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ABSTRACT

Author: Nair, Ashwin, S MS Industral Engineering

Institution: Purdue University

Degree Receivedilay 2019

Title: A HUB-CI Modelfor NetworkedTelerobotican CollaborativeMonitoring of Agricultural
Greenhouses

Committee ChairShimonY. Nof

Networked telerobots are operated loyrans through remote interactions and have found
applications in unstructured environments, such as outer space, underwater, telesurgery,
manufacturing etc. In precision agricultural robotics, target monitoring, recognition and detection
is a complex taskequiring expertise, hence more efficiently performed by collaborative human
robot systems. A HUB is an online portal, a platform to create and share scientific and advanced
computing tools. HUECI is a similar tool developed by PRISM center at Purduedgsity to

enable cybeaugmented collaborative interactions over cydgyported complex systems.

Unlike previous HUBs, HUBCI enables both physical and virtual collaboration between several
groups of human users along with relevant cygigrsical agentslhis research, sponsored in

part bythe BinationalAgricultural ResearclandDevelopmentund BARD), implements the

HUB-CI model to improve the Collaborative Intelligence (CI) of an agricultural telerobotic
system for early detection of anomalies in paggants grown in greenhouses. Specific Cl tools
developed for this purpose include: (1) Spectral image segmentation for detecting and mapping
to anomalies in growing pepper plants; (2) Workflow/task administration protocols for
managing/coordinating intactions between software, hardware, and human agents, engaged in
the monitoring and detection, which would reliably lead to precise, responsive mitigation. These
Cl tools aim to minimize interactionsd confl i
effectiveness, thus reducing crops quality. Simulated experiments performed show that planned
and optimized collaborative interactions with H\IB (as opposed to dabc interactions) yield
significantly fewer errors and better detection by improving the sydteoeacy by between

210% to 255%. The anomaly detection method was tested on the spectral image data available in
terms of number of anomalous pixels for healthy plants, and plants with stresses providing

statistically significant results between the et classifications of plant health using ANOVA
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tests (Pvalue = 0). Hence, it improves system productivity by leveraging collaboration and

learning based tools for precise monitoring for healthy growth of pepper plants in greenhouses.
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1. INTRODUCTI ON

1.1 Background - Precision Agriculture, Automation in Greenhouse Agriculture, E-work
and E-Systems, Collaboration Engineering

Precision agriculture is agricultural management system where practices for crop
production and their corresponding inputs such ad,dertilizers, pesticides etc. are variably
applied within an agricultural are@ptimum production needs determine theut raesfor
resourcest eactspecificfield location(Sudduth, 1998)Precision agriculture techniques can
improve the economicna environmental sustainability of crop production. Another term used to
refer to precision agricultural techniques is wien farming, defined as the farm management
strategy utilizing precise information and information gathering technology i.e.etiffgpes of
sensors to increase profit and reduce environmental impact (Aet @L2017).

An agricultural environment is a complex and unstructured environment. Production in
an agricultural environment is intensive and requires development ot systisms with short
development time at low cost. The unstructured nature of the external envitananeases
chances of failure (Han, Edan, Kondo, 200%e introduction of automation into agriculture has
resulted in lowered production costs, redutsstious manual labor, raised quality of fresh
produce, and improved control of the production emvirent for crops. Industrial applications
usually deal with simple, repetitive, welefined, and a known a priori tasks. This differs from
automation in ageulture which requires advanced technologies to deal with the complex and
highly variable environm# and produce (Edan, Han, Kondo, 20@9)tomation increases the
productivity of agricultural machinery via increased efficiency, reliability, and pregciaiad
minimal human intervention all of which is achieved by adding sensors and controls (Edan, Han

Kondo, 2009).



13

Greenhouses have been developed through the 20th century to contain energy from solar
radiation, to protect products from various hazardwiaral climates and insects, and to produce
suitable environments for growing plafiisdan, Han, ikndo, 2009)The greenhouse
environment is a relatively easy environment for introduction of automated machinery due to its
structured naturédutomation sgtems for greenhouses deal with tasks like climate control,
seedling production, spraying, and hatuey (Edan, Han, Kondo, 2009)he research for this
thesis was undertaken as part of an effort to create an agricultural robotic GR@®nfor
disease detection of pepper plantgieenhouses

Here are some other terms and concepts that are part of this research that need to be
defined:HUB as defined in this researghan online portal builbn the HUBzero technologyp
support collaborative development and sharing of scientific models and tools that are running in
a cloudbased infrastructure of computing resources (McLennan, Kennell, ZOJigr Physical
System$CPS): CPSs are commonlyyaheed as the systems which offwllaborative
integrations of computation, networking, and physical processes (Klehighr2015). As per
t he US National S c i @hysical syBtems,mpliysicaliarad saftwafel n cy ber
components are deeply intemwd, each operating on diffart spatial and temporal scales,
exhibiting multiple and distinct behavioral modalities, and interacting with each other in a
myriad of ways t haWorkishazollecteon of¢oltalorative, computert . 0
supporte, and communicatieenabled éActivities, eOperations, d-unctions, and-Support
systems that enables otheBgstems and-Activities (Nof, 2003).Decision Support System
(DSS)is generally an auxiliary interactive compubeErsed system thlveragesomputer
communications, datknowledge, andelevantmodels to identify and solve problenasd

completevariousdecision process taskNof et al.,2015).Agentsare defined as independent and
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autonomous programs, which operate and execute specificuadkr certain protocols, aace
responsible for handling expected and unexpected e{iéot®t al.,2015) Collaboration
engineeringas defined by Nof et. al 201f&fers tothe fidevelopment of tools and techniques to
go beyond better communicatitethnologies and provide signiiatly improved collaboration
support by cyber through algorithms, protocols, epithboration support software agents.
Agricultural robotic applications deequire advanced technologimsbe productive and
to handlecompkx environmentsvith highvariability (Nof, 2009) and not alagricultural
applications can be fully automated in the near tétawever,partial autonomyvith
collaborationcan add value in terms of efficiency and productiaity its capabilities befoffell
autonomy is achievedh a target recognition task collaboration between a human operator and a
robot increases probability of detection by 4 percent when compared to a HO alon€ldnd by

percent when compared to a fully autonomous system (Bechar, ZHilzB8).

1.2 Research Objecives

The problem addressed in this research is how to create a collaborative human robot
greenhouse crop management systenis research aims to develop a humalpot collaborative
system based on the concepts of HUB, Decisigup8rt System (DS$Sand Collaboration
Engineering to improve the process of disease detection of pepper plants in greenhouses with
spectral imaging sensors, and automated robot navigation proc&bsesbjectives of this
resarch include:

1) To create a HUB based Human Robot Interaction [mfchanism that facilitates
physical and virtuatollaboration betweea) Agricultural Experts, b) Human ajagors,

c) Multiple softwae agents related to navigation, control and disease detection, all of

which are not at the same geographical locatiemote agents/operatprs
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2) To develop learnindpased protocols to enhance Human Robot Interaction and Decision
Support capabilities ohe Integrated Planner
3) Toenable early detectiaof anomalous pepper planisely to havebiotic or abiotic

stress

1.3 Research Questions

The following research questions are addressed in this work:

1. How todesigna collaboratives-systemcomprised ofemote agents (human, machine
and software) for the detection and identification of anomalipepper plants in a
greenhouse settirgych that the system performance is optimized and robust fo? error

2. Whattask administration protocoése necessaipr collaborative control of this system?

3. What DSS tools are necessary &optimal collaboration anthinimal errorin an

agricultural settingand b) enable early detection of stresses in fants
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1.4 Significance of Research

This researchttempts to ddresghe following questiongssues
1) How to build an optimal agricultural greenhouse systesmh combines the cognitive and
perceptive capabilities of a human agent, with the precision, speed and consistency of a
robot, in a way that optimizethe output of th greenhouse?
2) Use oflearningbasedDecision Support Tools to improve collaboratemmdenhancehe
Collaborative Intelligencef the system
3) Creating a strategy fétumanRobotcollaborationfor greenhouse monitorirend
simulatingit for effectiveness.
These are key issues that will help create the future Agricultural Systems that leverage both

human intelligence and machine intelligence in a symbiotic and productive manner.
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2. LITERATURE REVIEW

2.1 Collaborative Robotics in Agriculture

Undructured environments such as agriculture are characterized by rapid changes in time
and spacenlike in indwstrial environments where working conditions are usually fixed and
predictable (Bechaat al.,2003). Humans haw&iperior angcute perception pabilities which
enablesthem to work in a broad scoperelativelyvague and unstructured conditions (Chang,
Song, Hsu, 1998). Moreover, humans have superior recognition capabilities and caasitiapt
to changing environmental and object conditidRedriguez, Weisbin, 2003However, a
human operator is not consistgmipneto fatigue, and is subject to thaction. Bechaet al.,

2009 developed an objective function designed to allow computation of the expected value of
system performance, given tharameters ahe overall systenthe task, and the environment. It
evaluates statisticallyhe value of apecific system in a specific task and includegihect

gains, rewards, costs, and penalties of suxystem (Bechaet al.,2009).Cheeinet al, 2015
performeda study thasurveyed Human Robot Interaction practices in harvestingnahdlied
guidelines for designing a humaabot interaction strategy for harvesting tasidsich could

alsobe used for other agricultural tasks per that reseah, the four design cores of a service
unit are: mapping, navigation, sensing and action. This researcdmeessing the problem of
declining human labor force in agriculture in the countries of Chile and Argentiatstlily

discussd the advantages drchallenges associated with flexible automated farming.
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2.2 Simulating an Agricultural Robotic System

As morerobotic systems are being developed and implemented in the field of agriculture,
it would be cost effective to simulate such systems in the develdgrhase. Recently there
have been a few research projects on simulating a robotic system for {Raban
collaboration. Acomputationakimulatone nvi r onment named ASi mul a
Precision Agriculture Ta svasdeveloped (EgqneRah P06 F |
to study and evaluate the execution of agricultural tasks that can be perfoyrae autonomous
fleet of robots. The environment is based on a mobile robot simulation tool that enables the
analysis of performance, cooperatiand interaction of a set of autonomous robots while
simulating the execution of specific actions on aetdienensional (3D) crop field. The
environment is capable of simulating new technological advances such as a GPS, a GIS
automatic control, ifield and remote sensing, and mobile computing, tviadl permit the
evaluation of new algorithms derived from Precision Agriculture technidims environment
was designed as an open source coermjiplicationThe SEARFS environment consists of
four levels of configurations, where the lowevels depend on the configuration of the higher

levels

Level 1: Setting the simulation scene: Field features:
Dimensions, Crop tvpe, Weed, Topography

Level 2: Setting the mission parameters: Fleet features and Path
planning

Level 3: 3D virtual world: Obstacles, Supporting features,
Guidance algorithm

Level 4: Simulation

Figure2-1 SEARFS environment configuration lelggCourtesy of Emmet al.,2013)

tio

eet
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A general methotbr developnentof customized robot simulatioandcontrol system
software with robot operating system (RQ&s also developed (Wanrgt, al, 2016).The
simulation designed in this research involves &Avisualizatiormodel| created in URDF
(unified robot description formagnd viewed in Rviz to achieve motion planning with Movelt!
software packagéd) A machine vision provided by camera driveckage in ROSo enablethe
use of tools for image procéisg, and3D point cloud analysis teeconstruct thenvironment to
achieve accurate target locati@md c) @mmunicatiorprotocols provided by ROfr serial,
Modbus supporof the communicatiosystem developmenf tomato harvesting scenario was

simulated using this methodology to demoaist its features and effectiveness.

2.3 Collaborative Control Theory

Collaborative Control Theory has been developed by researchers at the Bd&iteMat
Purdue University and elsewhere (Mfal, 2015) to optimize distributed, decentralized, and
multi-agentbased éNVork and sService.Collaboration iknown to be an essential means for
effective design andontrol of eWork and eService Collaboration enables all involved entities
human and artificialin decentralize@-Systems to share their resources, information, and

responsibilities, such thatutual benefits are obtained.
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« Communication = Complementary « Compatible goals «Joint goals,
) goals - : » identities &
= Infarmation * Individual identities responsibilities
Exchange = Alignment of -
activities = Ability to work apart = Work together
Coordination Cooperation Collaboration

Figure2-2 Coordination vs Cooperation vs Collaboration in terms of interaction level
(Source: Nokt al.,2015)

As future precision agricultural systems are likely to beprised of multiple distributed
and autonomous agents, the efficiency and effectiveneks &fRSvould depend upon how

well its constituent agents can collaborate.

Theory & models

Agents
Workfiow \ »
\ /
ll /
\ / Protocols
\ -
\ \ / -
Collahoration & interaction model /"\ I/\\
" > ./\
e-Work
Human-computer interaction > ! ~ -

U sion
cim pport )

R Knowledge based system

Extondeoed enterprise /S ‘-\L‘)(/
/ —~

Middieware technology !' Distributed information system

GRID computing

Figure2-3 The different components of cyber enhanced processesNVork
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Below is a summary of the basics of Collaborative Control Theory (Nof et al., 2015):

1)

2)

3)

4)

Collaboration Requirement Planning (CRPhe first step necessary isrtake usef

planned collaboration, as opposed to addramplanned collaboration. Effective
collaboration requires advanced planning éetlback loops, as targeted by the CRP
principle. CRP is composed of two phasasely Plan Generation, and Plan Execution
and Revision.

E-Work Parallelism{EWP) The EWP principle is based on the fact that ineny

System, as a distributed network of agents, some activities can and should be performed
in parallel. The principle of EWP has deeperplications due to the disbiited nature of
thee-Systems and the fact thateractions take place through human aoftixsare
workspaces, including Humanhuman interactions, 2) humamachine and human

computer interactiongnd/or 3) machinenachine and comput@omputelinteractons.

Keep It Simple, System (KISSAny e-System can be as complicated as need Hengs

asitisassimplegsossi bl e for human participantsé
and embraces traditional humeomputer and humaautomation usabilt design
principles and goes beyond them.

Error Prevention and Conflict Resolution (EPCRhis principle deals with the detection

of errors and conflicts among collaboratengents, and the costs associated with
resolving the detected errors and confli®taturally, any system that cannot overcome
effectively its errors and conflicts willeg out of control and eventually collapse. In
general, the rates of errors and conflicts among agents are proportional to the rate of
interactions and the number of igetcollaborating agents. Hence, effective collaboration

requires timely detection andgolution of errors and conflicts as economically as



5)

6)

7)

8)

9)
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possible.The EPCR principle is composed of eight consecutive functions that begin with
detection and end with rdstion and exception handlinghese include 1) Detection i.e.
searching for existing Eors/Conflicts, 2) Identification i.e. classification of the

observation as an error or conflict, 3) Isolation i.e. determining the exact point of an error
or conflictin the system, 4) Diagnostics of Error/Conflict, 5) Prognostics, 6) Error
recovery i.eremoving or mitigating the effects of an error, 7) Conflict Resolution, 8)
Exception handling i.e. managing exceptions in the process.

Collaborative Fault Tolerance ET): The purpose is to achieve higledficiency and

reliability from a network of weakgents (e.g., micrsensors) rather than a single
stronger agent.

Association and Dissociation (ADJhis principle addresses dynamic variations in the

formation (topobgy), size, and operations of collaborative networks of agéh&sAD
principle analyze the conditions and timing for individual agents or networksgehts
to associate with or disassociate from a collaborative network.

Emergent Lines of Collaboratiand Command (ELOCCTYhe purpose of this principle

to overcome drastic changes faciregworks, e.g. under emergency, and the volatility of
formal and informal communications between the individual and clustered agents.

Best Matching (BM)Matching betwee the collaborative agents is a fundamental

concern in the desigand execution of coltrative eWork networksThe objective of
the BM principle is to find the best match betwésno or more sets of agents, such that a
set of objectives is satisfied.

Cadlaborative Visualization and Comprehension (CVisual analytics focuses on the

integation of interactive visualization with analytic tools and techniques to deal with the
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rising complexities of @Vork systems. The aim is to integrate computer graphics
interaction, visualization, analytiggerception, and cognition domains to enhanakt an

support the human machine interactions

2.4 HUB-based Telerobotic Systems

With decreasing prices and fast paced advances in ubiquitous computing, telerobotics is
gaining popularity as an attractive framework that allows true physical collaboration among
distributed users (Sorgg al.,2008). Telerobotics can be seen as a formwbik, which is a
collaborative, computesupported, and communicati@mabled platform fooperations in highly
distributed organizations (Nof 2003).

What is HUBCI and how caiit improve an Agricultural Robotic SystefARS)?

HUB-CI was inspired from the research and liempentation of HUBZero system
developed by researchers at Purdue univerEitg.HUBzero cyberinfrastructurigcilitates
researchert work together online to develop simulation tools (McLenetal, 2010).

Collaborators can access the resulting tdmiordinary Web browser and launch simulation runs

on the national Grid infrastructure, without having to download any code. The Pegasus

Wor kpbow Management System can manage wor kpows
recording data about their execution sitaneously (McLennan 28)L. HUB is an online portal

that provides users to create and share research materials and computational tools. HUB can

deliver all resources and simulations vigegularweb browser and uide high performance

Grid computing resurces KcLennan et aJ 2010). HUB along with cloud computing allows

software and data toe easily share@monggroups of users. Most HUBs allow collaborative

jobs on virtual materials and simulations, but theasno tool for users to perform physical

collaboration KcLennanet al, 201Q. The innovation oHUB-CI is that itaddressemanaging
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physical collaboration between groups of human users@leantcyber physicahgents
(Zhonget al.,2014). HUB-CI is acontinuous projeciimed aimproving the collaboration
methodsoverHUB-like systemsHUB-CI i.e. HUB-based Collaborative Intelligence is a set of
collaborative intelligence algorithms and tools have been developed to enhance HUB and
augment productivityvith more efficient functions to supgdarollaborations (Zhongt al.,

2014).

So, for an Agricultural Robotic SystefARS), the aspect of physical along with virtual
collaboration is where HUI could add the most value in terms of augmenting effigiemd
productivity.

The Networked Tel®bot S/stemfor Agricultural Roboticover HUB involves multiple
operatorssingle ormultiple robots, and cyberinfrastructugesupport collaboration.

Collaborative control is a process that is fault tolerard,isnbenefit is that it can yield
bette results from a team of weak agents when compared to a system that depends on an agent

that is faultless. (Noét al.,2015).

e Y

Database
l u]” v
.Collaboy

lnte ra ctlon

=P F—

“Control and

. Feedback
Experts- HUB Environment Telerobots

Computational
cluster

Figure2-4 Architecture of HUBbased NTR Systems (Zhong, 201
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Interaction tier Logic tier Task tier
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Figure2-5 HUB-CI model for thredier collaboration infrastructure (Zhong et. al 2014)

The HUB-CI used in this research follows the samgh-levd concept as that depicted in Fig.
2-5. The purpose of the HUBI is to serve as a) The Integrated Planner, b) Human Robot

Interaction interface and Decision Support System.

2.5 Collaborative intelligence

Collaborative intelligence (¢is a concept developed at PRIS®hter, Purdue
University. With regard to Collaborative Control Theory (Ca¥escribed earlier, the processes
of collaborative ESystems can be improved building and augmenting the Collaborative
Intelligence (ClI) of participants which can provide better support for achieving their individual
and common goalZhong et al, 203). Collaboration a necessary foundation $ustainability
and evolution of any organization of natural or artificial ageincluding cybephysical systems
(Nof et al, 2015). As seen iRig. 2-2 regarding the differences betwesyordination,
cooperation and collaboratipoollaborative intdigence is a metric that incorporates and
combines measures regarding all thrdeorffyet al.,2015 defines collaborative intelligence as

ACI i s a measure of an agentds capability

t
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required resources, infoation, and responsibilities with other peers to resolve new local and

global probéms in adynamic environment.

Collective

Communication |
[

Cumnlative

Figure2-6 Interdependence of interaction intelligences (Courtesyafssaret al.,2013)

Devadasaret al.,2013collaborative intelligence (Cl) in the knowledbased selice
industry and to identify measures for finding the best collaborators during the formation and

functioning stages of collaborative networks.

2.6 Agricultural Cyber Ph ysical System framework for greenhouses

Guo, Dusadeerwsikul, Nof 2017presented &PS orented framework andorkflow for
agricultural greenhouse stresses management, called @E8Rvhich hasbeen designed to
focus on monitoring, detecting and respondmgarious types of stresBhe system @mbines
sensors, robots, humans and agriculturaéghouses as an integrated Cie6monitoring,
detecting, and responding to abnormal situations and cond#iomsg toprovide an innovative
solution combined weless sensor networks, agricultu@bots, and humans based on
collaborative control they in order to detect and responddietected stresses as early as
possible Figure 27 describes the Agricultural CPS framework (GDosadeerunsikul andof

2017):
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Figure2-7 Agricultural CPS Famework (Courtesy of Guo, Dusadeerunsikul, Nof, 2017)

Sensor8 n arddeoyedn thegreenhouses to provide informationesfvironmental
parameters thamfluence the development of the agricultural créxsagricultural cloud model
platform is usedn the agricultural field based on a number of server clusters €Gaiq2017).
It contains two components which are cloud storage and clomguting/expe systens, and
not only storesarge amountsf sensing data, baisoprovidesservicessuch agrop diseases
anal ysi s, intruder s 6 Fuaheanore)ie neaworlk layertprowdess es 1 den
routing and data aggregation servicHse gatewayonnects the agricultural cloud by GPRS/4G,
Internet, WiFi, or local area networks. Users or faswan access agricultural data througib
browser or smart phon&heagricultural robotis usedo aid detectiomn special situations for

special stresse$hough sensors can do much of the monitoring wamld, also can obtain
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pictures or photos, theare limited by power, fixed location, asdnstraint transmission ability.

The robot computer is to run the necessary software for interfacihg tobot phatform and

sensors, sensor information processing, mission planningxamaaition, navigation,

implementation control, user interface, netwodimmunication, etc.

Below are the MDRCPS workflow diagrams (Guet al.,2017):

1 System Initialization

2 Scheduled sensor
monitonng

3 Da@ wansmission

B.3 Puobors collect
dag

82 Fiobots navigadon

4 Agricnlnral cloud

B.1 Triggenns robos

5 Dai analysis
(Stress detecton)

T Triggering

mechanism

(Clear stress)

6 Mo adion
(2o sess detected)

Figure2-8 MDR-CPS workflow diagram (Courtesy of Guo, Dusadeerunsikul, and20af;)
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Figure2-9 MDR-CPS workflow chart (Courtesy of Guo, Dusadeerunsikul, and Nof)201

2.7 Spectral imaging on plants for stress detection

There have been several stugiesformed in the Zicentury on tie application of
hyperspectral imaging for agricultural plart#/perspectral imaging has been applied
successfully in plant disease classification and detection (Moghadam eiNsdr@017). A few
general findings using hyperspectral images on plankisdadMoghadam, Waret al.,2017):
T A plantds interact i electromaghetic sgectriinh depeedas anlepfar t s
biochemical compounds and leaf anatomical structure. Healthy plants typically absorb

light in the visible rangeMIS 400-700¢ & ) due to leaf photosynthesis pigments.
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1 Amount of light scattered in the neafraredrange (NIR 70aL000¢ ¢) is strongly
sensitive to leaf cell structure.

1 Factors that influence leaf reflectance in sheateinfrared (SWIR 1002500¢ 0)
includeleaf water and chemical contents.

Moghadamet al.,2017used hyperspectrahaging YNIR and SWIR and machine
learning techniques like &ure extraction, cluster analysis anthkans for detection of the
Tomato Spotted WilVirus (TSWV) in capsicum plantslahleinet al.,2013 developed
specific spectral disease indices (§0ts the detection of diseases in crops specifically
sugar beet plants with regard to thregjon leaf diseases of sugar beet plants. One key
takeaway from that study relevant to this thesis is: Efficient use of spectral reflectance
measurements for disease déte relies on identifying the most significant spectral
wavelength which correlategrengly to a specific disease (Mahlahal, 2013). A few
regions of the spectrum are of interest and this depends on the appligatieral studies
developed advamed algorithms based on machine learning and image processing to
determine plant part &ures and improve accuracy of monitoring, classification and feature
extraction (AlSuwaidet al.,2018; Nanseet al.,2013; Chengt al.,2013. Wang Vinsonet
al., (2018) developed a hyperspectral imaging technique for detettobolassificatiomf
the plant disease TSVW usif@gnerative Adversarial Nets, outlier removal, deep learning
techniquesvhich providedsensitivity and specificitpf the classificatiorat 92.59% and

100%respectively.



2.8 Summary of literature review
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Table2.1: Literature review and corresponding research questions

Research Question

Literature surveyed

How to model a collaborativesystem that
accommodates remote agents (human,
machine and software) for the detection an
identification of anomalies in pepper plants
a greenhouse setting?

Guoet al.,2017% Emmiet al, 2013 Zhong et
al., 2015 Nof etal., 2015 Wang, et al., 2016
Devadasan «tl., 2013 Nof 2003 Bechar et
al., 2003

Whattask administration protocotse
necessaryor collaborative control of this
system?

Nof et al., 2015McLennan et al., 2010
Zhong et al.2014 Zhong, 2012McLennan
2015 Bechar et a).2009

What DSS tots are necessary for a) optima
collaborationwith minimal errorin an
agricultural setting, and b) enable early
detection of stresses in plants?

AlSuwaidi et al, 2018; Nansen et aR013;
Cheng et a).2013 Moghadam, Ward et al.
2017; Mahlein, Rumpf €al., 2013 Wang,
Vinson et al. 2018
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3. METHODOLOGY

3.1 HUB-CI in an Agricultural robotics system

With regards to previous research regarding the usefulness of Hriota
collaboration as a productivity multiplier, this research aims to create a modgptinaizes the
collaborativecapability of this multiagent agricultural robotic system for thegnhouse. This is
where the HUBCI is relevant. HUBCI serves as a Decision Support System and a Resource
managemertbol. For thetasks in an agriculturabbotic system that requireshamanin-the-
loop, anexperimental platforrand a simulation ahe concept oHUB-CI (hub for
Collaborative Intelligence) system has been develdpetthis research to incorporaagents
from otherteams for collaboration #tmay need moréhan simplanformation sharingThe
objective: Enablingffectiveintegration and collaboration tasks, exchanging and leveraging
collaborative intelligence from the ARS networksmimponentsvhose physical location may be

local or renote



3.2 Agents basednodels of the ARS HUBCI

Agentsat Remote Lacation 1

A) Manual Robot
Control program
for remote

operators C) Anomaly

detection
programs
B) Adaptive Search

and Routing

Algorithm

Agentsat Greenhouse Location

D) Robot
Cart

E) Spectral

I) Navigation

Imaging cameras

Sensors

F) Robot

Navigation

G)

Location

H) On site

human

programs

Mapping operators

Figure3-1 Agent based model for dllardware and software agents for the ARS HCUIBystem based on location

Agents at Remote Location 2

[) Stress

ldentification/Classification

Algorithm

€e
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Table3.1: Inputs andDutputs for agents an Agricultural Robotic System

Agent | Input Data type Output Data type
A Direction String Direction String
commands (via commands
keyboard)
B 1) Disease 1) String| Near optimal Array
name 2) String | routing sequence fo
2) Direction 3) Float | robot cart.
of disease
propagation
3) Distance
matrix
between
nodes in
greenhouse
E - - Spectralmages m*n*k
array
F 1) Map Array, String 1) Robot Array
2) Direction odometry
commands 2) Robot Pose
(3D position
and 3D
orientation)
G Navigation sensor Map of greenhouse
information
I Spectral Images | m*n*k array Stress diagnosis String

Table 31 provides an example of inputs and outputs that are expected to be part of the
agricultural robotic system. An important aspect of the HCIBs facilitatingcommunication
via data, information, knowledge and logic transfer across multiple agehts system. It
determines which agents must collaborate on which task or set offesiksthe standpoint of
developing the software, the above table helps defipected data types for each of the inputs

and outputs.
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How these agents communicatel aollaborate with each other i.e. under what set of

protocols should they communicate is illustrated in Figu2eFdgure 3-2 is a representation of

the HUB-CI systen based on its functions and the interactions between-bgesatl systems

E) Robot

A) HUB-CI functions/protocols
Manual
Robot Data and knowledge | .
Control A sharing among systef
agents (DSS) &
A
A 4
Workflow
B) Routing optimization
Algorithm -
v

C) Robot
Cart

Detection of

anomalous images andy

plants and determine
potential problems in
greenhouse

y

I)Local
operator

Matching of agents to
tasks and determining
collaboration levels

A
h 4

K) Remote
operator

Handling Conflicts
and Errors

----------------------------------------------------------------.‘::a:.---,__.__.__._---------.‘,-.,'.------------,

r

» C Dataflow

Navigation
programs
F) Location
Mapping
/ programs
K)
Environment
sensors
G)
Navigation
cameras
H) Stress
Identification
and
Classification

Algorithm

D) Spectral
Imaging
Sensors

Figure3-2 Diagram describing interaction afjentsalong withHUB-CI functions and mcesses
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3.3 Unsupervised Learning methodd Clustering and Anomaly Detection

To build a HUB system in a precision agriculture domain, a rmegfued feature and
mechanism is a Decision Support System (DSS) (Mehta et. al, 20i&i)pervised learning
involves nmachine learning algorithms and processes that generates patterlearns from data
that has not been labelled, classified or categoriiee purpose of unsupervised learning is to
extract valuable concepts or information from the data. The main tasksupervised learning
often includeseveraklustering appraghes anédinomalydetection (als&nown as novelty
detection, or outlier detectipWang et. al 2016)I'wo unsupervised machine learning
algorithms have been included to enable this DSS faadheultural robotic system namely k
means clustering and anaiy detectionOne important purpose of the DSS is to find previously
unknown patterns in the agricultural spectral images which could provide farmers, agricultural
experts etc. better insights the condition of the greenhouse system that were previously
unknown. Hence+neans clustering, and spectral anomaly detection have been included as DSS

tools.

3.4 HUB-CI function 1: Data and Knowledge sharing across the networked system

With regard to amgricultural greenhouse robotic system, the followiintctionalities
are proposed:

1 DecisionSupportSystemtype: A combination of communication, data and knowledge
driven database. System information and data: Time series information of the day to day
operation of the system. Machine learning (Anomaly detayf this data can detect
existing and potential errors and conflicts.

1 Domain knowledge: A repository of information on plant ilinesses and stresses,

agricultural best practices, case study infdram plant information etc.
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1 System metadata: All kndedge (model, configuration, manuals etc.) of robots, sensors,

operators etc.

3.5 HUB-CI function 2: Workflow Optimization - Ascertain task and data dependencies
Assumption Data mining agents can provideguired data to any agent in a timely manner.
Figure3.3is theworkflow for the system and task and data dependefaridse task of
detection of diseases in a greenhouse settidgscribes the Collaborative Control Theory
(CCT) principle of EWork Parallelism(described in Section 2.8)ith regard to aobotic system
for disease detection in a greenhouse. The tasks described in the figure are the key tasks

identified for this system:
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Task 1: Task 4: Task 5:
Determining Task 2 Task 3: o tas o Determining
location to o Deterr.mnlng v Moving to etermining required

inspect Optimal location sensor agents

> Route orientation Iy,
' 7y
- ' =
v
Task 6:
h .
~» Imaging and
- processing
&
Task 0: .
Conflict o L
« andError | _ Task 7:
Detection o — N Making
and _ disease
Prevention AN classifications
Task 8:
J Correcting
» Flowof classifications
Data/Information (as necessary)

Figure3-3 Key taks for the networked agricultural robotic system #ralcorresponding flow of
data/information

Based on the data dependencies identified ifritpere 3.3, Figure3.4is an example
more optimized workflowThe optimizedworkflow in an implementatiorsiintended tde
collaboratively decided by decision making agents within the HUB depending on the spacific

thesituation
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Task 1:
Determining
location to
“ inspect *
Task 2: Task 5:
Determining Determining
Optimal required
Route sensors
i
' Task O: M
' -
Conflict and Task 6: Task 8:
Error .
Task 3: ) Imaging and Correcting
) Detection .
Moving to q processing disease
location an . classifications
Prevention "
T v
v Task 7:
Task 4: Makmg
. disease
Determining
classifications
sensor
orientation » Flow of tasks

Figure3-4 Example of an optimized and parallel workfléev semtautomatedietection of
diseases in a greenhouse

The characterization of system tasks and agents modelled here also highlights another
relevant Collaborative Control Theory (CCT) principle iA&ssociation and Dissociation (AD)
described in section 2.3. Herenigw the AD pinciple is in effect in this agricultural robotic

system:
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A Not all sensors need to participate in the detection and diagnosis process at a time.
Example: Suppose out of n senstmsusing information provided by the DS§&it is
concluded thie2 specificsensors are optimal for the diagnosis of piatiten the set of
participating sensors S becomes S & §3.

A Not all human operators are required to participate in system activities at all times. The
system can calculate service level (k) eachof theoperators and pick the most
required operators based on the problem.

A Service level§SL) of the agent can beompared relative to the collaborative network.
SL can be calculated lize following logic based on that proposed in Bbél.,2015
YO 010 O O Y0 010 U (1)

Dy A Demand of agent, KA Capacity of agent, @A Demand of collaborative

network, KyA Capacity of collaborative network

3.6 HUB-CI function 3: Collaborative detection of anomaliesin plants from spectral
images

Research Question 3:What DSS tools are necessary for a) optimal collaboratithminimal

errorin an agricultural setting, and b) enable early detection of stresses in plants?
Figure3-5 presentan overviewof the protocolfor human robot collaborative detection of

anomalies in plants
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3.6.1 Protocol 1: Detecting aromalous images captured and performing segmentation
This protocolcan be summarized in the following two questions
1. How can the ARS HUBCI systendetermine automatically if the image takeay not
be sufficient for analysier if an operator needs to rewi¢he plant? Examplinage
anomaliesnclude but are not limitetb:
- Weeds or grasses in the background
- Otheraspects in the foreground that compromise precise imaging of the leaves
- Poor lighting
2. How to determine which part of the image to extract foryammal.e. how to segment out
the leaf?
Solution Use kmeans clustering to create a predetermined number of clusters for each image. If
the correct bands and number of clusters are used the leaf will be a distinct cluster. If the number
of pixelsfor the kafclusterdo not meet minimal thresholds, thiheimaging must be performed
again.Figure 3.6 describes the process methodology for imaging plants in order to determine

their condition.
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Multiple sensor outputs

Sensor 1 Sensor 2 Sensor 3
can be accepted by the
rotocol
:*: i
@ | Take multis i >
J I pectral imagde ®
Human operators Human operators
confirm number of \ confirm the ideal
clusters required Run kmeans clustering spectral band to
based on rec¢mata algorithm use for image

available clustering

Is the image

non

anonalous?

Proceed td’rotocol2

Figure3-6 Protocolfor collaborativemagng of plants

3.6.2 Protocol 2: Detecting anomalies in plants

Problem description:
1 Allimages collected doa®ot need to go on the HUB and sent to remote
operators.
1 In monitoringgreenhouselants,an anomaly may be detectedthe plant but
cannot yet identify or classify it to a specific stressother type of anomaly
could be when there is not enough qualidéya tomake a classificatioar when

the symptoms of different stresses ardegsimilar
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1 Most importantly, howd enable early detection of anomalous pepper plants

likely to have biotic or abiotic stre®s

Solution Use anomaly detection on the spedtrages. Statistical anomaly detection on the
spectral images
Description Theprotocoluses the squared Mahalanobis distance as a measure of how

anomalous a pixel is with respect to an assumed background.

O @ @ P Y ® P )

WO N QB AINDO,T B HOOQQU EOHEXY © OOOQQ GHE® QDNE OQ

Train algorithm i.e.
determine
background
statistics based on | ™

healthy/correct \

images -
Compute e
Decide Mahalanobis | anoFrLaa?ous L rETrﬁﬁﬁE:rf‘i ..
probability /' matrix for test xols HM s
threshold for image P ~—
anomalous -
pixel Flag |
: ag image as
Decide on thl:E:-e anomalous and
mglflgl:g“lml;'-lgzs r transfer to HUB
pixels

Figure3-7 Protocol forcollaborative detection of plant anomalies

To declare pixels asnamalous, a threshold Mahalanobis distance score must be
specified. One method is to choose all image pixels whose score has say a probability of less
than 0.01, for exampl@he chisquard distribution was used to do this. The inputs to the chi

squared gantile functionncludedesired probability and degrees of freedom (df).
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3.7 HUB-CI function 4: Best Matching of Networked System Agents to Tasks

3.7.1 Collaboration Requirement Planning (CRP) and Best Matching (BM)

The CCT principle oCollaboration Requirementdhning (CRP)section 2.3) is relevant here.
A Set S denotes tlmmbination of agent®quired to resolve issue D
A S={s, 9 % % s}andD = {d1, b, ds, d}

A Then the Collaboration Requirement Matrix (CRM) and for would look similar to:

P G T P
Wt p 0 G,
CRM=mp p p ™
't ¢ ¢ p7
K mp pY

A The value range [0,3] indicates an increas

Furthermore, the CCT principle of Best Maittg (section 2.3) is most applicable for this
system to match individual or groups of agents to specific tasks i.e. issues detptaatsiA
Best Matchindgormulationcan be set up as follows
1 [{Agents} A J {Problem Areas in the greenhouse(s)}
o0 Multiple agents®2) can be matched to a single problem area at a time
o 0 isbased on the Preference matrix calculated on basis of available
sensors and agents required at area j
0 Robot availability is a key constraint
o Optimizes the detection of issues based mis@erequirements and

availability



46

The assignment problefarmulation can hence be written as:

D OOQAERBRO z® 4)
s.t,

B. @ ¢h Q0 (5)
B. @ ph Ko ) (6)

® mhph Q@ @ 0

3.7.2 Collaboration Strategy for Collaborative Monitoring of Greenhouse Plants

Collaboration StrategyHuman operator performs supervisory tasks and tasks requiring superior

expetise, perception and skill, whereas robot performs manual and repetitive tasks.



Table3.2: ARS System without HUECI vs ARS System with HUECI

Without HUB-CI

With a HUB-CI based Decision Support

1) Robot cheks all plants
on each and every run

2) Assuming a
supervisory role
Human operator has tg
verify all thediseasd
or anomalougases

3) Human operator will
also be required to
verify a few randomly
sampled cases that
were detected as
healthy

1)

2)

3)

4)

5)

6)

The HUB-CI will use

a) Information contained in one several
knowledgebases,

b) inputs and outputs of multiple agents (humar
automated),

c) Outputs of HUBCI based tools for Decision
Support (described in section 3),

to generate probabilities of the condition of the
plant (diseased, healthy, low Bortent etc.) in
several areas of the greenhouse.

Each and every plant in the greenhouse does n
need to be monitored at each monitoring cycle.
The integrated planner based on the HOB
assigns areas in the greenhouséctv need to be
monitored and by whitagent (robot or human).
Human operator checks certain areas for
anomalies that require some domain knowledgg
and expertise, and which cannot be automatical
detected and determined by an algorithm.

The robot with manted detection sensors
CONCURRENTLY checks areas which are mos
likely to contain diseased plants. These diseas€
can be detected by a corresponding disease
detection algorithm.

After both agents (human and robot) have
concurrently performed tasks thave been
assigned based on their stg¢hs, the human
operator in a supervisory role may random sam
some of the detections performed by the robot t
ensure accuracy.

After this task both agents should random samy
a few plants in the areas that aréeti@mined to
have a low probability fodiseased and other
anomalous plant cases to ensure that the plants

in a healthy condition.

Assumptions

1) Diseases in plants will tend to spread to other plants that are nearby. Certain areas of the

greenhouse arexpected to have certaliseases and defects

2) Equipment inspection, servicing and maintenance is a fixed cost.

47
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3) The human operatf@agentinvolved has sufficient domain knowledge in agriculture and
has working knowledge regarding management of greenhonse. ¢

4) Owing to a) a superiadomain knowledge and expertise with regard to agricultural
aspects, and b) better perception and adaptability to surroundings/conditions; the human
operator/agent involved can identify and categorize the various other plamlaasthat
are not include in the automated disease detection algorithm.

5) The HUB-CI based integrated planner and DSS is periodically updating based on new
inputs and information, local and global from multiple agents and knowledgebases.

6) Human operatotakes the same amount ahg to move between two locations of a
greenhouse. Time to move by the human operator is marked as fixed and is relatively
insignificant for this problem as he may begin from any location in the greenhouse and

can move without angncumbrance that a robartwould have.
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Figure3-8 Workflow diagram for HUBCI Collaboration Strategy

3.8 HUB-CI function 5: Handling Conflicts and Errors

Objective Maximize resolution of Conflicts arieirrors (C&ES)

Conflicts and Errors are to be expected in an Agricultural Robotic system given the relatively
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unstructured nature of agriculture. The goal of the HLIBased networked telerobotics is to

implementa collaborative process for disease dadectvith enhancedecisionmakingtools

and processesBelow aresome expected errors and conflicts



Table3.3: List of potential Errors and Conflicts

Type Error or Description Agentsconcerned Agents and
Conflict name Information
required for
resolution
Error Routingand 1 Robotcart 1 Automated Human
navigation cannotfollow Routing agentwith
error prescribed algorithm navigation
routing plan 1 Navigation sensor data
System unable agent
to generate a 1 Robot cart
routing plan 1 Human agent
Error Imaging Imagingsensors 1 Spectral Human
anomalies do not capture image sensorg agent with
thedesired 1 Image data from
plant part segmentation | Spectral
and anomaly | sensors and
detecion outputsfrom
agent image
segmentatior
agent.
Conflict | Conflict Contradictory 1 Robot cart HUB-CI
between commands for robot 1 Image protocol to
Routing agent,| cart from imaging, segmentation | manage
imaging stress detection dn agent interaction
agents, and routing agents. 1 Anomaly and | between
stress detectiol stress automated
agents detection agents
agent
1 Routing
algorithm
1 Navigation

agents

50
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Table 33 continued

Conflict | Plant 1 Disagreements | Multiple human Human agen
diagnosis between one or| operators across the | like the
conflict more human network. Examples | system

agents include Agricultural | supervisor

regarding naturq experts, farmers and the

of plant stress | system engineers etg parties in
{1 Disagreement conflict.

between one or

more human

agents

regarding

existence of

stress in

specific plant

Conflict | Procedural Disagreements betweg Multiple human Human agen

conflict one or mordauman operatos across the | like the
agent regarding systen network. Examples | system
procedures and include Agricultural | supervisor
processes for disease | experts, farmers, and the
detection system engineers etg parties in
conflict.

Error Navigation Faulty navigation 1 Navigation Trained

sensor failure | sensor outputs. sensor(s) human
1 Mapping operator with
agents knowledge
f Navigation of navigation
agents sensors/cam
ras

Assumptions

1. Static/weltdefined conflict and errarlassifications

2. Broad categories faronflict and erroclassifications due to absence of prior knowledge

3. Asthere is no a priori knowledge, the list of conflicts and errors described above are not
exhaustive and hence new categories of conflicts andseraorbe defined. Furthermore,

existing error and conflict categories may also be modified in future ascheed

Formalization of Objective

I Maximize Resolution of Errors and Conflicts
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%OOADAI 1| FOEADDOOABL 1 B 0 B 0 B
0O B s338 0 B (7)

Subject to the followingime constrain(s):

B L e 1 sy . .
T +— ia Qe oo Average time to resolmofe conflict/
Conflict/Error cannot exceesiminutes) (8)
Where,

1 wk are constants represehe relative importance of the categonpf Conflict/Error (as

defined in theTable3.2).

f  Unrepresents theonflicte r r m categbrym of Conflict/Error (& defined in Tabl&.2)
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4. EXPERIMENTS AND RESULTS

AHUBI Function 30 and the Coll aboration Strat
Greenhouse Plants froBection 3.7.2ave been testeahd demonstrated in the experiments in
this section. The other fations were described as part of the design of thB4EUDSS and to

illustrate how it works for the purpose of agricultural greenhouse monitoring.

4.1 Simulation of Collaboration Strategy

Plants in this section as per
HUB-CI may require to be

checked by expert

Figure4-1 Example of DSS outputs for Greenhouse sections using calammachine
learning protocols

The wokflow diagram described in Section 3.6.2 and the baseline scenario (n€CHUB
were programmed using Python programming (2 programs), and the following experiments were
conducted on it.
Experiment 1a): How much mee efficient is a HUBCI system with an Ireigrated Planner
(based on DSS) compared to a system that does not harness collaborative intelligence?
Setup
1 A plant can be either a) Healthy, b) With Disease, or ¢) Having other anomalies
1 For the scenario withothe HUBCI syst em, t he ,pdl ainHesa |l fitWiytoh a
AHaving Ot her anomaliesd are randomly dete

frandom.randirt .
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Thetask requiring superior perception and skitiat for the human operator to perform
aresetas he plants of the condition AHaving ot
For this scenario with the HUBI systemt he pl ants AWi th Disease,
AHavi n gefed® h alloteed specific probabilities at differezones of the

greenhouse

It takes 3 minutes fohe robot to a perform detection task, which involves moving to the
adjacent plant, and performing a detection/evaluation of the plant.

It takes a human operator the same time as the robot i.e. 3 mmptr$orm a detection

task which involves moving tihe plant and performing a detection/evaluation of the

plant.

In Step 4, the human operator randomly checks 10% of the detections performed by the
robot.

In Step 5, the robot and the human operator EA@irple 20% of the plants expected to

be healthy. Ashese 2 agents are communicating via the HUB, these 2 algentd

sample the same plants

20 runs of the simulation for both the systems were performed
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Table4.1: Variables for experiment 1a)

Controlled variables Dependent variables

1) Time for robot to perform a detectior] 1) Time to complete (TTL
task = 3 minutes 2) Defects detected (D)

2) Time for human operator to perform
detection task = 3 minutes

3) The number of healthy, diseased, or|
Aot her anomal ous
uniformly distributed across all plant
in the greenhouse.

4) Step 4: Human operator randomly
checks 10% of th

5) Step 5: Human and robot batample
20% of the plants expected to be
healthy

6) Total number of plants greenhouse
=400

Performance metric:

0 QQNH QHD @b 9)

This efficiency ratio was chosen assiimportant to optimizette defects detected and also
minimize the time required to perform routine inspections. The underlying assumption is that a
higher time to coplete implies an increase in cost of operation for the overall system which

would include human operator costsergy costs etc.

Table4.2: Summary of Result®r Experiment 1a)

Average Defects | Average TTC | Standard | Standard S

Detected (minutes) deviation | Deviation
(Defects) | (TTC)
Without HUB-CI | 262.65 2017.95 10.39 31.18/0.13

With HUB-CI 240.65 763.95 4.37 12.77| 0.32
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Table4.3: Statistical significance for experiment 1a)
Two-sided ttest (95% ©nfidencelnterva)

T-Value P-Value | DF
Defects Detected 8.73 0 25
TTC 166.43 0 25
s -271.22 0 19

Observations

The preliminary run indicates that this systeith HUB-CI is expected to have a better

Efficiency and take only 38% of the time taken by a system that has neGHiMAIch is

significant as it demonstrates the superior efficiency that comes with plaanmeth robot
collaborationas opposed to unplannedilaboration or agricultural monitorirgystems that are

purely manual or purely automatekhe defects detected may be slightly lower, but this can be
accounted to the decision to have the human and robot sample only 20% of the plants expected

to be hedhy in step 5. This will be addressedsimbsequent sections.

Experiment 1 b): What would be the HUEI system performance be if the tasks performed by
the human operator i.e. the tasks requiring suppaoreption and skillare expected to take
more tme than the tasks performed by the roba taskghat require manual and repetitive
work?
Setup
1 Most conditions are set the same as experiment 1a) with the following considerations:
U It takes 3 minutes for the robot to a perform detection task, whicivies
moving to the adjacent plant, and performing a detection/evaluation of the plant.
U It takes a human operattwice the time as the robdhat is6 minutes to perform
a detection task which involves moving to the plant and performing a

detection/evalation of the plant. This adjustment has been made to both systems.



58

0O When it comes to the supervisory task o

humanoperator will still take 3 minutes as in Experiment 1a)

Table4.4: Variables for experiment 1b)

Controlled variables Dependent variables

1) Time for robot to perform a detectior]
task = 3 minutes

2) Time for human perator to perform g
detection/evaluation task = 6 minute

3) Time for the human operator to
perform a supeisory task = 3
minutes.

4) The number of healthy, diseased, or
Aot her anomal ous
uniformly distributed across all plant
in the greenhouse.

5) Step 4: Human operator randomly
checks 10% of th

6) Step 5: Human and robot batample
20% of the plants expected to be
healthy

7) Total number of plants in greenhous
=400

1) Time to complete (TTC)
2) Defects detected (D)

Table4.5: Summary of Result®r Experiment 1b)

Average Defects| Average TTC Standard | Standard | s
Detected (minutes) deviation | Deviation
(Defects) | (TTC)
Without HUB-CI 268.8 2842.8 11.21 67.2 | 0.09
With HUB-CI 240.65 1068.45 4.92 19.72| 0.23

Table4.6: Statistical significance for Experiment 1b)

Two-sided ttest (95%Confidence Interval
T-Value P-Value | DF
Defects Detecteqg 10.28 0 26
TTC 113.17 0 22
s -293.64 0 34
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Observations

Despite doubling the expected task time for the human operators, the average Time to Complete
of the system with HUECI is still less than half of that for the system with6lUB-CI. The

number of defects detectedasver on average but that can be attributed to the relatively low
number of plants sampled in Step 5, which has been corrected in the next expenment

System efficiency is more than doulthan that of thease where there is no HUBI.
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Experiment 1 ¢)Assuming the conditions of experiment 1 b), how can the number of detections
madeby the HUBCI integrated planner equal or exceed those made by the baseline system and
yet have a better TTC compared to the baseline scenario?
1 Most conditions are set tharse as experiment 1b) i.e.:
U It takes 3 minutes for the robot to a perform detectask, which involves
moving to the adjacent plant, and performing a detection/evaluation of the plant.
U It takes a human operattwice the time as the robaofe. 6 minuts to perform a
detection task which involves moving to the plant and performing a
detection/evaluation of the plant. This adjustment has been made to both systems.
0O When it comes to the supervisory task
human operatowill still take 3 minutes as in Experiment 1a)
1 The major change made here is:
U In gep 5 human and robot both sampl&% of the plants expected to be healthy
(more than double the amount sampled in Step 5 for experiments 1a) and 1b) but
still lesser thanhte total number of plants sampled under the baseline (nc HUB

Cl) scenario).

o



Table4.7: Variables for experiment 1c)
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Controlled variables

Dependent variables

1)

2)

3)

4)

5)

6)

Time for robot to perform a detectior
task = 3minutes

Time for human operator to perform
detection/evaluation task = 6 minute
Time for the human operator to
perform a supervisory task = 3
minutes.

The number of healthy, diseased, or|
Aot her anomal ous
uniformly distributed across ghlants
in the greenhouse.

Step 4: Human operator randomly
checks 10% of tionsh
Step 5: Human and robot bathmple
45% of the plants expected to be
healthy

Total number of plants in greenhous
=400

1) Time to complete (TTC)
2) Defects detected|

Table4.8: Summary of Resultkor Experiment 1c)
Average | Average | Standard | Standard S
Defects | TTC deviation | Deviation
Detected| (minutes)| (Defects) | (TTC)
Without HUB-CI 270.45 | 2852.7 9.71 58.28 | 0.09
With HUB-CI 270.65 | 1202.4 4.57 21.87|0.23
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Observations

As shown in the abe Table, the average defects detected by the-BU8/stem match the case
of when there is no HUEI system. The TTC for the HUBI system is still less than half of
that with no HUBCI system which is highly desirablkecreasing the grcentage of plants
sampled in Step 5 optimizes the number of defects det&ystkm efficiency is once again

superior for the monitoring system that uses HOIB

Table4.9: Statistical significance for Experiment 1c)
Two-sided ttest (95%Confidence Interval

T-Value P-Value | DF
Defects Detected -0.08 0.934 27
TTC 118.56 0 24
s -336.93 0 35

Experiment 1 d) Does increasing the number of plants impact the performance of the
collaboration strategy using the HUB system?Assuming all the other conditions of
experiment 1 c), how will increasing the number of plants impact the performance of this
system?

1 Most conditions are set the same as experiment 1c) with the following change:

U The number of plants in the greenhouselieen increased from 400 to 1600.



Table4.10: Variables for Experiment 1d)
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Controlled variables

Dependent variables

1) Time for robot to perform a detectior]

task = 3 minutes

2) Time for human operator to perform
detection/evaluation task = 6 minute

Time for the human operator to
perform a supervisory task = 3

minutes.

3) The number of healthyliseased, or
anomal ous
uniformly distributed across all plant

fot her

in the greenhouse.

4) Step 4: Human operatoandomly

checks

10%
5) Step 5: Human and robot both samp

of t

45% of the plants expected to be

healthy

6) Total nunber of plants in greenhouse

=1600

h

1) Time to complete (TTC)
2) Defects detected (D)

Table4.11: Summary of Result®r Experiment i)

Average | Average | Standard| Standard s
Defects | TTC deviation| Deviation
Detected| (minutes)| (Defects)| (TTC)
Without HUB-CI 1075.1 | 11280.6 15.&4 95.04 | 0.10
With HUB-CI 1135.7 | 5310.9 8.19 34.46|0.21
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Table4.12: Statistical significance for Experiment 1d)
Two-sided ttest (95%Confidencednterval)

T-Value | P-Value | DF
DefectsDetected | -15.2 0 28
TTC 264.08 0 23
s -605.29 |0 37

Observations

The HUB-CI system again delivers superior performance when compared to the baseline
scenaricon all metrics An interesting outcome of this simulation shows that as the size of the
system (number of plants) increase, the cisfdetected also improvéshis fact is highly
desirable as it indicates that in larger greenhouse systems, collaborative intelligalttbevo

instrumental to system efficiency.

4.2 Protocol 1: K-means clustering analysis of the spectral images

Setup Usingtrial and error, 50 spectral bands within the blue range were determined that would
generate clusters that were unique to the leaf pixelthose specific clusters did not merge with
the background and was restricted to the plants. This step wouldmmeae segmentation

feasible A specific sensor or a multispectral camera could image the leaf using a specific band
that would be optimdbr image segmentation for the leaves.

Detecting anomalies in imaginghe kmeans clustering was run on 30 hypec$@ images of

pepper plants. 6 clusters were generated in 40 iterations. Detecting image anomalies via
analyzing clustecentes vs. tle hyperspectral band range @arableto automatically determine
whether or not an imags likely anomalougas defired in Section 3.5.13nd needs to be

retakenThis was tested on the dataset with 30 images out of which 5 images were anomalous.
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For the anomalous images th&ttern of cluster ceets vs the hyperspectral band range differed
significantly from that of no-anomalous images.

Another keymotivationbehind using ¥means clustering was for image segmentation.
The kmeans was run with clusters generated over 40 iteratiofigure 36 are some examples

of clusters used for image segmentation:

Figure4-6 Generation of leaf clusters for image segmentation usmgns

Notice that in each of the above pictures, the clusters representing the leaves are different
from those that represent objects in the bamligd. This is where the choice of the spedieaid

range determined earlier in this section and the number of clusters that would enable the leaf
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pixels to be differentiated from those in the backgroétather spectral band ranges, clustering

often resllted in large parts of the leaves mergingwiite background.

4.3 Protocol 2: Detecting anomalies in plants

Experiment 2:
Objective:
1 To perform a check oRrotocol2 to evaluate its effectivenessth regard tadetecting

earlyanomabusplants that may havbiotic or abiotic stresses.

Assumptions:

1 Image segmentation has been performed with precision

Experiment setup and steps:

1. 28 uniformly distributed bands out of 840 spectral bands are selected for this analysis

2. The Gaussian statisianean, covariancaumber of samples (pixels) are calculated for
each spectral band from the training sample which in this case was 14 spectral images of
Healthy plants

3. The testing sample includes plants with 7 Tomato Spot Wilt Virus (TSWV), 7 Powdery
Mildew (PM), 6 plants ith both TSVW and PM, as well as 8 Healthy plants

4. The protocol for detecting anomalous plants described in Section 3.6.2 was run on the
testing sample and for all images the Mahalanobis distance for each pixel was calculated

5. Pixels whos Mahalanobis distae values had a probability of less than 0.001 were
identified by modeling the data with the «guared distribution using the number of
bands sampled as the degrees of freedomTdBse pixels are considered anomalous.

6. Anomalous piels that were not Is&d on the plant images were removed manually































































