient in the model with RT as 

dependent variable. Overall, Figure 38 suggests that OR-OR participants are faster than 

Both-OR participants are, but not more accurate.  

The differences between the two groups are explored using a hierarchical DDM. 

Figure 39 shows the posterior samples of three parameters of the DDM. As shown by the 

figure, the main difference seems to be between the drift rates (Figure 39b; over 96% of 

OR-OR posterior samples were bigger than the Both-OR posterior samples). 

Additionally, around 90% of boundary separation posterior samples from Both-OR are 

bigger than OR-OR (Figure 39a) and around 85% of non-decision time posterior samples 

from Both-OR are bigger than OR-OR (Figure 39c). 

 It seems that since both OR-OR and Both-OR are using orientation to categorize 

stimuli, there should not be any difference in difficulty, so it is difficult to explain the 

differences in drift rates. The expected result would be differences in non-decision time 

component (due to additional load caused by latently learning the bar width dimension). 

The differences in boundary separation and non-decision time are also not small. Overall, 

it is important to emphasize again that since the groups are observed (and not assigned 

randomly to participants) these results are going to tell very little about the effect of 

latently learning a dimension. 
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                             (a)                                                                  (b) 

 

 
                                                                          (c) 
 
 
Figure 39. Posterior samples of DDMs for OR-OR and Both-OR participants. a) 

Posterior samples of boundary separation. b) Posterior samples of drift rate. c) Posterior 

samples of non-decision time. 
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Figure 40. Comparing participants that learned and used bar width (green circles) and 

participants that learned and used orientation (blue circles). 
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                             (a)                                                                  (b) 

 

  
                   (c)                                                                     (d) 

 
 

Figure 41. Comparing BW-BW and OR-OR participants. a) Mean accuracy of participants in each block 

(each circle represents a participant). b) Mean RT of participants in each block (each circle represents a 

participant). c) Posterior samples of each group, when dependent variable is mean accuracy. d) Posterior 

samples of each group, when dependent variable is mean RT. 
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                              (a)                                                                    (b) 

 

 
                                                                    (c) 
 
 
Figure 42. Posterior samples of DDMs for BW-BW and OR-OR participants. a) Posterior 

samples of boundary separation. b) Posterior samples of drift rate. c) Posterior samples of 

non-decision time. 
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Figure 43. Comparing participants that learned and used bar width (green circles) and 

participants that learned both dimensions but used only bar width (red circles). 
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                             (a)                                                                 (b) 

   
                             (c)                                                                 (d) 

 
 

Figure 44. Comparing BW-BW and Both-BW participants. a) Mean accuracy of participants in each block 

(each circle represents a participant). b) Mean RT of participants in each block (each circle represents a 

participant). c) Posterior samples of each group, when dependent variable is mean accuracy. d) Posterior 

samples of each group, when dependent variable is mean RT. 
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                                                                   (c) 
 
 
Figure 45. Posterior samples of DDMs for BW-BW and Both-BW participants. a) 

Posterior samples of boundary separation. b) Posterior samples of drift rate. c) Posterior 

samples of non-decision time. 
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Figure 46. Comparing participants that learned and used orientation (blue circles) and 

participants that learned both dimensions but used only orientation (red circles). 
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Figure 47. Comparing OR-OR and Both-OR participants. a) Mean accuracy of participants in each block 

(each circle represents a participant). b) Mean RT of participants in each block (each circle represents a 

participant). c) Posterior samples of each group, when dependent variable is mean accuracy. d) Posterior 

samples of each group, when dependent variable is mean RT. 
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                             (a)                                                                     (b) 

 

 
                                                                         (c) 
 
 
Figure 48. Posterior samples of DDMs for OR-OR and Both-OR participants. a) 

Posterior samples of boundary separation. b) Posterior samples of drift rate. c) Posterior 

samples of non-decision time. 
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