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ABSTRACT

Author: Bampoh Daniel K. PhD

Institution: Purdue University

Degree Receiveddugust 2019

Title: The Influence of Behavior on Active Subsidy Distribution
Committee ChairPatrickZollner

This dissertation investigates the influence of spatially explicit animal behavior active subsidy
distribution patterns. Active subsidies are anutnahsported consumption aresourcesransfers

from donor to recipient ecosystems. Active subsidies infteaeecosystem structure, function and
services in recipient ecosysterisen though active subsidies affect ecosystem dynamiost
ecosystem modelsonsiderthe influence of spatialbgxplicit animal behavior on active subsidy
distributions limiting the ability to predict corresponding spatial impacts across ecosystems
Spatial subsidy research documetite need for systematic modelsd analyses frameworks

provide generally insights into the relationship between animal space use behavior and active
subsidy pattern@ndadvance knowledge ebrresponding ecosystampacts for a variety of taxa

and ecological scenarios.

To advance spatial subsidy research, this dissertatiggioysa combined individuabased and
movement ecology approach atstractmodeling frameworks to systematically investigate the
influence of 1) animal movement behawiven mortality(chapter 2)2) animal socialitychapter

3) and 3) landscape heterogene(thapter 4)on active subsidy distributiorhis dissertation
showsthat animal movement behavior, sociality and landscape heterogeneity infinerecgent

and intensity of active distribution and impacts retipient ecosystems. Insights from this
dissertation demonstrate that accounting for these factors in the daeetogf ecosystem models

will consequentially enhance their utility for predicting active subsidy spatial patterns and impacts.
This dissertation advances spatial subsidy research by providing a road map for developing a
comprehensive, unifying frameworkf the relationship between animal behavior and active

subsidy distributions.
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CHAPTER 1. THE STATE OF RESEARCH ON ECOLOGICAL
SUBSIDIES

1.1 Inception, current ideaand knowledge gapmn ecological subsidies

Ecological subsidies are resource (gxgoducersprey, nutrients) angdonsumption(e.g,
predators, pathogens, and parasites) transfers between ecogpsibsnst al., 1996)Ecological
subsidies can alter material and energetic balances between ecosystems and across landscapes with
consequences for recipient ecosystem structure, function and sé€iNaemso and Murakami,

2001) For example, subsidies can influence spatiotemporal patterns of ecological processes such
as ®ed dispersal, contaminant transport and disease tréhkfirturf et al., 2019) Developing
adequate tools to model and predict spatial subsidy patterns will therefore enhance our ability to
better understand and manage these and many more ecosystemeeeacross landscagesil

and Zollner, 2017)Two main categories of ecological subsidies areiy@assd active subsidies.
Passive subsidies are displaced between ecosystems by envirorsinectiale like slopénduced

gravity andfluid fluxes like wind currents and runofPolis et al., 1996)Active subsidies are
animattransported resources (e.g., prey, and nutrients from dead animals and feces) and
consumers (i.epreddors, herbivores and frugivores) from donor to recipient ecosystears

and Zollner, 2017, 2014)

Passive subsidy systems correspond to well understood spatiotemporal patterns in the
movement of abiotic transport media (grgnoff induced by seasonal precipitation patternse T
hydrologic cycle connects aquatic and terrestrial food websnasonmental fluid systems
transportpassive subsididgke leaf litter and detritus between surface waters and riparian lands.
Organic mattelandnutrientsfrom terrestrial ecosystentgin be more important for primary and

secondary production (e.g., aquatic plants and invertebrates) in surface waters than in situ material
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and energy sourcg¥raus et al., 2011)Similarly, water movementsuch asflooding events
deposit aquatic resourcasrosgerrestrial ecosysten{8rehme et al., 2009; Schindler and Smits,
2017) Corresponding aquatic resource depositions subsidize terrestrial food webs and can drive
riparian productivig more tharterrestrialnutrient and energy sourc@darczak and Richardson,

2007) Montane, dessert and polar ecosystems can be dependent on windborne resoureg subsidi
from distant forest and aquatic ecosyste(P®lis et al., 1997) Winds transport pollen,
invertebrates, nutrients and detritus hundreds of miles from boreal ftorestgic tundra where

they subsidize primary productivity and sustain invertebrate commuitesStedingk et al.,

2008) Passive subsidies generate ecologically important press and pulse disturbances (e.g.,
eutrophication in lentic systems from &strial nutrient transport) that have been thoroughly
studied because of well understood transport processes in the envirdiitiandrf et al., 2019;

Polis et al., 1996)

In contrast to passive subsidies, the spatial impacts of active subsidy systems are less
understood. Predicting spatiotemporal patterns and corresponding impacts/@efsubsidies is
complicated because it requires knowledge of animal beh@vast and Zollner, 201)7 Unlike
passive subsidies, autonomous animal agents interact with each other and the environment,
influencing spatial dynamics and impacts of active subsidy sygiaisturf et al., 2019)Animal
spaceuse can result in nutrient and consumer disphecd (Pereira et al., 2014and affect
ecosystem structusdike trophic interactions,functions like nutrient cycling and services like
pollination (Bartels et al., 202; Palumbi, 2003)For example, éavers construct dams in ponds,
streams, lakes, marshes using woody debris and logs from riparignatrdeseaver dams are
significant sources of nutrients and detritus that subsidize aquatic plant and invertebrate

communities and stimulate in situ productivitdalison et al.2014; McCaffery and Eby, 2016)
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The nutrient contribution of beaver dams to aquatic ecosystems can in turn stimulate the
emergenceof aquatic insectée.g., dragonfliesand amphibiange.g.,frogs), whichare substantial
predators on terrestrial instebrate communitiesThese consumption subsidiegnregulate and
suppress provisioning ecosystem services like honey production by(®esg et al., 2012;
Wesner, 2010Similarly, bears forge on anadromous salmon in stream ecosystems and transport
marine nutrients in carcasses and feces into riparian foergtsncingprimary productivity
supporting forest growth that sustains herbivore commuri@esn et al., 2009)Even though

these and many other actigabsidy systems are prevalent and important drivers of ecosystem
dynamics across landscapes, ecological research on the spatial impacts of active subsidies in
recipient ecosystems is limited. Active subsidy research needs to move beyond collections of
anedotes to codify models of general principles and interaction that can be used to forecast
corresponding spatial subsidy impacts.

Animalsare autonomous agents that t@msport subsidies against abiotic flux gradients,
engage in conspecific and intersgiecinteractions, and respond to spatiotemporal variations in
resources and risks, influencing the corresponding spatial subsidy distributions and {Eg@cts
and Zollner, 2017)Even through the relationship between animal movements, interactions and
population distributions are better understood, the influence animal movement on active subsidy
patternsin heterogenous landscapes remain underexplored. Predictive imgighihe spatal
effects of active subsidies on ecosyst&nacking partlybecause existing ecosystem models treat
space and animal movemenimplicitly, ignoring important animal behars like social
interactiongEarl and Zollner, 2017)

Spatial subsidyresearch relies omcosystem mwdels with static animal population

distributions in binary system&uisan and Thuiller, 2005; Hanks et al., 2012; King and With,
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2002) Existing ecosystem modei®at space explicitly using probability distributions to describe
spatial ecosystem patterressultingfrom animal spaceise(Lele et al., 2013; Marcarelli et al.,
2011; Mufioz et al., 2016Presenceabsence, habitat suitabilindutilitarian distributionmodels
for instance(Hoaten et al., 2016; Scharf et al., 201#)ve been used to link animal behavior to
population distributions. However, these models ighioeeelationship betweespatially explicit
animal movemenrdnd interactionsn emergingpatial subsidy impacts (bsee(Holdo et al., 2009,
2007). In contrast, continuoume, dffusion-basedecologicalmodels of animal moweents and
populationdistributions(Wolf et al., 2013)gnore the influence afpatialvariation in resourcand
risk distributionson animal movementcross landscapgdut see(Moorcroft et al., 2006)
However, thesapproaches have not been used to study active subsidy syEtentsirrent state
of spatial subsidy research does not address if and how active subsidy patterns respond to animal
movements, interactions and landscape heteroge(igdayl and Zollner, 2017)Developing
ecosystem wdels that incorporate spatially explicit animal behasimd landscape heteyeneity
can help predict active subsidy distribution and impacts for improved, synergistic wildlife and
ecosystem management

Individuatbasedmodeling (IBM) frameworks are powerful toql&rimm and Railsback,
2004; Piou et al., 2009hat can be used txamine theelationship betweespatially explicit
animal movement behavior and active subsidy distribut{@as! and Zollner, 2014)While
classical ecosystem models rely on mathematical tractability, éegadystate solutions) and
behavioral homogeneity, IBMs accommodate spatiotemporal complexity and behavioral realism
(Bauduin et al., 2016; DeAngelis and Mooij, 200BMs provide virtual simulation laboratories
for multiple, interactive hypothesis testing suitable for studyomgnplex systems using

combinations of suinodels to describe different environmeaihd animal behaviors. IBMs allow
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for dynamic sensing and interaction among behaviorally heterogeneous animals and between
animals and heterogenous environme(iisue and Wilensky, 2004While classical models
control for stochasticity, random effects typically observedatniral systems can be incorporated
in IBMs. Incorporating such feature intBMs, resuls in observable, measurable spatiotemporal
patterns at higher levels of biological and spatial organization emerging from individual animal
behaviors and interactiondB8Ms have been used to model emergent group level patterns from
individual behavior for many taxa including birds, mammals, insects, herptiles ar{@ish et
al., 2014; Bauduin et al., 2016; Dumont et al., 2007; Wallentin, 2&t@}hastic mode(Smouse
et al.,, 2010lused in movenm ecology can be incorporated in IBMs to simulate the effect of
spatially explicit variation animal movement behaviors on active subsidy distriqieshand
Zollner, 2014)

Animal movement, sociality and landscape heterogeneity have been shown to influence
animal movements and the distribution of animal populati@asggioli et al., 2013; Morales et
al., 2010; Morales and Ellner, 200But have not been integrated into a corhpnsive framework
to assess corresponding ecosystem impacts. The spatial impacts ofteanisi@drted subsidy
systems on ecosystem processes, structure, function and services can be better understood when
models consider the influence of these factoractive subsidy distributiondEarl and Zollner,
2017; Mcinturf et al.,, 2019)In my dissertation, | combindividuatbased and movement
ecology frameworks to examine if and how active subsidy distributions change with variation in
animal movement, sociality and landscape heterogeneity.

Spatial subsidy models that account for the influence of charactensnalamovements
in different ecological scenarios could improve our understanding of corresponding ecosystem

impacts. Research on how spatial subsidies respond to spatially explicit variation in animal
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movement behavior and mortality risk in different egptal contexts (e.g., foraging versus
dispersal) is limitedEarl and Zollner, 2017; Mcinturf et al., 201®nimal movement behavior

and mortality risk can affect animal distributions in landscapes spatial subsidy patterns and impacts
across landscapdg&arl and Zollner, 2014)Even though differences in animal movements in
different ecological contexts have been shown to affect animal distribfionsen et al., 2005;

Lima and Zollner, 1996; Zollner and Lima, 1998)rresponding spatial subsidy distributions and
ecosystem impacts from characteristic alimovements and spatiotemporal patterns in mortality
risk between foraging and dispersal processes remains-wgsg@rched. Animals can also
experience variation in mortality risk depending on activity levels and distance trajdlidubt

et al., 2016; Mendebeuer, 2010; Nielsen et al., 2008)odeling how active subsidy distributions
respond to spatially explicit animal foraging and dispersal movements given spatiotemporal
variation in mortality risk can highlight differencdémtween nutrient and consumer subsidy
patterns. Models incorporating these considerations will enable the development of predictive
tools for differentiating between ecosystem impacts of living and dead organisms in variety of
ecological scenarios, includj foraging and dispersal.

Ecosystem models that address animal sociality can enhance insights into the relationship
between animal movement and spatial subsidies. Even though animal sociality influences animal
movements and could affect spatial subsidytggns and impacts, the relationship between
conspecific interactions and spatial subsidies is unknown. Conspecific interactions describe how
sociality influences animal behavig6tamps, 1988; Turchin, 1989Many species rely on
conspecific cues for important ecological processes like determining habitat quality during
foraging andlispersal movement with proximal and ultimate consequences for syiughioli

et al., 2013; Holyoak «l., 2008; Stamps, 20Q1Animal territoriality or sociality can influence
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animal movement behavior as animals avoid or attract conspé8&ifaaaps, 1988; Turchin, 1989)

This affects animal spaaese decisions and fithess during habitat selection, settlement and home
range establishme(Biuggioli et al., 2013Muller et al., 1997)Many taxa exhibit social behavior,
including birds, mammals, reptiles, amphibians and ing&#ga-David et al., 1998; Cote dn
Clobert, 2007; Farrell et al., 20123 ociality is therefore important for predicting the impact of
many active subsidy systems.

Ecosystem models can enrich our understanding about spatial ecosystem effects of spatial
subsidy systems by accounting fioe influence of landscape heterogeneity. However, connections
between landscape heterogeneity and active subsidy distributions have not been explored in spatial
subsidy research and corresponding ecosystem models. Landscape heterogeneity influences
animd spaceuse behavior with consequences for individual and population level fithess and
survival (Joly, 2019; Patrick et al., 2008}patial heterogeneity in the distribution of resources
across landscapes can affect animal moverbehtwvior in a variety of ecological processes
including foraging and dispers@drair et al., 2005; Miramontes et alQ12). As animals disperse
and forage across landscapes, the quality, availability and configuration of habitat affect habitat
selection, settlement, home range establishment and mortiityales and Eliner, 2002;
Rittenhouse and Semlitsch, 2009; Shepard et al., 20h8)proportional composition, quality and
structural configuration of a landscape and constituent land cover tyfpets afpatiotemporal
patterns in animal behavior and ri@kahrig, 2007; Morales et al., 2010; PéBarberia et al.,

2015; Rodil et al.,, 2017)potentally resulting in corresponding variations active subsidy
distribution and impacts across landscapes. Incorporating animal behavioral and space use

responses (e.g., movement, settlement, mortality risk) to habitat and landscape attributes like
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proportionand physical connectedness (e.g., cohesion, contagion) in heterogeneous landscapes
can increase the value of ecosystem models for spatial subsidy research.

In this dissertation, | develop and use IBMs to examine the influence of animal movement
behavior onactive subsidy distribution€hapters 24 address how animal movement behavior
alters active subsidy distributions in three important ecological contexts with corresponding spatial
subsidy scenarios:

Chapter 2Movement given mortality risk

Chapter 3Conspecific interactions

Chapter 4L andscape heterogeneity
The IBMs in my dissertation chapters are generally based on spatial subsidy systems emerging
from animal dispersal from a donor to a recipient ecosystem where animals can eat or die,
subsidizingrecipient ecosystem resources and consumyian, 2012; Earl et al., 2014 my
models, | assume that dispersers cannot return to the donor ecosystem once they enter the recipient
ecosystem. This concept applies to many ecological systems including neonate amphibian
emergence and breedingspersal in marine avian systems where dispersers develop traits
conducive for fithess and survival in the recipient ecosy§Btais et al., 2005; Capps et al., 2015;
Hocking et al., 2014; Muriel et al., 2018)develop IBMs and conduct simulations in NetLogo.
Depending on the sgific ecological question | address in each my three chapters, | adapt the
general structure of my IBMs. | assess emergent spatial patterns for consumer (i.e., living) and
nutrient (i.e., dead) subsidy displacement and density patterns separately whinmgergarning
methods suited for large simulation data. Displacement and density metrics indicate the respective
extents and intensities of emergent nutrient and consumer subsidy distributions. Nutrient subsidy

patterns have different consequences thaswmer subsidy patterns in recipient ecosys{&ad
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and Zollner, 2017) Nutrient subsidies result ibottomup trophic impacts while consumer
subsidies tend to cause bottalmwn effects in recipient ecosystem food wébslis et al., 1997,
1996) This will provide greater information on active subsidy distributions to eehasaghts

into the impacts in important ecological processes and services de@gminant transport,
disease transfer, seed dispersal, nutrient cycling, pollination) for improved wildlife and natural

resources management.
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CHAPTER 2. THE INFLUENCE OF ANIMAL MOVEMENT PATTERN
AND MORTALITY MODELS ON THE DISTRIBUTION OF ANIMAL -
TRANSPORTED SUBSIDIES

2.1 Abstract

Active subsidies are resource transfers between ecosystems by animals navigating
landscapesSubsidies may originate from consumer rerttideposition or animal carcasses that
are deposited in new ecosysterAsimal movement behavior has the potential to significantly
mediate the extent and intensity of active subsidies and corresponding ecosystem responses.
Animal movement behaviors ancontality can affect active subsidy distributions but have rarely
been examined in spatial subsidy models. Movement ecologists typically simulate animal dispersal
and foraging movements using variations on rangatk patternsas correlated random walk
(CRW) and Lévy walk (LW)espectivelyMovement models typically implementartality asan
i nstantaneous mor steplevekpyobabilayof death)Variaion,in CRW ancha | 0 s
LW movement patterns, in combination with mortality probability change emergent subsidy
distributions depending on the mortality probability lewésing a spatially explicit individual
based model (IBM), we quantify how variation in the straightness (i.e. CRW) and step length (i.e.
LW) of animal movement patterns,éombination with variation in mortality probability and type,
alter the intensity and extent of consumer and nutrient subsidy distribudorement pattern
and LW scale werdominant determinaabf subsidy displacement with more pronounced effects
on living (consumer) subsidies. Mortalipyobability and LW mortality model (i.e., space versus
time) strongly predicted subsidy density with stronger effects on dead (nutrient) subsidy deposition
patterns. Consumer subsidigsredepositeddrther and at lowedensities than nutrient subsidies.

Given lower mortality probabilitymovements with more variable step lersgthisplaced both
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nutrient and consumer subsidiesttier and at lower densities thatraighter movemest
Movements with more variable step dgins alsoresulted in greater nutrient subsidy numbers at
lower densities with higher mortality probabilityy spaceeébased compared to tintmsed
mortality modelsSpatial subsidy wdds that incorporatéenteracton betweeranimal movement

behavior and nmality conditions enhance insights into anirr@nsported subsidy distributions.

2.2 Introduction

Animal movement across landscapes can have significant effects on processes and patterns
at the ecosystem scd@oughty et al., 2016 Animal movement can digce resources (e,grey,
producers, minerals, and nutrients in feces and detritus) and consumepsddagors, pathogens,
and parasites) between ecosystems as ecological sulfBidis®t al, 1997; Quinn et al., 2009)

Active subsidies are resaas or consumers displaced by animal movement between a donor and

a recipient ecosystem and are different from passive subsidies, which are moved by wind and water
(Knight et al., 2005; Leroux and Loreau, 2008¢tive subsidies can change trophic relattups,

alter ecosystem structure and function, and modify material and energetic balances in recipient
ecosystems with consequences for ecosystem function and services, including biodiversity
maintenance, nutrient cycling and regulati@en-David et al.,1998; Farina et al., 2003Fross
ecosystem subsidies also have implications for the transport of pollutants and pathogens across
ecosystem boundari€@/alters et al., 2008)

Despite the significance of active subsidies for ecosystem processes, fundtsamaces,
there is limited ecological research examining how animal movement behavior and mortality
levels influence active subsidy distributidven though animal movements have been connected
to emergent population patterns, animal movements haugepatlinked to spatial subsidies and

impacts in different ecological scenarios because existing ecosystem models treat movement and
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space implicitly (Earl and Zollner 2017, Mcinturf et al., 201)r instanceanimal foraging
movementscan result in difrent subsidy distributionghan dispersakearchor migratory
movemeng with corresponding variations in ecosystem imphtiist active subsidy research
considers space implicitonsen et al., 2005, 2003; Patterson et al., 200&)eling frameworks

tha do not address the link between mechanistic movement processes and animal distribution
patterns can ignore important connections between spatially explicit animal movement and
ecosysterevel impacts. Enhancing our understanding of spatially expliaih@nmovement in

the context of active subsidies in ecological landscapes can be critical for species and biodiversity
conservation, as well as ecosystem managegiean global environmental change.

The movement ecology paradigm provides tools to exarhowe animal movement
dynamics in foraging, dispersal and other ecological processes influence emergent actiles of
subsidy distributions. Movement ecology frameworks can be used to develop spatially explicit
models to predict active subsidy distributsgEarl and Zollner, 2017, 2014nd connect animal
movement behavior and spagge processes to spatial subsidy distributions. Movement ecology
provides a methodological basis for modeling animal movement as a function of changes in
landscape and body morphology, internal state,(kBumger, fear, thirst, memory) and external
factors(Nathan et al., 2008 Movement models typically do not emphasize ecosystem processes,
and thus have not been used to understand the spatiotemporal dynamics of active subsidies in
response to animal foragjrand dispersal movement.combination of individuabased and
stochastic animal movement and spase models can yield valuable insights on how movement
behavior dynamics influence anirrtadnsported subsidy distributions across landscapes and
simplify analyses of complex ecosystatale effect§Smouse et al., 2010$tochastic movement

models divide animal trajectories into discrete paths with statistical distributions of step lengths
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and turning angleéCodling et al., 2008; Moorcroft, 2012)Ve cantherefore use behaviorally
minimalist individualbased modeling (IBM) frameworks with stochastic methods to model
complex interactions between dispersal and foraging movement processes and emergent subsidy
patterns across scales of biological and ecolbgiganizationGrimm and Railsback, 2012)

Dispersal search patterns and foraging movements are often modeleccarsahgted
random walks (CRW) and Lévy walks (LW), respectively, two domirsiathasticanimal
movement model¢Kareiva and Shigesada, IR8Viswanathan et al., 1996{owever, patial
subsidy researchers have not examined how active subsidy distributions and corresponding
ecosystem effects respond to variation in CRW and LW as germane representations of random
dynamics in dispersal and fgiag movemerg CRW is used to model dispersal search movement
as uniform distributions of successive, discrete movements sequentially scaled by correlated
turning anglegBergman et al., 2000and LW is used to model foraging movement with random
turningangles scaled by variable step lengths from a h&algd power law distributio(Zhao et
al., 2015) The movement ecology literature is replete with contention about the relative efficacy
of CRW and LW models as representations of multiscale animardamnd foraging movement
patterns respectively, in interaction with landscapes and as evolutionarily successful strategies
(Benhamou, 2007; Reynolds, 2015, 2008), but the two movement types appeaotsistent
with a variety of empirical exampld€odling et al., 2008)Using IBMs with broad parameter
spaces to quantify the effects of variation in CRW and LW scaling on active subsidy distributions
can highlight their relative and collective relevance for modeling spatially explicit animal
movement bleaviorin awide array of multispecies foraging and dispersal movement scenarios.

Animal movement behavior can play a critical role in the distribution of foraging and

dispersal mortality events in space and related ecological subsidies with ecesyeitem
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consequencegEarl and Zollner, 2014)Models that address how active subsidy distributions
respond to different scenarios of spatially explgibchasticity in movement and mortality
dynamics can highlight differences in the scales of dead and Iwbsidy distributions. Mortality

risks in ecological landscapesuldimpose corresponding consequences for species survival that
impact animal movement behavidortality risk is essentidbr understanding how animals move

in different environments (i.eclimate and geomorphology) asdmmunities(i.e., interspecific

and intraspecific interactionéyahrig, 2007; Schtickzelle et al., 200Byedators and prey can alter

the amount and spatial distribution of consuifner, living) andnutrient(i.e., deal) subsidies in
recipient ecosystems when foraging or avoiding predation respectiMeler et al., 2014;
Schmitz, 2008) Predators and scavengers can transport carcasses over varying distances and
deposit carrion and feces beyond kill sifg&zzini et al., 2016) Developing models to study the
relative significance and interactive influence of movement behavior dynamics with different
mortality conditions on consumer versus nutrient subsidy distributions across a range of
ecologically plausible dispensand foraging scenarios can improve our understanding of the scale
and dynamics of corresponding ecosystem effects.

Mortality costs during animal dispersal or foraging movements can change with
spatiotemporal variation in the distribution of predatiork rend hazardous climatic and
environmental conditionBastilleRousseau et al., 201 Brey can experiencatialvariations
in predation risk as a function of the distance betwergesin inhospitable landscape matrices
or the degree of antipredataigilance during foraging versus dispersal movemekitsian and
Boarman, 2003; Yoder et al., 2004yadeoffs between spatial and temporal mortality costs can
influence animal foraging and dispersal movements differé@tiiner and Lima, 2005)which

would subsequently affect active subsidy distribution patterns across landscapes. Animals that
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cover larger areas foraging or dispersing can encounter more predators and inhospitable habitat
conditions DeCesare, 20125imilarly, high activity leels can increase the risk of detection by
predators and energy expenditure in unfavorable habitat condiffamsn et al., 2015)Animals

that disperse faster through inhospitable areas can therefore reduce temporal predation mortality
risk with extendedactivity times but increase spatial predation mortality risk by covering more
ground in less timg€Yoder et al., 2004)Depending on the degree of step length variability,
foraging animals that move using LW can therefore be more or less susceptitddiabtpn
temporal mortality risks compared to animals with CRW dispersal search behavior. Considering
the relative effects of timbasedand spacdased scenarios of variation in mortality risk with
different degrees of step length variability in mod@hstructions can therefore generate valuable
insights into connections between animal movement behavior dynamics and active subsidy
distribution.

Our main goal is tguantify the relative importance and interaction between variation in
movement pattern ating and mortality risk for active subsidy distributions. We construct a
theoretical IBM withstochasticmovement models to investigate how active living and dead
subsidy distributions respond to different animal movement dynamics and mortality scéharios.
model simulates and quantifies emergent spatial extents and intensities of active subsidy
distributions from a broad parameter space of CRW and LW scaling for animal dispersal and
foraging movement behaviors with changes in mortality probability. Xdenae the interactive
effects between movements with different degrees of LW step length variability and mortality
assessed afunction of space versus time. The overarching hypothesis is that the range and spread
of active consumer and nutrient subsidigtributions respond notably to spatially explicit

variations in animal movement patterns with mortality risk level and function. We expect more
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sinuous movemest(CRW) to deposit subsidies at higher densities closer to the ecosystem
boundary thamovemaets with less variable step lengtfLW), with more pronounced effects on
dead than living subsidies at higher mortality probabilities. Given the-issalgance of LW
patternsmovements with more variable step lerggthwW) will likely deposit subsidiefarther and

at lower densities thastraighter movemest(CRW) with stronger effects on living than dead
subsidies at higher mortalities. We expect higher mortality probabilities to limit subsidy
displacement and concentrate living and dead subsidiegraridensities closer to the ecosystem
boundary, withgreater impact fodead and CRW subsidies compared to living and LW subsidies

respectively

2.3 Methods
2.3.1 Background

We built a simulation model to investigate how variations in animal movement patterns
andmortality costs impact the distribution of active living and dead subsidies. We constructed a
simple binary worldin which animals initiate movement from a donor ecosystem (natal habitat)
and disperse into a recipient ecosystem (adult habitat)axstbdastic chance of death during
movement(Earl and Zollner, 2014)This theoretical modehpplies to many ecological systems
including spatial subsidies from amphibian and aquatic insect dispersal and foraging movements
in terrestrial landscapes adjacent dource ponds and streani@apps et al., 2015)Dead
individuals provide nutrients, energy, and/or prey to the recipient ecosystems possibly causing
bottomup effects, while living individuals provide a consumer subsidy with potentiaddom
effects.In our model,individuals ©uld not return to the donor ecosystem after moving thto
recipient ecosystem as they undergo ontogenetic or behavioral shifts that are only compatible with

the latter habitafThis applies for many species that undergo crossystara natal and breeding
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dispersal (e.gaquatic insects and amphibians) and develop morphological attributes that constrain
survival or breeding success in the donor ecosy@eshir et al., 2018; Blais et al., 2005)

We made some simplifying assumptions to constrain the modeling process to suit available
computer processing speed and sterag well as for conceptual clarity. We considered only the
movement and mortality dynamics of anirti@nsported subsidies in our model. We assumed that
the movement and mortality occur at a small enough time scale that we did not have to consider
otherdemographic processes. Wd dot account for direct interaction effects between movement
behavior and landscape heterogeneity by assuming that animals move and die in a binary world,
from a donor to a recipient ecosystem. We also asstima¢ dead individals represent nutrient,
energy, or contaminant subsidies confined to the location of deposition within the recipient
ecosystem to allow us to perform and compare separate analyses of dead and living subsidy
distributions. Another assumption we deais tha animals have a constant chance of randomly
occurring death with each move, and that discrete time is denoted by a single step navigated in the
landscape regardless of the rate of movement or distance moved. For movement with variable step
lengths (LW) inspacebased mortality scenarios, we assdiiat mortality can interact with space
as a function of the distance covered per step.

Our spatially explicit individuabased model simulation was designed indgb (version
6.04) software(Tisue andWilensky, 2004; Wilensky, 1999and we analyzed data in program R

(version 3.3)Code is available in the supplementary material (Appendix A).

2.3.2 Design

We simulated a binamyniverse (donerecipient ecosystem) with 1000 individuals moving
outward from thedonor ecosystem into an adjacent recipient ecosystem. The simulation

environment consists ofvrtically wrappediwo-dimensional 1000 (vertical) by 2000 (horizontal)
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patch world with thelonor ecosyster(l by 1 patchentered at the left vertical boumgaf the
world. A patch is the default unit of square space in irLbigd. Simulation runs were initialized
with all individuals randomly distributed in the donor ecosystémdividuals moved in the
recipient ecosystem over 1000 timestapd were defleed back into the world upon encountering
a vertical boundar{Figure 1).

We conductedully factorial simulations ofmovement and mortality variable parameter
combinations(Table 1) with ten replicate runs per parameter set. Mortality can occur for any
individual moving in the recipient ecosystem at any timestep. We quantified and collected
population distribution metrics of living and dead individuals on aipsgstep basis but used data
values at the 1000timestep to assess spatial subsidy patterns.

We modeled animal movement behavior as CRW and LW using representative statistical
distributions of step lengths and turning angle orientations. At each timestep, individuals select a
random step length and turning angle from respective characterigtioutishs to navigate from
the donor ecosystem stgnatch outward and rightward through the adjacent recipient ecosystem.
We implemented CRW using a constant-oiné step length and a wrapped Cauchy distribution

of degreeurning angles—0 for any given timestep 0 as:
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for a previous turning angle e£6 p with ¢ drawn from a uniform distributiom  T@®T®
to curb orientational bias bgormaliang net displacemento a mean turning angle af . We
simulated a comprehensive range of CRW patterns from sinuous to straight movement by varying

the correlation coefficient (Table 1). CRW movement is straighter a8 p and more sinuous
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as| © 1 We implemented LW usinga@rcular normal turning angle distribution over a range of
“H* , and a truncated invergp®wer law distribution for the relationship between randomly

drawn step length§ i and the minimum step length)(as:

oi Ti-
VMIM ¢ ohwi Q
m f p

Using a minimum step length of 1, we modeled an inclusive range of LW patterns from high to
low steplength variability by changing the scaling exponént(Table 1). LW resemblasandom
walk with nearuniform step lengths as© g, and simulates scalavariant movement &s© p
with more variable step lengthWe varied the frequency of occurrence of longer step lefagths
LW using a normalization constaht whergf | & br@dfp .

We varied the petimestep likelihood of deth using three levels of mortality probability

a from low to high(Table 1) Individuals draw a random number from a uniform distribution

(in mip ) at each timestep and die and stop moving if the number drawn is lower than the assigned
simulation morthty level for the simulation run. We implemented tiipased mortality for CRW

and LW as death regardless of step length. We modeled-spaed mortality for LW as death as

function of step length, per unit of space travelled with each step.

2.3.3 Analysis

We collected displacement and density metrics of living and dead subsidy distribution
patterns for each simulation run to assess the effect of variation in movement behavior and
mortality (Table 1). These response variables include the number of dead sulisédimaximum
subsidy deposition distance and range, as well as the peak subsidy deposition density and the

distance to peak deposition density. The maximum deposition distance is the distance to the



39

furthest displaced subsidy from the domecipient eceystem boundary. The maximum
deposition range is the distance between the furthest and least displaced subsidies from-the donor
ecosystem boundary. The peak deposition density is the maximum number of subsidies per
densityarea demarcated by a radiud around each subsidy, whei® ¢ bv fp 1 1 The
distance to peak density is the distance between the focal subsidy at the location of peak deposition
density and the donaecipient ecosystem boundary. The density area did not affect the outcomes
for subsidy distribution metrics.

We used classification and regression trees (CARBi®imanet al.,2017 Therneau et
al., 2018)and random foregBreimanet al.,2011) analyses to compare the effect of variation in
movement patterns and mortality types spatial subsidy distribution metric&enerallinear
models anatherfrequentist statistal approaches that require significance testing do not perform
well for datasets fronmdividuatbased model simulation datasefith large sample sizg$Vhite
et d., 2014) High power invariably results in high significance in IBM post hoc analyses. Machine
learningbased neural networalgorithmslike CARTs and random foresw@re therefore more
usefulfor examiningpredictor importance anihteraction effects in mitivariate datasets from
IBM simulations. We used random forest anadgsto determine the relative importance of
predictors for response variables based on the increase in mean square error and split purity
(Residual Sum of Squares) from a sample of 2a6@om forest fits. We developed random forest
models with random sampling and permutation with bootstrapping and bagging on predictor levels
fit to response observations. We supported random forest esalyh CARTs to determine
natural breaks (splitsdnd likely outcomes in dependent variable observations in response to
interactions in movement and mortality predictor level combinations. The minimum number of

dependent variable observations required for a conditional CART split in response to predictor
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level combinations was 60Qreater thari0% of the total number of observations). The minimum
number of dependent variable observations required for a conditional CART outcome in response
to predictor level combinations was 200. We assigned a complexayneter (¢) value of 0.001

to select and retain CART fits with response variable splits on predictor combinations that improve
the coefficients of determination for CART models by more than 0.1%. We conducted separate
analyses on emergent subsidy distributions fk@mation in CRW and LW movement patterns

with mortality probability, and spadeased versus tirAeased mortality with LW step length
variability.

We synthesized CART trends into chaiits.do this, wegrouped CARTS related to subsidy
deposition distancand density metrics into respective displacement and density categories. We
extracted elements of CARTSs that differentiated between outcomes by a minimi®¥ ¢h =
2700) of the total number of observations (n = 27,000) based on comparable predictor
combhations across subsidy distribution metrlosthe resulting charts, bold lines indicate trends
observed in all representative CART figures for each subsidy distribution metric category. Thin
lines indicate trends featured in more than one but not akseptative CART figures for each
subsidy distribution metric categoi§ee supplementary materigdgopendix A)for more detailed

CART figures (Figureg1, 23, 25and27).

2.4 Results

Scale coefficient and mortality were more important determinants of subspglgcement
and density respectivel¥igure 3. Scale coefficient and overall movement pattern (CRW versus
LW) strongly predicted maximum subsidy deposition distance, range and peak density distances
for living and dead subsidies, but the relative éfen subsidy displacement varied with mortality

rate and type. Mortality rate and type strongly predicted the peak deposition densities for both
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living and dead subsidies but the effect of mortality on subsidy densities varied with scale
coefficient, resliing in different outcomes between living and dead subsidies. Scale coefficient
was more important than mortality for predicting the peak deposition densities and distances to
peak deposition density locations for living subsidies. Mortality was mordisa than scale
coefficient for determining the peak deposition densities, but scale coefficient was more important
for predicting corresponding distances to peak deposition density locations for dead subsidies. LW
scale coefficient strongly predictedet subsidy displacement in both spaesed and timbased
mortality scenarios, but mortality type (spdused versus tirAeased) was as important as scale
coefficient for predicting the peak deposition density for both living and dead subBidia® (3.

Dead subsidies were generally deposited closer to the shared ecosystem boundary than
living subsidieswith stronger effects for LW than CR\¥igure20). LW step length variability
had a greater effect on the extent of subsidy displacement than tigatsgas of CRW (Figure
4). Movements with more variable step lergth | p8tp®h displaced living and dead
subsidies farther from the donmcipient ecosystem boundary resulting in greater maximum
subsidy deposition distances and ranges shraighter movements | 1o brido w (Figure21).
Straighter movemendeposited subsidies at greater maximum deposition distances and ranges,
marginally outperformingntermediate step length variability ~ ¢8t in low and intermediate
mortality scenans. High mortality limited strong displacement effectsnmivements with more
variable step lengthon living subsidies but enhanced the displacement of dead subsidies.
Movements with less variable step lergjth] ¢®ho8t generally displaced subgés closer to
the shared ecosysteitnoundary generating lower maximum subsidy deposition distances and
ranges than morsinuous movements | T@®H®@ . The locations at which peak density

occurred were closer to the shared ecosystem boundary fosdlesidies than living subsidies.
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Movements with more variable step lergytfenerated greater distances to peak deposition density
thanstraighter movementsr living subsidiesMovements with less variable step lergthsulted

in lower distances to pealensity for living subsidies than mosenuous movements$-or dead
subsidies,straighter movementsesulted in greater distances to peak deposition density than
movements with more variable step lersgtflovements with less variable step lergtfenerated

lower overall distances to peak deposition density for dead subsibiesl subsidies were
generally deposited at lower densities closer to the shared ecosystem boundary than living
subsidies with stronger effects for LW than CRW (Fig@&. Compared to moresinuous
movementsmovements with less variable step lemsgthsulted in higher subsidy densities that
increased with mortality (FigurB). Movements with less variable step lersytiso deposited

living subsidies at higher peak densitthan more sinuous movemeifEgure 23). Given high
mortality, movements with more variable step lergytteposited living subsidies at lower peak
densities tharstraighter movementsin high mortality scenarios, morg&nuous movements
deposited dead subsidi at greater peak deposition densities thamements with less variable

step length. For both living and dead subsidieggvements with more variable step lersgémnd
straighter movementgenerated lower peak deposition densities that further attenuated
mortality scenarios. For living subsidies, moderate peak deposition densities resulted from
straighter movementsompared to intermediate step length variability.

Spacebased mortality interacted with movements with more variable step $etayth
displace subsidies closer to the shared ecosystem boundary thévatietemortality (Figure 6).
Increasing spaecbased mortality however enhanced dead subsidy displacement and attenuated
living subsidy displacement (Figud). Compared to timdéased moriéy, spacebased mortality

interacted withmovements with more variable step lerggth deposit subsidies at higher densities
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farther from the ecosystem boundafyigure 7). Movements with less variable step lengths
resulted in lower maximum subsidy depios distances for both living and dead subsidiegure
25). High mortality in spacdased scenarios generated lower maximum deposition distances and
ranges for living subsidies than tirbased mortality scenarios. Fapovements with more variable
steplengtls, spacedbased mortality resulted in greater maximum subsidy deposition distances
and ranges for dead subsidies than tbased mortalityMovements with more variable step
lengtts also deposited living subsidies at greater distances to peak damnspacebasedthan
time-based mortality scenariodlovements with less variable step lergythenerated lower
distances to peak deposition density for living subsidies regardless of mortality type. Dead
subsidies were deposited at greater distances todessity in timebased compared to space
based mortalityCompared to timéased mortality, spadeased mortality generally resulted in
greater peak subsidy deposition densities (Figéyelncreasing spaelkased mortality enhanced
peak deposition dengt for dead subsidies but attenuated peak deposition densities for living
subsidies. Br living subsidiesfrom movements with less variable step lesgépacebased
mortality generated higher peak deposition densities thanh@sed mortality (Figur®?).
Movements with more variable step lergjtiesulted in lower peak deposition densities for dead
subsidies given high mortality in spabased compared to tint@msed scenarioslovements with
more variable step lengtlgenerallyresulted in more dead sudhes in spacdased than time
based mortality scenarios (Figu8).

In summary, living subsidies were generally depositadhér in more spreadut
distributions than dead subsidies across scenarios of movement pattern and scaling as well as
mortality level and typeMovements with more variable step lergjtherefore displaced subsidies

farther from the shared ecosystem baanycat lower densities thatraighter movementnd high
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mortality attenuated displacement effects, with more obvious outcomes for dead than living
subsidiesMovements with less variable step lergytiiso displaced living subsidies closer to the
shared eosystem boundary at lower densities than nsoraous movemen@nd high mortality
enhanced concentration effects with more pronounced outcomes for dead than living subsidies.
Moderately straight CRW resulted in moderate displacement and densitiehftivingtand dead
subsidies, outperforming LW with intermediate step length variab@itynpared to timéased
mortality, high spaceébasedmortality interactedvith movements with more variable step lersgth

to enhancaleadsubsidydisplacement and densibytlimit thedisplacemenand density of living

subsidies.

2.5 Discussion

We observed differences in the role of movement pattern and mortality on displacement
and density of consumer and nutrient subsidigsidy displacemenwvas most strongly
influencedby movement behavior, while subsidy concentration was most strongly impacted by
mortality. This underscores the importance of addressing animal dispersal and foraging movement
behaviorrelative to variation in mortality risk in developing tools to predicimattransported
subsidy distributions and corresponding ecosystem imfaatsand Zollner, 2017; Nathan et al.,
2008) Our work models how spatial subsidies might respond to a broad parameter space of
ecologically plausible movement and mortality soews, serving as a reference for hypothesis
testing in empirical studiessuture researclexamining animatransported subsidy deposition
extents and rangesan use results from our model to anticipate the relative importance of
movement behavior and timature of mortality risk for a wide variety of case stud(@allaway
and Hastings, 2002Mortality may be more important than movement for modeling nutrient

subsidy patterns of relatively smalbdied, rselected species with high mortality rates and low
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movement capacitiedHowever,movement may take precedenmeer mortalityfor modeling
spatial subsidy patterns of largaodied kselected species with relatively low mortality rates and
longrange movementdMore specifically, ar work also provides imprtant insights into the
distribution of dead subsidies. It may be intuitive stadighter movemegtandmovements with
more variable step lengtldisplace and spread consumer subsidies moresithaous movemest
and movements in recipient ecosystehriewever, he effect of mortality risk level and type on
corresponding nutrient subsidy displacement and density patterlesarmbvious. Our findings
demonstrate the importance of understanding how active subsidy distribution patterns and
ecosystemimpacts can respond to interactions between movement behavior dynamics and
variation in the type and level of mortality risk animals experience in a landscape.

Our work underscores potential opportunities for usiath LW and CRWappropriately
within a caonmon simulation frameworio modeland predicemergent animakransported subsidy
distribution patterns. The established debate regarding the use of LW and CRW models for
simulating different animal movement strategies like foraging and dispersal remftre
importance of examining how the underlying mechanigBenhamou, 2007; Reynolds, 2008)
might influencespatial subsidy distribution. We show that relative value of simulating animal
movement using patterns driven by stepgth variability or the dgree of sinuosity (CRW) in
spatial subsidy modeling applications can vary between and during animal activities like foraging
and dispersal. Movement patterns with variable step lengthsecased tanodel animal subsidy
distributions from behavioral interittence(Bartumeus 2009; Humphries et al., 20bhé)ween or
during foraging and dispersal given informational uncertainty about habitat quality and resource
distributions in a landscape. We can modulate the degree of step length variability to model

different scales of active subsidy distributions emerging from -tange dispersal search



46

(movements with more variable step lergjtlwith intermittent foraging and habitat selection
(movements with less variable step lersytiiven animal uncertainty abousoeirces distributions
and patchy habitat qualif§kolzsch et al., 2015de Jager et al., 2011)Ysing movement patterns
with correlation between step angles to model directional search given animal cognition of the
distribution of resources and habitat bijiyain landscapes could be advantageous. We can vary the
degree of correlation between steps to simulate variations in the scale of active subsidy
distributions emanating from migration to known refugia (straighter paths) and eventual home
range establishent or expansion after habitat prospecting and selection (more sinuous paths)
(Fagan and Calabrese, 2014; Roshier et al., 2@RY has been used to approximate animal
space use and dispersal movement for a variety of sp&rmesuse et al., 201@twood et al.,
2016. LW has also been used to describe variations in animal movement behavior in various
speciesspecific case studies in movement ecology resg@waberMéthé et al., 2015; Avgar et
al., 2013) Implementing CRW and LW ia sharednodeling franework to explicitly compare
and contrast them caatentify the most appropriateols for describing different animal movement
behaviordn empirical and theoretical studietactive subsidy distribution

We found that step length variability displacedtiapread consumer subsidies more than
straightetmovementsandinteracted withincreasingmortality to enhanceorresponding nutrient
subsidy densities over smaller areas closer to the ecosystem boundary. Our results also show that
increased mortality ris can constrain the displacement and spread of corresponding nutrient
subsidies with more pronounced effects on straighter dmpemsvements than foraging
movement patterns with highly variable step lengths. Our results also peostdding point for
the simulation of animal movement effects on subsidy distribution across the range of parameter

space we investigateBor example, seabird and sea turtle prospecting movements in terrestrial
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breeding habitats for suitable nesting sites have been simuisitegl CRW(Hart et al., 2013
Garthe et al., 20165eabird and sea turtle nesting colonies deposit considerable numbers of eggs
that can be significant nutrient subsidies for plants and animals in terrestrial breeding habitats
(Vander Zanden et al., 20112t might therefore be useful to conceptualize spatial egg deposition
patterns at terrestrial breeding sites as outcomes of more sinuous seabird and sea turtle prospecting
movement patterns. Similarly, seabird and sea turtle hatchlings disperse fiestritdrbreeding
and nesting siteacrosshe oceanForagingat variable distancesver vast rangeseabirds act as
significant consumer subsidiés krill and sea turtles for seaweed. These moventents been
approximated with power law distributio(Sims et al., 2008)Spatial subsidy researchers could
therefore investigate spatial distributions of emergent seabird and sea turtle neonate distributions
as consumer subsidies from terrestrial nesting sites to adjacent oceans based on movement patterns
with more variable step length

Animals that move witimore variable step lengthdisplace and spread consumer subsidies
over greater areas with reduced local impacts on recipient ecosystems compsradyteer
movemens. Telemetryderived bear home range, prospecting and foraging movement data has
beenapproximatedvith Lévy-like patternsand modeled as a mixed random wgBautestad et
al., 1995) Salmonderived nutrient subsidies to forest ecosystems in bear fecesaimadn
carcasses supplement scavenger and detritivore consumption with considerable consequences for
plant nitrogen uptake at widespread deposition locat{btedfield and Naiman, 2006)Bears
depositsalmoncarcasses as nutrient subsidies at higher corat@ns in riparian forest zones with
enhanced local impacts, including supplanting scavenger and detritivore comm@uii@s et
al., 2009) Bears also track spatial variation in salmon phenology at variable distances at the

watershed scal@eacy etal., 2016) It would be appropriate to contextualize corresponding
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dynamicnutrient subsidy distributions of bedransportedsalmon carcassin riparian forests

based on sinuous bear movement patterns legh variable step length Empirical isotope
aralysis data indicates that bears also deposit feces rich in salmon nutrients at differential distances,
augmenting plant nitrogen uptake deep into for¢Sisain and Reynolds, 2015Predicting
corresponding nutrient subsidy distributions and scales @&ystam impact may requitesing
movement patterns wittmore variable step lengtho simulate bedoragingmovements in case
studies on the spatial scale and impact ofddesived salmon nutrient subsidies.

Our results also showed that movements witire variable step lengshdeposited more
nutrient subsidies at lower densities in sphaased compared to tiriased mortality scenarios.
Given high mortality in spaebased instead of tirdegased mortality scenarios, we observed that
consumer subsidy impaittcreased with step length variabilitycreasing step length variability
however enhancethe number ofnutrient subsigs while attenuating corresponding impact
Compared to timdased mortality, spadeased mortality enhanced the displacement extdnts o
nutrient subsidies while constraining the displacement of consumer subsidies with higher step
length variability.In spacebased but not timbased mortality scenariogmovement patterns with
more variable step lengtidisplaced the location of greatéspact frther from the ecosystem
boundary for consumer than for nutrient subsidies. These results are consistent with other
observations of sporadic high intensity mortality events occurring at exposed locations of high
predation risks across landscaf&sttle et al., 2015; Rees et al., 2019) is important to
distinguish between spat@sed and timbased mortality in spatially explicit active subsidy
distribution models to improve the prediction accuracy of resulting spatial subsidy impact patterns
in response to mortality events and corresponding ecosystem effects in landscape management

settings. Variations in the impact of nutrient resources between spatial distributions diagpete
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and timebased mortality events can provide ecological cuesiffet the distribution of predators
and prey resources.

Spacebased mortality can occur when animals mtweugh landscapes with limited
information or high uncertainty about predation risk or inhospitable habitat conditions. Wildebeest
and other unguta herbivores are substantial and expansive consumer subsidies across Serengeti
ecosystems but also contribute significant nutrient subsidies for apex predators with significant
top-down trophic benefits for mesopredators and scavengers. Wildebeesivaifanigrate and
forage along variable spatiotemporal precipitation regimes and patchy grass and forbs resource
gradients in the Serengdtioldo et al., 2009)This results in movements of high step length
variability and corresponding sporadic spatialrtality risks from starvation or predation by apex
predators like lions and crocodiles over vast distances along migration routes and around pond
refugia in the Serengeti landscaf®almer et al., 2017)it would be appropriate for subsidy
researchers tthink of spatial variation ingrass cover depressioas outcomes ofonsumer
subsidies and carrion from mortality events as nutrient subsidies for scavengers amdsplant
wildebeestforage during migratiomlong variable precipitation and grass coveimegin the
Serengeti

We developed a minimalist theoretical model (IBiluantify active subsidy distribution
dynamics in response to variation in movement and mortality but future cooilll increase
realism with features likdandscape heterogeneignd variation in environmental factors
(Wallentin, 2017) Speciesspecific attributes that can be added to active subsidy distribution
models to enhance realism inclualéernative search strategies (ekpray loops, Archimedean
spirals)(Zollner and Lma, 1999and other factors that influence animal movementdieeptual

range (Grant et al., 2018)antipredator vigilangeas well asconspecificand interspecific
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interactions(Fletcher, 2006) Another advancement could be to model the rolenoffemem
modality(e.qg., flying, slitheringpand the quidty of subsidy deposition as function of animal body
size. The distribution of consumer and nutrient subsidies can differ greatly for the same species
with consequences for tagpwn versus bottorap effectgelative to the bodgize and navigation

mode. Some big animals with large movement can deposit larger amounts of both consumer and
nutrient subsidies and over more expansive ranges than smaller afidmadhty et al., 2016

Future spatial subsidy modetoulddirectly account fonutrient subsidy distribution dynamics
resulting from thespatial transience of mortality evenike the secondary movemerdand
relocationof dead prey by predators or scavengers. Feces and secondary displacemldnts
occurmore frequently than direct mortality events, potentially resulting in different spatiotemporal
scales of corresponding nutrient subsidy distributidnsvould be interesting to examinbet
differences between spabased and timbased mortality effectsn active subsidy distributions

by comparing nutrient subsidy deposition patterns from direct mortality to those fraimtetter

or carcasses dragged and relocated by scavenger movements. lalsoblkl interesting taest

the utility of our theoretidanodel by parameterizing and pattematching (Grimm et al., 2012)

with empirical active subsidy distribution, movement and mortality data.

2.6 Conclusion

Predicting the location and impact of active subsidies is useful for making critical decisions
to preserve ecosystem integrity, enhagcspecies and biodiversity conservation efforts, and
implementing effective landscape management practices across spatiotemporéRadades et
al., 2011) Subsidies have significant implications for determiningstnecture and function of
ecological communities and thus ecosystem services, including nutrient cycling, metapopulation

persistence and connectivity as factors in species conservation, as well as biodiversity maintenance
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(Allen et al., 2012) Our model results underscore the importance of movement ecology for
predicting the spatial distribution and impactaative subsidies. We show that changing animal
movement behavior and scaling patterns, as well as the type and level of mortaliiy fis&dcto
variations in active subsidy distribution and imp&atr workadvancegrevious work(Earl and
Zollner, 2014)by simulating and quantifying spatial subsidies from two animal movement

modeling frameworks instead ohe andexamining the effectfdwo types of mortality risk.
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2.8 Tables and Figures

Tablel State variablesvith parameter levels for varying movement behavior and mortality.
Each simulation run includesnaovement pattern (CRW or LW), a corresponding scale
coefficient | evel (correlation coeffici-ent
death setting (true or false indicating sphesed versus tirdegased mortality respectively) and

mortality level (i.e., instantaneous rate or probability of death per timestep).

State Variable Parameter Levels
Movement Pattern CRW ( U) LW (¢)
Scale Coefficient 05 08 09 095 0.99 1 15 2 2.5 3
Mortality 0.00025 0.0005 0.001
SpaceDeath TRUE (ON) | FALSE (OFF ~ Timedeath)
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Figurel Design concepiThe conceptual chart of modeling process and procedures. 1000
individuals disperse from donor ecosystem through recipient ecosystem by CRW(as &V
function of space or time) for a 1000 timestep period as live subsidies, except when they
succumb to mortality and become dead subsidies. Individuals move through the recipient
ecosystem experiencing spdused or timdased mortality and subseqtigrdepositing living



62

L

w120

L

@

S 100

o

)

Z

Z 80

|.|§J

= 60

&

o / / /

O 7 7 4

z 20 / / /

- [ / ]

S / / 7

0 ’ [ _ -
MAXIMUM MAXIMUM DISTANCE TO PEAK NUMBER OF
DISTANCE RANGE PEAK DENSITY DEAD
DENSITY INDIVIDUALS
B Scale Coefficient (Living Subsidies) @ Scale Coefficient (Dead Subsidies)

Mortality Probability (Living Subsidies) Mortality Probability (Dead Subsidies)

B Movement Pattern (Living Subsidies) 72 Movement Pattern (Dead Subsidies)

Figure2 Random forest model results for impact of movement pattern variation and mortality as
a function of time on subsidy distributid®ercent increase in ANOVA mean square error
(%IncMSE) and residual sum of squaréscfNodePurity(RSS) from randomization
permutations on predictor values as a measure of prediction and node split accuracy of random
forest model fitsSolid bars represent results for living subsidies and patternedeipaesent
results for dead subsidies. Taller bars indicate greater predictor importance (See section T in
supplementary information for detailed tables with values for variablecl#@&) and precision
(IncNodePurityRSS) (Table4)).
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Figure3 Random forest model results for impact of LW pattern variation and mortality as a
function of space and time on subsidy distributfeercent increase in ANOVA mean square
error (%IncMSE) and the change in residual sum of squares before and after a split on a
predictor at a node (IncNodePurity (RSS)) from randomization permutations on predictor values
as a measure of prediction and neg#t accuracy of random forest model fits. Solid bars
represent results for living subsidies and patterned bars represent results for dead subsidies.
Taller bars indicate greater predictor importance (See section T in supplementary information for
detaikd tables with values for variable (%MSE) and precision (IncNodePurity (RSS)) (Table

5)).
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Figure4 Synthesis of displacement metrics of subsidy distribution trends (CRW VEHi&V)
chartcompaesCRW and LW on general CARTends for displacement metrics of active
subsidy distribution (maximum subsidy deposition distance, range and distance to peak subsidy
deposition density) for living and dead subsidiesirigwsubsidies were generally displaced
farther than dead subsididdovements with more variable step lergytiesulted in high
displacement at low mortality and moderately high displacement at high and intermediate
mortalities. Straightemovementandmovements witlintermediate step length variability
resulted in modeta displacement at low and intermediate mortalities, and moderately low
displacement at high mortality. More sinuousvaimentsand movemeustwith low step length
variability resulted in low displacemeliited subsidy displacement the maShart
relatiorships delineated withdavy lines represent instances whgoenstituent CAR agreed
while relationships delineated with lighter lines represent inssamicereat least half but not all
constituent CAR$ agreedSee figure21in supplementary materialdppendix A)for detailed
CARTssynthesized here.
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Figure5 Synthesis ofgak subsidy deposition density trends (CRW vs TW8 chart ompaes
CRW and LW on general CART trends for density metric of active subsidy distrilfpaak
subsidy deposition density) for living and dead subsidies. Dead subsidies were generally
deposited at higher densities than living subsidies. High mortality resulted in high subsidy
density for more sinuousnovement@andmovements withess variablestep lengtb.
Intermediate mortalitgenerallyresulted in moderatgubsidydensites Low mortality resulted
in low densities for straighter movems@ndmovements with more variable step lergytbhart
relationships delineated with heavy lines represestances wheré constituent CAR$ agreed
while relationships delineated with lighter lines represent instamigereat least halbut not all
constituent CAR$ agreedSee figure23in supplementary materia{dppendix A)for detaiked
CARTSs synthesizetere
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Figure6 Synthesis of displacement metrics of subsidy distribution trends (spatial vs temporal
mortality on LW) This chart ompaesgeneral CART trends for spabased and timbased
mortality onLW step length variabity in terms ofdisplacement metrics of subsidy distribution
(maximum subsidy deposition distance, range and distance to peak subsidy deposition density)
for living and dead subsidies. There were more pronounced effects on dead sthesidiesg
subsides High spaceébased mortality resulted intermediate andhoderately high displacement
for movemenrd with more variable step lengthLow or intermediate timbased mortality
resulted in intermediate and high displacement for movements with more vategblengths.
Movements with less variable step lengths generated low displacébhant relationships
delineated with bavy lines represent instances whgoenstituent CAR$ agreed while
relationships delineated with lighter lines represent instambereat least half but not all
constituent CAR§ agreedSee figure25in supplementary materia{dppendix A)for detaiked
CARTSs synthesized here
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Figure7 Synthesis of peak subsidy deposition density trends (spatehpsral mortality on
LW). This chart compares general CART trends for LW siimsed and timbased mortality on
density metric of subsidy distribution (peak subsidy deposition density) for living and dead
subsidies. Living subsidies were generally dejgasat lower densities than dead subsidies. High
spacebased mortality resulted in high density for movement with less variable step lengths
compared to moderately high density for movements with more variable step lengths. High and
intermediate timédasednortality generally resulted in intermediate densities. More variable step
lengths generated low densities in low spbased and timbased mortality scenarios. Chart
relationships delineated with heavy lines represent instances where 4 constituentagpdets
while relationships delineated with lighter lines represent instances where at least half but not all
constituent CARTSs agreed. See fig@i&in supplementary materia{®ppendix A)for detailed
CARTSs synthesized here.
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CHAPTER3. THE INFLUENCE OF SOCIAL BEHAVIOR ON T HE
DISTRIBUTION OF ANIM AL -TRANSPORTED SUBSIDIES

3.1 Abstract

Animal sociality (i.e., conspecific attraction or avoidance) can influence how animals move
(i.e., sinuous to straight) across landscapes. Animal movement has been shown txt@aftect
subsidy distributions. Active subsidies are anunahsported resources or consumers across
ecosystems that can alter ecosystem structure, function and services including biodiversity and
nutrient cycling. However, there is limited research on boimnal sociality affects active subsidy
distributions through animal movemeblte construatd a spatially explicit IBM toquantify the
relativeinfluence of variation in animal social and movement behaviors on the extent and intensity
of living and dead whsidy distribution. We examined the relative importance of these variables
and found that conspecific interaction was important for subsidy density and clustering. Movement
was more important for subsidy displacement. Perceptual range and settlemebilify dizal
secondary effects on all subsidy distribution metrics. We found that conspecific avoidance spread
subsidies further into the recipient ecosystem at lower densities than conspecific attraction.
Avoidance scenarios also resulted in greater numimen®, less dense clusters compared to
attraction scenarios. Increasing perceptual range and the straightness of movement patterns further
enhanced subsidy displacement and spreading in avoidance scenarios but increasing settlement
probability attenuatedhese effects. In attraction scenarios, increasing perceptual range, settlement
probability and sinuosity of movement patterns enhanced subsidy density and clustering but
limited subsidy displacement. Attraction scenarios generated the most living subsigwesr,
smaller and denser clusters. Scenarios with no interaction generally resulted in intermediate

subsidy deposition patterns compared to attraction and avoidance scenarios. These results confirm
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animal sociality influences active subsidy distribns. Incorporating animal sociality and
movement behavior in spatial subsidy models can therefore enhance our understanding of active

subsidy distributions and corresponding spatiotemporal patterns in ecosystem impacts.

3.2 Introduction

Animal socialitycanaffecthow animalsnove across landscap@&tamps et al., Zib; van
Gils et al., 2015)Animal movement behavior caaiter active subsig distributions(Earl and
Zollner, 2014) but there is limited research on how conspecific interaction affects corresponding
active subsidy distributionctive subsidies are animal consumers and resources transported
between ecosystems and can alemdscape levelmaterial and energetic balas across
landscapegPolis et al., 1996)Ecological subsidies regulate asdpportimportant ecosystem
functions andservicedike nutrient cycling contaminant transfer, disease spread baodiversity
maintenance(Polis, 1997) Modeling how sociality influences animtbnsported subsidy
distributions through animal movement behavior could generate valuable insights on the
spatidgemporal dynamics of ecosystem responses to animal movéhuechin, 1989) Modeling
frameworks that consider animal sociality with movement behavior could further enhance
planning and decisiemaking in landscape level wildlife and ecosystem management
(Campomizzi et al., 2008; Giuggioli et al., 2013)

Animal sociality is aproximal mechanisnfor many ecological processes in animal
populations(Stamps, 1988)Many species rely on conspecific cues during dispersal to forage,
breed,avoid predators, and determihabitat qualityandsuitability (Stamps, 2001)Conspecific
interaction(i.e., attraction or avoidanc&lescibes the effect ofanimal sociality on space use
behaviors like habitat selection and home range establish(Bé&ips, 1988)Conspecit

interaction influences animal movements and distributions as territorial species avoid conspecifics
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while colonial species attract conspecifics with consequences for ecological processes like
foraging and dispersdGiuggioli et al., 2013; Raitanen et al., 201&)ven increased artality
risks and environmental uncertainty associated with dispersal, disgeesefs fromsocialcues
duringhabitat selectiofi.e., settlement and residengiPart et al., 2011; Stamps et al., 200%)e
degree of conspecific attraction or avoidance can vary by spefliesfitness and survival
consequences among individuals and populatibhdler et al., 1997; Muriel et al., 2016for
instance, species perceptual ranges can alter spa@nase et al., 2018; Kittle et al., 201&hd
movement behavio(Mueller and Fagan, 2008; Zollner and Lima, 1998jluencing animal
responses to conspecific cueé resources and risks in landscaf&aitanen et al., 2014;
Szymkowi ak and .Konsidenhgethdnfiuence df0chrispecific interaction as a
function of perceptual range on animal moven{eiha and Zollner, 1996; Muriel et al., 2016)
habitat selection and settlemefi¥luriel et al., 2016; Pizzatto et al., 2016an elucidate
connections between animal distributi¢@sl et al., 2018}nd corresponding spatial subsidies.
Even though reviews in spatial subsidy research document the need to address the impact
of animal sociality and movement on ecosystdiarl and Zollner, 2017)many ecosystem
models do not considéne influence of animal interactions on aetsubsides. Animal habitat and
space use models that consider the sociality focus on one(tangret al., 2008; Raitanen et al.,
2014) and ignore spatially exipit animal movement. In contrast, ecosystem models that
incorporate animal movements either ignore animal interacti@ansduin et al., 2016&)r consider
sociality in context of a single conspecific interaction scenario (i.e., attraction or avoidance)
(Moorcroft and Barnett, ZIB). Moreover, research on the ecosystem impacts of species
distributions emerging from socially influenced animal behavior is lin{fcinturf et al., 2019)

because there are no models that consider the interaction between spatially explicit animal sociality
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and movement on active subsidy distributions. Ecosystem models that examine variation in animal
movements with sociality across in a wide rangentdraction scenariocan provide general
insights into spatial subsidy impacts of animal territoriality and coloniality in a variety of
ecological contexts (e.g., habitat prospecting, selection, settlement). Further, spatial subsidy
models thaexaminefor theinfluence of differences in species perpetual ranges on conspecific
interactions can be useful for studying spatial subsidy systems across a variety of taxa and
ecological communitieim real world system$/odels that also account for benefits of consipeci
interactions like mitigation of dispersal search mortality risks from socially influenced habitat
selection and settlemegkletcher, 2006¢an elucidate differences between nutrient and consumer
subsidy pattars.

Movement ecology and Individuslased Modeling (IBM) approach@dathan et al., 2008;
Potts et al., 2014; Turchin, 1989; Wallentin1ZPprovide spatiallyexplicit frameworkdo model
the influence of animal sociality, perceptual range and movement on active subsidy distribution
Spatially explicit IBMs thatncorpora¢ stochasticanimal movement mortality and settlement
likelihoodas a function of perceptual range and the number of already settled conspecifics provide
a novel framework to quantifgpatiotemporal dynamics of anirtahnsportedsubsidies. In this
paper, ve construct a spatially explicit IBM to investigate the relathfuence of variation in
animal social and movement behaviormsactive subsidy distributio@ur objective is to quantify
the extent and intensity of living and dead subsidy distribution emerging from variation in animal
movement patterns and conspegxifiteraction by settlement as a function of the number of settled
conspecifics within perceptual range. We analyze the relative significance of three animal
interaction categories (i.e., conspecific attraction, avoidance and no interaction) and settled

conspecifics experience reduced mortality risks. We quantify distance, density, and clustering
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metrics of subsidy distribution including the maximum deposition distance and range, peak density
and distance to peak density, maximum cluster deposition dist#emsty, radial size, and inter
cluster range. Our overarching hypothesis is that active subsidy distribution patterns likely vary
with the type of subsidy (i.e., living, dead), and category of conspecific interaction (i.e., attraction,
avoidance, no imtraction). Specifically, we predict that depending on perceptual range,
conspecific avoidance could spread living subsidies out more than attraction. Settlement and
mortality probability could moderate dead subsidy deposition distance, density and ndusteri

effects more than how straight animals move.

3.3 Methods
3.3.1 Background

Our simulation environment consists of a binary world in which animals disperse from a
donor ecosystem (natal habitat) to a recipient ecosystem (adult habitat) where settlement or death
can occur. Similar ecological system dynamics include amphibians, insect emergence and seabird
breeding dispersal between aquatic and proximal terrestrial land¢Pépeasn et al., 2014; Yoder
et al., 2004)To simulate ontogenetic shifts from natal to adult habitat in our model, dispersers that
enter the recipient ecosystem cannot return to the donor ecosystem as in ecological systems where
dispersers develop traits incompatible with donor habitat and adaptedcipient habitat
(DeAngelis and Mooij, 2005)We design animal movement as a correlated random walk (CRW)
Settlement is atochastigrocess where dispersers have a random charsettivfg as a function
of thenumber of already settled conspecifics wittheir perceptual range. Weary the type of
conspecific interaction, settlement probability, perceptual ramgksinuosity of CRW across
corresponding parameter ranges to examine differences in resultindyspaterns(Table 2).

Living individuals are consumer subsidies to recipient ecosystems that have poterd@avtop
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effects for ecosystem dynamics, whereas dead individuals provide nutrient subsidies with possible
bottomup effects(Andrews and Harvey, 2013)

We assume a highly simplified world of a donor and recipient ecosystem with no spatial
heterogeneity to eliminate confounding effects from landscape heterogeneity interacting with
movement and conspecific interaction with perceptual ranggedo not casider demographic
processes in our model becausmspecific interactions, movement, and mortadityg subsidy
distribution dynamic®ccur at smaller spatiemporalscaleqi.e., natal dispersal ever{garl and
Zollner, 2014) We alsoassumemortality is lower after settlement due to advantages like lower
detection by predator&Szymkowiak and Kk c zy (s ki , 2015; .\Dmsperse&i | s
cannot return to the natal zone after entering the recipient ecosystem. In our neadel, d
individuals become nutrients, energy or contaminant subsidasemain ate location of death.
Settled disprsers remain at the location of settlemarthe recipient ecosystem the modelto
allow comparison between living and dead subsidies.

We designed our model in the NetLogo software (version §Digl)e and Wilensky, 2004;

Wilensky, 1999kimulation environment anased program R (version 3.3) for data analysis.

3.3.2 Design

Weimplement avertically wrapped 1000 by 2000 patch (square unit of space in NetLogo)
binary landscape in which 1000 individuals disperse from an adjacent donor ecosystet
patch)centered athe left vertical boundary into the recipient ecosystem during 1000 timesteps
Disperseramove outward through the adult zo@ie., recipient ecosystemit each timestep,
dispersersrient at random angles drawn from a wrapped Cauchy distribution arelywnit
steplengthsfor up to1000timestegif an individual does not sett{€igure 8) We vay the degree

of sinuosityin dispersemovement trajectoriey adjusting thecorrelation betweesubsequent

e
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turning anglesDuring movement ndividuals lavea stochastichance otettlemenanddeathat
each timestedndividuals cannot movafterdeath but can die after settlement at half the mortality
rate prior to settlemeil accordance witthe assumption that settlement reduces mortality risk.

Weimplement five levels dbaselinesettlement probabilitys as the random chance that
any individual settlegTable 2). We model settlement behavior across three levels capturing
conspecific interaction (attractioand avoidance) and neconspecific (nd) behavior. We
implemented settlement by adjusting the settlement probaddityssnteraction scenarios:
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At eachtimestep an unsettled individual draws a random number from a uniform distribution over
mip and sétles if the number drawn is less than the settlement probapilityWe implemented
five levels of perceptual rangq as the radial distanced., number of patchesurroundnhg the
area within which unsettled individuals could sense settled coifispgTable2).

We modeled animal movement usigorrelated random walk (CRW). At eatiimestep
individuals select turning angle to navigate from the donor ecosystem-gédch outward and
through the adjacent recipient ecosystem. We implement&i @¥hg a constant oamit step

length and a wrapped Cauchy distributafrturning angles—o :
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where—0 p is a previougurning angleand is randomly drawn from a uniform distribution

over arange of T®M® to normalize the direction of movement trajectories with the correlation
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between successive step¥e simulated a representative range of CRW patterns by varying the
scaling coefficien | (Table2). CRW movement is straighterja®® p and more sinuous as®

T. Disperserstop moving after settlement and do not move again for the remainder of the 1000
timestepsimulation run.

At eachtimestep unsettleddisperserslie if the random numér drawn is less than the
mortality probability & whered a8t 11,and settleddisperserglie if the random number
drawn is less thaa T3t 1 1 We conducted simulationssing afully factorial combination
among all levels of the state variables arttacted spatial metrics of collective livinge(, settled
and alive) and dead subsidy distribution at the end of eachtibd@&teprun. We assessed spatial
distribution metrics of both living and dead individuals at the fabBestepwhen all indivduals

either settled or died to quantify emergent subsidy distribution patterns in the recipient ecosystem.

3.3.3 Analysis

We estimated metrics of emergent subsidy distribution patterns for each run and analyzed
living (i.e., settled) and deaxlibsidydeposition patterns separately. We examitisglacement
(i.e.,maximum subsidy deposition distance, range and distance td@gagitiordensity) density
(i.e., peakdepositiondensityand number of subsidigand clusteringmetrics (i.e., maximum
cluster size, density and inteluster distanceThe maximumsubsidy deposition distance is the
distance from thelonorrecipient ecosysterboundary to the furthest displaced subsidige
maximum subsidy deposition range is the distandsvden the furthest and least displaced
subsidies. The peak subsidy deposition density igitha&test number of subsidies within the area
defined by a 10(patch radius (i.e., 10% of the simulation landscape) of each sulbbielgistance
to peak density ithe distance between theesed ecosystetoundary and thiocal subsidy where

peak densityccurs We also analyzed clustering patterns in living and dead subsidy deposition
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including the number of clusters, the maximum cluster size, cluster displacantemtuster
density. We identified members of clusters using a recursive dérasd clustering approach
where a focal subsidy and the three nearest subsidies within the perceptual range of a subsidy form
and grow a cluster. We estimated maximum clusiter as the radial extent of the most spieaid
cluster and determined the maximum cluster density as the number of subsidies in the cluster with
the greatest number of subsidi®¥$e measured the maximum inteluster range as thdistance
between the fithest and least displacetlisters

We conducted random forest anaygArcher and Kimes, 2008; Breiman, 200tb)
guantify the relativeimportanceof predictors i(e., conspecific settlement interactiome(,
attraction, avoidance, niateraction), perceptual range and movement) to variation in response
variables i e., subsidy distribution metricglisplacement, density and clustering). To do this, we
used bootstrap samplirwgith-replacement to perform 2000 iterations of random pertiontaon
predictor observations to develop random forest model fits for response variables. We evaluated
the prediction accuracy of resulting random forest models based on the percentage increase in
mean square error from resampling predictor data andatiesponding increase in the residual
sum of squares as a measure of node purity in random forest trees. We also used classification and
regression trees (CARJ(Breiman, 2017; Therneau and Atkinson, 20tbBnalyze relationships
between response variables and predictor interactions. We required a miofi2Q00 dependent
variable observations$.€., greater than 5% dhe total number of total data observatiares. (n =
38,000) for a nodsplit or tree outcome in response to predictor level conditions. We applied a
complexity parameter (Cp) value of 0.001 to limit overfitting by retaining CARTSs that exclude
predictornodesplits or outcomes that did not increase the coefficient of determination of CART

model fit by more than 0.1%.
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We synthesized CART trends into chaiée grouped CARTS related to overall subsidy
deposition distance (6 CARTS) and density (4 CARTsister displacement (2 CARTS), cluster
size (2 CARTSs) and cluster density (4 CARTS) metrics into respective cateyeeselected
CART elements that differentiated between outcomes by a minimum of 12.5% (n = 4750) of the
total number of observations (r38,000)for comparable predictor combinations acrgssups of
subsidy distribution metric. Bold chart lines indicate trends observed in all representative CARTs
in each category. Thin lines indicate trends featured in more than one but not all repvesentat

CARTSs for each category. See supplementary materials for detailed GARTandixB).

3.4 Results

For both living and dead subsidies, the typearispecific interactionvasgenerally the
mostimportant predictor of deposition quantipgakdensity and distance feak densityFigure
9). Compared to settlement probability, scaling coefficient (i.e., movement behavior) was a better
predictor of the peak density and distance to peak density for dead subsidies. However, for living
subsidies, gdement probability predicted the peak density and distance to peak density better than
scaling coefficientConspecific interaction was the mastportantpredictor of themaximum
inter-cluster rangeclusterdensity andtlustersize for both living andlead subsiés (FigurelO).
In order of decreasing predictonportance, prceptual rangescaling coefficienand settlement
probabilitywere secondary influences on the maximum intester rangeclusterdensitycluster
size for both living and dead lssidy depositionScaling coefficientwas the most dominant
predictor of subsidy displacemeRor both living and dead subsidies, scaling coefficveas a
more influential determinant of themaximum subsidy deposition distance and ratiggn

conspecifidnteraction



78

The number ofiving subsidies generallyncreased with settlement probabildye to the
decreased probability of mortality with settleme@bnspecific avoidance however generated
more dead subsidies than conspecific attraction, partiguiarimore sinuous movement
o at higher perceptual rangd) v . Scenarios without conspecific interaction resulted in
intermediate numbers of living and dead subsidies. Given lower settlement probability and higher
perceptual range, straighter neowents | 8o displaced both living and dead subsidies further
from the ecosystem boundary in avoidance than attraction scenarios (Elyu@ompared to
avoidance scenarioattractionresulted inower maximum subsidy deposition distance, range and
distance to peak density given lower settlement probalality perceptual rangé&cenarios
without conspecific interactioresulted in intermediate subsidy displacement. Attraction scenarios
generally resulted in less dense subsidy distributions than aceidaenarios (Figud®). Higher
settlement probabilitye 18t 1T Wenerally resulted in greater peak subsidy deposition density
for living subsidies and straighter movement generally resulted in lower peak subsidy deposition
density for dead subsidies. @iv more sinuous movements at higher settlement probability and
perceptual range, attraction scenarios resulted in greater peak subsidy deposition density than
avoidance scenarios, particularly for living subsidi@enspecific avoidancessulted in greater
peak deposition density for dead subsidies given more sinuous moveni@ntmlasettlement
probability « 1@t 11 Lland perceptual range. Givetrasghter movemenat higher settlement
probability and lower perceptual rang®@ v , avoidance scenarios and scenarios without
conspecific interactiogeneratedntermediate peak subsidy densities.

Given higher perceptual range and settlement probability, scenariosittvahtion and
without conspecific interactioresulted in the greast number of living subsidy clustetower

settlement probability however reduced the number of living subsidy clusters, resulting in greater
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numbers of dead subsidy clusters. In conspecific attraction scenarios, higher settlement probability
and percefual range generally resulted in the lowest number of living subsidy clusters, forming
fewer, smaller and denser clusters than avoidance scenarios. Given higher perceptual range,
straighter movements generally increased the number of living subsidiesidlarsze scenarios
with higher settlement probability and increased the number of dead subsidies in attraction
scenarios with lower settlement probability. Given higher perceptual range in avoidance scenarios,
straighter movement with lower settlement ptubty resulted in greater intesluster
displacement for both living and dead subsidies (Fidle Sinuous movement iattraction
scenarios generallgonstrainedinter-cluster displacemenbut lower perceptual range and
settlement probability reduced isheffect. Higher perceptual range in avoidance scenarios
generatedhe largest clustef&igurel4). Compared tavoidance scenarios and scenarios with no
interaction, attraction generatéite smalkestclusters for both living and dead subsidieswer
sdtlement probabilitthowever increased cluster sizes for dead subsidigen higher perceptual
range in attraction scenari@sore sinuous movemewith higher settlement probability generated
clusters with the greatest living subsidy dengFigure 15). Lower settlement probability and
perceptual range however generated clusters with the greatest dead subsidy density. Given higher
perceptual range and settlement probability in avoidance scenattaghter movements
generated clusters with the lowdistng subsidy density. Lower settlement probability however
resulted in clusters with the lowest dead subsidy density.

In summary, avoidance scenarios spread subsidies further into the recipient ecosystem at
lower densities than attraction scenarios. idaace scenarios also resulted in more, spoead
smaller and less dense clusters compared to attraction scenarios. Increasing perceptual range and

the straightness of movement patterns further enhanced subsidy displacement and spreading in
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avoidance sa®rios but increasing settlement probability attenuated these effects. Increasing
perceptual range, settlement probability and sinuosity of movement patterns further limited
subsidy displacement but enhanced subsidy density and clustering in attractianiosce
Scenarios with no interaction generally resulted in intermediate subsidy deposition patterns
compared to attraction and avoidance scenarios. Living subsidies were generally deposited further
and in more spreadut patterns than dead subsidies. éasing settlement probability, perceptual
range and the sinuosity of movement patterns resulted in more living subsidies but attenuated

corresponding subsidy displacement with enhascbgdidy densities and increaszalstering.

3.5 Discussion

We demonstratthat the relationshipf animal sociality and movement behavior to spatial
subsidies and associated ecosystem responses depends on the typen@ger (living),
nutrient (dead)) and aspect (e.gxtent, intensity, grouping) of subsidy distributiondan
consideration. It can be critical to know which type and aspect of subsidy distribution responds
more to sociality versus movement given resource and time constraints in researching the
ecosystem responses of aniftraihsported subsidie¥/e showed thiaconspecific interactionare
more important for assessing the density of consumer subsidies and clustering patterns for both
consumer and nutrient subsidies than movement behawiisris consistent with observations of
juvenile ravens in thevestern Mgave desertvheresociality mediates foraging behavior during
dispersal searchlose to natal habitats, resulting dense consumer subsidy clusters desert
tortoise populationéristan and Boarman, 2003; Webb et al., 20@nilarly, colonial seabirds
and sea turtles rely on conspecific cues to locate foraging resources and determine nesting habitat
guality with more sinuous movements at terrestrial breeding(&&she et al., 2016; Hart et al.,

2013) They deposit large amounts of scat and eggs rich in ocean nutrienteslasitirrestrial
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nesting sites with significant local tafown and bottorup impacts that enhance coastal
vegetation growth and subsidize terrestrial predator (fe@tisder Zanden et al., 2012; Wing et al.,
2014) Models that accourfor social interactions caprovide moreinformative predictions of
corresponding spatial subsidy impacts for a variety of taxa and ecosystems. Our results also show
that novement behavias more important for the intensity of nutrient subsidy depostiod the
extent of consumer and nutrient subsidy deposition in a landsthamealigns with research
showing thaterritorial bears avoid competing conspecifics by undertaking long range foraging
and homing movements to and from streavhsre they consumanadromous salmon, spreading
carcasses in riparian areas and transpoféiogsrich in ocean nutrients that stimulate vegetation
regeneration deep in riparian fore&ainn et al., 2009)n this active subsidy system, accounting
for social influence upomear movement belvior in ecosystermmodels can provide adequate
predictionsof spatial distributions of bedransported salmon nutrient subsidies to riparian forests
ecosystems. Given high data collection costs, spatial subsidy resedrchenefit from
considering theelative importance of animal sociality and movemientifferent ecological
scenarios and prioritizing accordingly

Spatial subsidy research can improve by considesyigergistic interactions between
animal sociality and movement on the distributaomd mpactof animattransported subsidies
across ecosystem@ur results show thapatially explicit interactions between animal sociality
and movementinfluence spatial subsidyatterrs. For instance, we found thattraigher
movementsn attraction interaabns displaced more consumer subsidies further into the recipient
ecosystem, increasing the number, size, density and spread of corresponding nutrient subsidy
clusters This observation is consistent with studies that show that for large herbivore popsulati

(e.q., elephants, zebras, wildebeests) in the Seraviggi grassland ecosystem, socially cued
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migrations influence spatial patterns in vegetation turn@detdo et al., 2009)For instance,
wildebeest migrations alongeasonally mediated spatiariations in rainfalland vegetation
patterns can result in expansive conption pattern®n grasslandéMusiega and Kazadi, 2004)
Migrating wildebeest redistribute nutrients when they deposit dense clusters of feces that stimulate
local primary productivitfHoldo et al., 2007)or becone prey for apex predators along migration
routes (e.g., lions, crocodile@almer et al., 2017; Subalusky et al., 20E€psystem models that
incorporate interactive effects between large herbivore lggcand movement behavior will
enable the development of tools to predict spatial impacts of corresponding consumer and nutrient
subsidies for improved wildlife and ecosystem management. Wefalsa that straighter
movementsn avoidance scenarios inased consumesubsidy displacemen large, scattered
clusters This result is consistent with the distribution of kill sites emerging from the foraging
movements of territorial lions in the Ngorongoro conservation gttt and Cowan, 1978)
Prides in theNgorongoro crater forage over large territories, resulting in large, spars#eill
clusters with topdown ecosystem impacts confined to deposition locaf{iissui and Packer,
2004) Developing models tarpdict consumer subsidy distributions and impacts of territorial apex
predators like lions in wildlife and ecosystem management scenarios will require understanding
how avoidance interactions influence their foraging movements.

Our model quantified how, anal perceptual range and settlement probability in response
to habitat preferences and quality mediates the influence of animal sociality and movement on the
distribution of animatransported subsidie$heseresults are consistent with other studieg tha
show that variation in animal perceptual rarfgellner and Lima, 1999, 1998nd settlement
probability (Stamps et al., 2005) have important secondary influenceswanrant and sociality

that can affecsubsidy clusteringatterns Territorial Yellowstone coyoteavoid conspecifis
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when foragng over long distances and defémgl large home rangefda Luz et al., 2015;
Middleton et al., 2013; Pyare and Berger, 2008)ich likely results in expansivaonsumer and
nutrient subsig clusters Juvenile amphibians and aquatics insaely on dfactory and visual
cues effective over short distandeskin recognition resulting in straighter dispersalearchand
sinuous foraging movementDespland, 2001; Pittman et al., 2014; Sinsch, 2014; Wells, 1977)
This low rangeperceptual rangand more sinuous movements informed by dispersal search for
refugia generates small but dense amphibian consumer and nutrient subsidy clusters around natal
ponds, resulting in strong predator shadows and trophic cascattEslimmsect communities
(Hocking and Babbitt, 2014; McCoy et al., 200Bhese examples substantitite need to account
for individual and species variation in perceptual range with animal sociality amdnmeaot
behavior inmodels of active subsidy systenishis will improve the utility of such models for
predicting spatial patterns and ecosystem impadtsportant ecological processes li@logical
contaminant transport and disease transfer. Aquasectnand amphibians can transport
contaminants and transfer diseases between aquatic and terrestrial ecosystems that destabilize food
webs(Kraus et al., 2014egrade recipient ecosystefiéalters et al., 2008and affect ecosystem
services like nutrient cycling, pollination and pest regulatiSchindler and Smits, 2017)
Developing models to predict spatial patterns and impacts of atrangborted contaminants and
diseases across ecosystems will require insights on how species percapgeanovement
behavior and sociality influence habitat selection, settlement and contact.

Even though there are some studies that have examined th@defloeanimal sociality
on spacing in animal population distributior@ifggioli et al., 2013) our work is the first to
simulate the influence of animal sociality and movements on active subsidy distributions and

impacts. The influence of interaction be®wn animal sociality and movement on spatial subsidies
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has important implications for nutrient export and hotspots as well as contaminant impacts in
recipient ecosystems. For example, North Atlantic Auk breeding colonies shape spatial patterns in
primary poductivity in Northwest Greenland, transporting marine nutrients in krill and fish
consumption to terrestrial ecosystems as fecal depogi@onzalezBergonzoni et al., 2017)

Auks rely on conspecific cues to select breeding habitat and nesting sites. Corresparading fe
deposition sites show significantly higher primary productivity than surrounding areas, providing
vegetation rich in ocean nutrients that musk ox and other large herbivores in the region consume.
Auk breeding colonies also deposit significant amouhtgitrients in feces in coastal freshwaters

that acidify and degrade coastal freshwater ecosystems. Understanding how sodiediéging
coloniesinfluences seabirdmovements will enable the development of predictive madetelp
managepostive and negativempacts ofmarine nutrientsubsidies tderrestrialand freshwater
ecosystems.

Our work contributes to spatial subsidy research by being the first IBM to simulate and
guantify how spatial subsidies respond to animal movement given socialifyeaceptual range
across broad range of parameter space, elucidating phenomenological insights into active subsidy
systems. Until our research, most spatial subsidy research congisteitections of empirical
anecdotes with single taxon and contex.(iattraction or avoidance) emphases. We focused on
determining the effect of animal sociality and perceptual range with movement and mortality on
active subsidy distribution. We made simplifying assumptions to optimize model functionality
with computingpower and speed (Chaptg)y. Model realism can improve by accounting for
additional factors like variation in animal body and step size. Move length can be a function of
animal body size (e.qg., larger animals take bigger steps) or mode of navigatidty{egganimals

move longer distances) and could affect the extent and impact of active subsidy deposition in
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recipient ecosystems or habitéEarl and Zollner, 2014)To simplify our ability to distinguish
between living and dead subsidies, we did not examine secondary movement or relocation of
nutrient dead subsidies by agents like scavengers and weather patternsvariaddes and
concepts were beyond the scope of this work but would provide further insight into how animal
sociality and movement behavior influence the distribution of ariraakported subsidies and

corresponding ecosystem effects.

3.6 Conclusion

We modetéd and showed how spatialiplicit animal socialitycan interact with
movement behavioand affectemergent spatial consumer and nutrient subsidy distribution
patternsWe provided a systematic framework with a comprehensive scenario modeling approach
to highlight general principles about how active subsidy distribution and corresponding spatial
impacts respond to animal sociality and movement behavior in a variety of abstract but
ecologically plausible context#ctive subsidiescan alter ecosystem sttuce, function and
services across landscapé&sarl and Zollner, 2017; Ewers and Didham, 20@G)counting for
animalbehavior when examining anim@insported subsidy distributions provides relevant and
useful insight intospatiotemporatlynamics of ecosystem impacts. Spatial subsidy models can
improve and be more beneficial to spatial subsidy resdarcccounting forthe relative and

synergistic influences afnimal sociality and movemean active subsidy distributions
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3.8 Tables and Figures

Table2 State variables with parameter leveisorporated in the individuabased model desigiype of @nspecific interaction
settlement probabilityperceptual rangandmovement gcaling coefficient

State Variable

Parameters

Conspecific interaction

Settlement probability

Perceptual Range
Movement(CRW scaling coefficient

Attraction, Avoidance, None (Null)
0.001, 0.0025, 0.005, 0.0075, 0.01
1,3,5,7,10

0.5, 0.8, 0.9, 0.95, 0.99
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Figure8 Design concepSimulation desigmrocedure and process flow for IBM soindels

(i.e., movement, conspecific interaction (perceptual range, settlement) and mortality) and

outcomes (living and dead subsidid3ispersers leave the donor ecosystem and enter the

recipient ecosystem, movingthia correlated random walk patterver 1000 timesteps
Dispersers die or settle at each time step based on respective mortality or settlement
probabilities. Dispersers settlement probability increases as a function of the number of already
settled conspmfics within their perceptual range in attraction scenarios. Dispersers settlement
probability decreases as a function of the number of already settled conspecifics within their
perceptual range in avoidance scenarios. Mortality reduces for settled abosp8ettled
conspecifics become living subsidies and dead dispersers or conspecifics become dead subsidies

in the recipient ecosystem
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probability and perceptual range generated the least displaced living subsidies Wothesie
maximum deposition distance and range from the shared ecosystem boundary. At higher
perceptual range and lower settlement probabilities, avoidance scenarios resulted in the greatest
distance to peak density for dead subsidies. Scenarios withemaditibn resulted in intermediate
subsidy displacementhart relationships delineated with heavy lines represent instances where
6 representativ€ ARTs agreed while relationships delineated with lighter lines represent
instances where at least half but ath constituent CARTSs agreed. See figdfdan
supplementary materia{dppendix B)for detailed CARTs synthesized here.
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Figurel2 Synthesis of peak subsidy deposition density tr&igien straighter movements and
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interaction depress the peak deposition density of living subsehespecific attractiomvith
higher settlement probability and perceptual range resulted in grpesdsteposition density
for living subsidiesGivenconspecific avoidance and scenarios without conspecific interaction
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CHAPTER 4. THE INFLUENCE OF LAN DSCAPE HETEROGENEITY
ON THE DISTRIBUTION OF ANIMAL -TRANSPORTED SUBSIDIES:
A CASE STUDY ON WOOD FROGS IN HARDWOOD FORESTS

4.1 Abstract

Landscape heterogeneity has been shown to affect animal behavior and space use. The
spatid extent and distribution of habitat patches in a landscape can affect animal movement,
settlement and mortality, and therefore impact active subsidy distribution. Active subsidies are
animattransported resources and consumers across landscapes. Despiteportance of
ecological subsidies for ecosystem structure and services, there is limited research on the influence
of landscape heterogeneity on active subsidy distribution. We built an indhidsedl model
(IBM) based on emerging juvenile wood frogpvement, settlement and mortality from ponds into
surrounding hardwood forests in southern Indiana to examine the effect of landscape heterogeneity
on active subsidy distribution. We simulated the effect of variation in virtual animal movement,
settlementand mortality on spatial subsidies in homogeneous and heterogeneous recipient
ecosystems of open, partial and (or) closed canopy forest habitats. We found that juvenile wood
frog movements and subsidy distribution patterns varied significantly with camogyre. For
heterogeneous landscapes, we varied proportional compositions and configurations across canopy
closure types. Animal movement behavior was more important than canopy closure for subsidy
displacement, and canopy closure was more importanihibgament for subsidy density. Longer,
straighter movement and lower mortality in landscapes with greater proportion and cohesion of
closed canopy forest deposited more living juvenile wood frog subsidies at higher density further
from source ponds. Givemgh mortality in landscapes with greater proportion and cohesion of

open canopy forest, sinuous movements deposited more dead subsides at higher densities closer



105

to the source ponds, but lowering mortality increased dead subsidy displacement and decreased
corresponding dead subsidy density. Ecosystem models that incorporate the influence of landscape
heterogeneity on animal behavior and space use will generate better predictive insights into

corresponding spatial subsidy impacts.

4.2 Introduction

Spatiotemporiavariation in the availability and distribution of resources can affect how
animals use heterogenous landscapdsicher, 2017; Morales and Ellner, 200R)any studies
have shown that the proportion and spatial aggregation (e.g., contagion, contiguity, cohesion,
clumpiness and interspersion) of quahigbitat influences animal movement and distributions in
heterogeneous landscap@sing and With, 2002; Shepard et al., 2012)nimals transport
ecological subsidiegPolis et al., 1997petween ecosystems as they move across landscapes.
Active subsidies are animaansported resources (e.g., prey, nutrients) and consumers from donor
to recipient ecosystems and can change ecosystem structure and function by altering trophic
interactionsand redistributing materials and energy across lands¢&aelsand Zollner, 2017,
2014) Active subsidies affect important ecosystem services (e.g., nutrient cycling, biodiversity
maintenance) that support and regulate ecological communities and processes across ecosystems
(Allen et al., 2012; Bagstad et al., 2019he influence of landscape heterogeneity on animal
movement behavior could affect the displacement and density of active suljEdes and
Didham, 2006; Reyn#élurtado et al., 2012)Understanding how landscape heterogeneity
influences active subsidy distributions as a function of animal movement behavior can provide
valuable insight on the scale, intensity and extent aesponding ecosystem impa¢Earl and

Zollner, 2017)
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Changes in the distribution of resources askisacross landscapes influence animal space
use behavio(Bleicher, 2017; Miramontes et al., 2012; Shepard et al., 28i@)likely affect
corresponding active subsidy distributions. Recent reviews on the statgiaf spbsidy research
document the need for systematic studies to develop general insights into the influence of
landscape heterogeneity for active subsidy pat{&ad and Zollner, 2017; Mcinturf et al., 2019)
However, systertevel impacts of landscape heterogeneity on spatedpficit animal behavior
and corresponding active subsidy distributions hatdeen comprehensively addressed in spatial
subsidy models. Empirical studies that consider this phenomenon focus on single taxa in specific
ecosystems, limiting the development of improved ecosystem models that can be effective for
predicting spatial sudidy patterns for a variety of taxa and ecosyst@vimon and Silva, 2013;
Schindler and Smits, 2017pystematic analyses of this phenomenon with abstract case study
modeling approaches can help establish more gein@na¢works and principles of active subsidy
systems and corresponding ecosystem impacts. Further, developing systematic models that
elucidate how active subsidy distributions change with animal movement behavior in-human
altered landscapes can enhancasi@emaking for landuse planning and wildlife management
for multiple species and ecosystems. Most of our understanding of spatial subsidies is based on
behaviorally and spatially simplified systems, as existing models assume homogeneous landscapes
(Rees et al., 2015; Schreiber and Rudolf, 20&)ch models do not capture important spatial
patterns in ecosystem responsesdnation in animal movement behavi@orales and Ellner,

2002; Smouse et al., 201@patiallyexplicit IndividuatBased Models (IBMs) that incorporate
random walk concepts can be usefal$dor modeling animal movement in response to landscape

heterogeneityGaribaldi etal., 2011; Uno and Power, 2018 Ms can therefore help to elucidate



107

corresponding consequences of animal movement on the distribution and impact of animal
transported subsidi¢karl and Zollner, 2014; Chapt2r3).

Pondbreeding amphibians provide a useful case study for understanding the influence of
movenent on the active subsidy distributions in response to landscape heterogeneity. Timber
harvest results in spatial heterogeneity in forest canopy density that can alter resident amphibian
habitat structure (e.g., refugia locations), movement behavior $atedde=cological processes
(Graeter et al., 2008; Patrick et al., 2Q0B)mber harvest has been shown to impede dispersal in
forestdwelling amphibians(Popescu et al., 2012; Semlitsch et al.,, 2008)d landscape
heterogeneity in timber harvest around ponds could affect corresponding spatial patterns in
amphibian populationgdmphibians consume significant amounts of insects and serve as prey for
many terrestrial birds and mammals, transporting substantial nutrient and consumer subsidies
during dispersal from aquatic to terrestrial ecosyst@apps eal., 2015; McCoy et al., 2009)

Case studies on how amphibian subsidy distributions respond to forest harvest can inform forest
harvest practices that can be applied in other land and species management gPétraanset
al., 2014)

We developed a model of juvenile amphibian movement that changes in response to
canopy closure to understand how landscape heterogeneity influences the distribution of dead
(nutrient subsidies) and livingmphibians (consumer subsidies) in the terrestrial ecosystem
surrounding the breeding pond. Our objective was to estimate the effect of landscape heterogeneity
on the spatial extent and intensity of active subsidy distributions from juvenile wood frogs
(Lithobates sylvaticysWe constructed a spatialgxplicit IBM to determine how spatial variation
in canopy closure as a function of forest harvest intensity in a central U.S. hardwood forest affects

emerging juvenile wood frog dispersal parameterized data we collected on 30 juvenile wood
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frogsin southern Indiana. Using the model, we examined how active subsidy distribution patterns
vary across canopy closures in homogeneous landscapes and with different proportions and spatial
patterns in forest cangglosure in heterogeneous landscapes. We hypothesized that shade from
desiccation and cover from predators in large, spatially aggregated, closed canopy forest habitat
favors consumer (i.eliving) over nutrient (i.e.dead) subsidy displacement at geeatensities

further from the donerecipient ecosystem boundary. We predicted that wood frogs will disperse
straighter and faster through patchier, open canopy forests for cover in denser, more continuous
canopy forests. As the proportion and continuifyhabitat with no canopy cover increases,

dispersing juvenile wood frogs should therefore spread dead subsidies further.

4.3 Methods
4.3.1 Study Site

The Hardwood Ecosystem Experiment (HEE) (Figuég i$ designed as a loftgrm,
landscapdevel field experiment initiated in 2006 by the Indiana Department of Natural
ResourceDivision of Forestry for research on Qbickory forest management and regeneration
(Swihart et al., 2013)The HEE is in the Brown County Section (BCS) of the Highland Rim
Natural Region of soutbentral Indiana, encompassiMprgarntMonroe and Yellowwood State
Forests. The HEE consists of a replicated series of study areas with nine 80 ha management units
or areas. The HEE includes three units of control forests with no active management, two even
aged management units (i.&Q-acre cleaicuts and 3acre patckcuts or smaller cleazuts) and
two uneveraged units (i.e., single tree selection anehdfe shelterwood).

The wood frog(ithobates sylvaticyss a common foresdwelling amphibian species with
an expansive geograiphlrange from southern Appalachian mesic forests to the Arctic Circle tundra.

The wood frog life cycle includes an aquatic larval stage and ontogenetic shifts to terrestrial
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juvenile and adult stages. Wood frogs breed iniisk vernal pools in late wiet in February to
March(Berven, 1988; Crouch and Paton, 200QJult wood frogs disperse from uplands to breed

in low lying ponds and deposit 1000 to 3000 eggs per fe(Balwen, 1981)Metamorphs emerge
from forestponds in early June into terrestrial juvenile or adult habitat where juveniles disperse
into surrounding uplands and mature sexually withi® Years of metamorphos{Berven and

Grudzien, 1990; Cornell et al., 1989)

4.3.2 Empirical data for IBM calibration

To parameterize our model, we analyzed landscapes around HEE ponds. We selected 30
ponds with surrounding lasdapes that were representative of variation in carabpsure
categories[i.e., no canopy (cleatuts, patckcuts), partial canopy (shelterwood, singlee
selection) and dense canopy closure (unharvested for 60 years)]. We measured the width and
lengthof the 30 HEE ponds using a range finder to determine the size of virtual ponds in our model.
Using ESRI ArcGIS Pro 2.3, we analyzessters of land cover within 300 m of each pond (the
estimated dispersal range of emerging juvenile wood fiidgsnan et al., 2004) We calculated
descriptive spatiagtatistics, including overalandscape contagion, contiguity and interspersion
with proportional composition, cohesion and clumpirfessach caopy closure category using
Fragstats versiod.5 (Mcgarigal et al., 2002)We used resulting estimates of proportional
composition and cohesion for the three canopy closure categories to calibrate virtual Endscap
generation.

We estimated the number of dispersing metamorphs for virtual ponds based on egg mass
surveys (counts and estimated clutch size) that we conducted across all 30 HEE ponds in March
2018 At each pond, we randomly sampled 10 egg masses, meEpegg mass volume with a

graduated 1000 ml beaker and egg volume with a 10 ml graduated cylinder. We estimated clutch
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size as the quotient of the egg mass volume and avegageolumeWe generated an estimate of
mean juvenile emergence counts for viFpands based on premetamorphic survivorship of 0.04
(Berven, 1990)

We parameterized virtual wood frog movement behavior usiegn stegpengths and
turning angles alculated from the mean vector lengths (i.e., correlation coeffitietween
turning angles) of 30 juvenile wood frogs we marked and tracked at the HEE in May and June
2018. We captured and marked wood frogs with fluorescent powder. We then releasedttiiem
10 m of 9 representative ponds across all three levels of canopy closure with 10 wood frogs
released pdiype of canopy closuréfter dusk (~ 2100 hours), we tracked their movements using
ultraviolet flashlightgZollner and Lima, 1997and marked tracKsy placing flags at all turns with
angles greatr than 5 degrees and used 50 m field tape and lensatic sighting compass tioe
netdisplacement and bearings from release points. Based on these measurements, we estimated
corresponding step lengths and mean vector lengths (i.e., correlation coefffoleat&hcanopy
closure categoryEstimations were made using code eleged in Python 3.7 (Unpublished,

Benjamin Pauli).

4.3.3 Individual Based Model
4.3.3.1 Background

We built an IBM to quantify the effect of landscape heterogeneity on the distribution of
living and dead subsidies given variation in movement, settlement and mortality probability. The
simulation environment consists of a central pond (natal habitatpusuled by terrestrial
ecosystems with differerdanopy closure categorig¢sivenile/adult habitat). Virtual landscapes
consist of 15 m by 15 m central ponds based on the estimated mean pond area ofo236em

30 HEE ponds surveyed. Based on habitag¢syground ponds in the HEE landscape ctreopy
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closure categoriewe considered in our IBM include open canopy (i.e., eteds, patckcuts),
partial canopy (i.e., shelterwood, singtee) and dense canopy (i.e., forest unharvested for 60
years). The matial extent of the virtual landscapes was 600 m by 600 m at resulution,
capturingestimatedlispersal and step ranges for emerging juvenile wood frogs from central ponds
(Bellis, 1965)

We conducted two sets of simulation experiments in NetLogo (version 6.0.4) software for
spatially-explicit agentbased modeling (Tisue and Wilensky, 2004; Wilensky, 1999). In the first
experiment, we implemented landscapes with dgeneous landscapes to examine differences in
active subsidy distribution acrossnopy closure categorie¥/e conducted the second set of
experiments on heterogeneous landscapes varying the relative proportion and spatial distribution
of eachcanopy closte categoryln experiment lee focused on quantifying the effectamiopy
closure while in experiment 2, we focused on the effects of the relative propamidrspatial
aggregation (i.egohesion and clumpinéssf eachcanopy closure categorgmnd theeffects of the
overall landscape structure (i.e., contagion, contiguity and interspersion) on active subsidy
distribution. Theseanopy closurenetrics describe the tendencyezfch type otanopy tosure
to be spatially aggregated across a landscap@werdll landscape metrics describe landseape
scale spatial aggregatiéMcGarigal and Marks, 1995Al1 of thesecanopy closurand landscape
structure metricsepresent spatial habitat and landscape structurbuaés that have been shown
to affectanimal dispersauccesg¢King and With, 2002)

We designed virtual wood frog movement in our model based on the movement behavior
of juvenile wood frogs in the threeanopy closure categoriest the HEE and derived
corresponding estimates of settlement and mortality from published @mke and Hunter, 2016;

Funk et al., 2005; Harper et al., 2015; Patrick et al., 2008; Popescu et al., 2012; Popescu and Hunter,
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2011; Rittenhouse et al., 2009; Sdsdh et al., 2009, 2008; Todd et al., 20T4) exanine if and

how spatial subsidy patterns respond to animal behavior as a function of landscape heterogeneity.
Our goal was only to parameterize the model, not to test model output, as such data is very difficult
to collect, and no such data sets curresxigt. Inourmodel, virtual wood frogs initiate movement

from pond edges and disperse into the terrestrial ecosystem (juvenile/adult habitat) where they can
move, settl@anddie during each time step.

We assumed wood frogs behave (i.e., move and settle) and experience mortality differently
in eachtype of canopy closuréTodd et al., 2014)so we implemented different wood frog
movement, settlement and mortality probabilities forhezamnopy closure categaryVe did not
consider demographic processes in our IBM, because we wanted to focus on the scale of post
emergence juvenile dispersal. We assumed that dead subsidies remain at mortality sites as local
nutrients or energy and canrim moved once deposited. We also assumed that settled juvenile
wood frogs experience lower movement probability and mortality risk as an advantage of habitat
selection and familiarityMuriel et al., 2016) Another assumption we made is that virtual wood
frogs that enter the recipieatosystem could not return to the donor (i.e., aquatic) ecosystem,
consistent with wood frog inability to survive in water after metamorphosis. Dispersing wood frogs
become local nutrient subsidies when they die (i.e., dead individuals) and consumgiesubsi
when they settle and forage (i.e., living individuals), causing potential bafoand topdown

effects, respectively

4.3.3.2 Design

Simulations consisted of 2000 virtual juvenile wood frogs dispersing from central virtual
ponds into surrounding virtualidscapes. The virtual landscapes included torus boundaries so

virtual wood frogs that reach an edge reenter the landscape at the oppodeeaigéin a stable
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population of virtual wood frogs within the dispersal range for our m@aipbell Grant et al.,
2010) We initialized simulations with virtual wood frogs randomly distributed around the edges
of virtual ponds at the origin of the wdrlWe assumed virtual wood frogs moved into and through
the recipient ecosystem over approximately 2000 timesteps at 15 minutes per timestep, active for
12 hours per day over aveek emigration perioHoman et al., 2004 )Virtual wood frogs also
have a fixed probability of settlement (i.e., analogous to habitat selection and home rang
establishment) and dedie., analogous to predation mortalitijring each 18ninute timestep.

We modeld virtual wood frog movement as a Correlated Random Walk (CRVé).
parameterized virtuainimalmovemenin our model within confidence intervals otian step and
vector lengthave calculated fronmjuvenile wood frog movement tracks at tHEE. We varied

virtual wood frog turning angles using a wrapped Cauchy distribafiturning angles—0 as:
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t is a timestep ang-0 p is the turning angle from a previous timesteps drawn from a

uniform distribution over a delta distribution range of@®m® to normalize the direction of
movement trajectories to a null orientation anGIBW movement is straightes|] © p and more
sinuous as © 18

We varied for eacliype of canpy closurebasedon corresponding estimates of annual
survivorship, settlement and movement probabilities from previous st(@iee and Hunter,
2016; Funk et al., 2005; Harper et al., 2015; Patrick et al., 2008; Popescu et al., 2012; Popescu and

Hunter, 2011; Rittenhouse et al., 2009; Se&soh et al., 2009, 2008; Todd et al., 201We
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determinedaseline mortality, settlement and movenmobabilities| for 15-minute timesteps
from annual estimates as:
1T p p T 7
VMITQ OE & aDE OO WA O 'Q
4 ouTNTER 6d P W WO 0 QA Qi "QEXHA O
We determined final mortality and settlement probabilities for simulations and iteratively
incremented baseline rates by 10% until all dispersers died or settled during the 2000 timestep
duration.Each dsperser daws arandom number from corresponding uniform distributions (in
[0,1]) at each timestep and maydies or settlesif the number drawn is lower than the movement,
mortality or settlement probability level for the simulation.rtmour model, sttled indviduals
die at fixed decremented rates corresponding to eanbpy closure categotp account the

advantage of habitat selection and familiarity.

4.3.3.3 Simulations

In our experiments, we simulated and quantified spatial subsidy patterns emerging from
virtual wood frog movement, settlement and mortality in experimefurésts withhomogeneous
canopy closure(i.e., open canopy, partial canopy closed canopy) and experiment 2:
heterogeneous foresibmixed canopy closure categories with diffenargiportioral compositions
and spatial aggregation characteristics. We compared effects of overall landscape attributes
including proportion and aggregation characteridiicsype of canopy closuréo the influence of
animal movement, settlement and mortality asutng active subsidy distribution patterns.

In experiment 1, we simulated wood frog movement, settlement and mortality on
homogeneousirtual landscapes ofvith single canopy closure categoraasd compared resulting

subsidy distribution patterns. Wened movement, settlement and mortality probabilities across
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three levels (i.e., high, medium and low) in eaahopy closure catego(yable 1). We generated
7,290 homogeneous landscapes assuming a fully factorial design of canopy closure, virtual
juvenile wood frog movement, settlement and mortality probabilities with reduced rates form
settlement (i.e., 3 levels each) at 10 replicates per parameter combildtamsed predictor
importance analysis (see Analysis section) results from experiment 1 tenideteand select
parameters thavere most important for subsidy distributioWe varied selected parameters in
experimen® and kept remaining parameters (i.e., settlement, movement probability) fixed within
by type of canopy closure

In experiment 2, we simulated wood frog movement, settlement and mortality in
heterogeneous landscapes with migkadopy closure categoriesad examined resulting subsidy
distribution patterns. We generated heterogeneous virtual landscapes using fqregtopso
drawn from random uniform distributions with up to 50% partial canopy forest and 50% no canopy
forest with remaining proportions as dense canopy forest. To do this, we used package NLMR in
program R version 3.5.3 to generate heterogeneous \latwcapes based on a modified random
clusters approactBaura and Martinelillan, 2000) We created virtual landscapes a 15 m
resolution (i.e., 40 by 40 grid) based on the mean aerial extent of a mature oakd@gMuth
and Bazzaz, 2003Weanalyzed resulting virtual landscapes using package Landscapemetrics in
program R version 3.5.3 to extract Fragstssed descriptive spatial statistics (i.e., including
overall landscape contagion, ntguity and interspersion with proportiain composibn,
clumpiness and cohesiof canopy closure categorje®rior to simulating movemenve regrid
resulting rasters to 1fmesolution(600 by 600 grid) using package Raster in program R version

3.5.3to capture the limited spatial scale at which wooafy$ interact with forest landscapes
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(Sinsch, 2014)Based on the average area of the 30 HEE ponds we surveyed32@@imcluded
al5 m by 15 m virtual pondt the center of eachrtual heterogeneodandscape

Based on variable importance (see Analysis) results of experimegatihplemented fixed
setlement and movement probabilities at intermedrtels andvaried mean stelengths, mean
vector lengths andhortality probabilityfor eachcanopy closure category in experiment\& To
vary settlement and movement probabilitie#ge randomly drew parameters from uniform
distributionswithin 95% confidence intervalef (Table 3). Each replicate simulation run was a
unique heterogeneous virtual landscape with a uniqgue draw of mean step lengths, mean vector
lengths and mortality plmbilities drawn from corresponding confidence interwAls.generated
200,000 virtual heterogeneous landscapes assuming a fully factorial experimental design with five
levels of mean step and vector lengths, amattality for eachcanopy closure categoat one

replicate per parameter combination.

4.3.3.4 Analysis

After each simulation run, we collected displacement and density metrics of living and
dead subsidy distribution patterns. The response variables included the number of dead subsidies
and the maximum ssidy deposition distance and range, the peak subsidy deposition density and
the distance to peak deposition density for both living and dead subsidies. The maximum
deposition distance is the distance to the most displaced subsidy from theanpient {.e.,
pondterrestrial) ecosystem boundary. The maximum deposition range is the distance between the
furthest and least displaced subsidies from the dmewpient ecosystem boundary. The distance
to peak density is the distance to the focal subsidyedbttation of peak deposition density from

the donotrecipient ecosystem boundary, and the peak deposition density is the maximum number
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of subsidies per area demarcated by a radius (a) of 60 m (i.e., 10% of total landscape area) around
each subsidy.

In experiment 1, we used MANOVAo analyzeall subsidy distribution metrics for
significant differences betweeganopy closure categorie§Ve used ANOVA coefficients to
determine thesignificanceof movement, settlement and mortality variabtes each subsidy
distribution metric. For each response variable,conducted Tukey multiple comparison tests to
determine significant pairwise differences betweamopy closure categorida experiment 2, we
used classification and regression trees (CARTHerneau and Atkinson, 2018nhd random
forest(Breiman et al., 201@nalyses to compatke effect of variation iverall forest ontagion,
contiguity and interspersi, and the relative proportions, cohesion and clumpiaessss canopy
closure categoriewith movement, mortality and settlement on subsidy distribution metrics. We
used random forest analyses to determine the relative importance of predictors for response
variables based on the increase in percentage mean square error and split puriy $uasiad
squares) from 2000 random forest model fits. We developed random forest models with random
sampling and permutation with bootstrapping and bagging on predictor levels fit to response
observations. We supported random forest analyses with CARd@stéomine natural breaks
(splits) and likely outcomes in dependent variable observations in response to interactions in
movement and mortality predictor level combinations. The minimum number of dependent
variable observations required for a conditionadRT split in response to predictor level
combinations was 600 (greater than 10% of the total number of observations). The minimum
number of dependent variable observations required for a conditional CART outcome in response
to predictor level combinationgas 200. We assigned a complexity parameter (Cp) value of 0.001

to select and retain CART fits with response variable splits on predictor combinations that improve
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the coefficients of determination for CART models by more than 0.1%. We extracted elefnents o
CARTSs that differentiated between outcomes by a minimum of 10% of the total humber of
observations based on comparable predictor combinations across subsidy distribution metrics. We
conducted separate analyses on emergent subsidy distributions frotiowana&CRW and LW
movement patterns with mortality probability, and spbased versus timleased mortality with

LW step length variability.

We synthesized CART trends into charts. To do this, we grouped CARTSs related to subsidy
deposition distance anckdsity metrics into respective displacement (i.e., 6 CARTSs) and density
(i.,e., 4 CARTS) categories. In the resulting charts, bold lines indicate trends observed in all
representative CART figures for each subsidy distribution metric category. Thin loieatéen
trends featured in more than one but not all representative CART figures for each subsidy
distribution metric category. See supplementary materials for all the component carts that were

synthesized in our results.

4.4 Results

Comparing subsidy distribiain metrics across homogenous landscapes from experiment
1, all displacement and density metrics of subsidy distribution were significantly different across
canopy closure categorie§ 6 0 0 d® o ® @1 18 1T pBoth displacement and density
metrics were also significantly different acrosanopy closure categorieé 0 0 )@y
o® bn 18 @All response variables were significantly different for pairwise comparisons
among forest treatmentsYo 'QQ @Yy 181 11 @except forthe distance to peak density for
both living and dead subsidigSanopy closurgvas the most dominant predictirdensitybased

metrics (i.e., number and peak deposition density) of living and dead subsidy distr{bigime
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17; Appendix C Tables 12 dnl3) Canopy closuravas also the most influential predictor of
displacemenbased metrics (i.e., maximum deposition distance, range and distance to peak density)
of dead subsidy distribution. Mean step and vector lengths strongly predicted the ekwmy of
subsidy displacement. Mortality probability was an important secondary predictor and settlement
probability was generally the least important variable for both displacement and density metrics
of living and dead subsidy distribution.

In experiment 1low mortality scenarios in closed canopy forests resulted in the greatest
living subsidy displacement (Figuré&)l Given higher and intermediate mortality, smaller steps
resulted in the lowest living subsidy displacement. However, straighter movententstgd this
effect and resulted in intermediate living subsidy displacement. Denser canopy closure generally
reduced living and dead subsidy displacement from the shared ecosystem boundary but lower
mortality enhanced dead subsidy displacement. Livirgpigy density increased with canopy
closure (Supplementary information, Appen@ix Densitybased metrics for dead subsidies were
highest in open canopy forest, lowest in closed canopy forest and intermediate for partial canopy
forest.

In heterogenous hihts from experiment 2, the proportion and cohesion of open canopy
forest was the most influential predictof densitybased metrics of living and dead subsidy
distribution (Figurel?). The proportion and cohesion of closed canopy forest were important
secondary predictorsf densitybased metrics of living and dead subsidi@®serall landscape
contagion and interspersion also strongly predictedsitybased metrics of living and dead
subsidy distributionMean step and vector lengths in closed canomstavere generally the most
important predictors for displacemdmsed metrics of living and dead subsidy distribution.

Mortality probability in closedand partial canopy forest was an important secondary predictor
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living subsidy displacement. Mean stepd vector length in open canopy forest were important
determinants of displacemelnased metrics of dead subsidy distribution.

In experiment 2, living subsidy displacement was highest for longer, straighter movements
given lower mortality in landscape tivia greater proportion of closed canopy forest with higher
cohesion (Figurel8). Lower mortality in partial canopy forest resulted in intermediate living
subsidy displacement. Longer, straighter movement in landscapes with a greater proportion of
open caonpy forest with higher cohesion resulted in the furthest displacement dead subsidies.
Higher mortality and straighter movement in landscapes with greater proportions and cohesion of
closed canopy forest resulted in greater distances to peak dead sulmiditiate density.
Straighter movement resulted in greater distances to peak density for living subsidies in landscapes
with greater proportions of open canopy forest. Given lower mortality in closed canopy forest, the
highest living subsidy densities ocoed in landscapes with lower proportions of open canopy
forest and higher closed canopy forest cohesion (Fi@@yeHigher mortality and straighter
movement in open canopy forest with higher cohesion resulted in the least dense subsidy
distributions. Moresinuous movement in landscapes with higher proportion and cohesion of open
canopy forests resulted in the greatest dead subsidy densities. Higher mortality in landscapes with
higher proportion of partial canopy forest resulted in intermediate dead swlesidify. Given
lower mortality, the least dense dead subsidy distributions resulted from straighter movement in
landscapes with greater proportion and cohesion of closed canopy forests.

In summary, subsidy distribution patterns were significantly diffierecross forest
treatment. Mean step and vector lengths mattered more for subsidy displacement and mortality
mattered more for subsidy density. Mortality was generally the second most influential for juvenile

wood frog subsidy distribution patterns. Oukedandscape contagion and interspersion also
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predicted subsidy distribution patterns but with less influence than pro@rtiempositiorand
cohesionof canopy closure categoriekonger, straighter movement and lower mortality in
landscapes with great@roportion and cohesion of closed canopy forest deposited more living
juvenile wood frog subsidies at higher density further from source ponds. Higher mortality in
landscapes with greater proportion and cohesion of open canopy forest, sinuous movements
deposited more dead subsides at higher densities closer to the source ponds, but lowering mortality
increased dead subsidy displacement and decreased corresponding dead subsidy density. Partial

canopy forests generated intermediate living and dead subsplgament and density

4.5 Discussion

This research provides a systematic analysis of the influence of landscape heterogeneity on
active subsidy distributions across a broad parameter space using an ecologically informed abstract
modeling approach. Our worgrovides general insights towards a unifying framework for
improving the utility of ecosystem models in spatial subsidy rese@uwhmodels demonstrate
that spatial subsidy models that account for landscape heterogeneity can improve our
understanding ofcorresponding subsidy distributions and impacts in natural ecosystems.
Landscape heterogeneity affects subsidy deposition patterns, because animal space use depends
on habitat typgMorales and Ellner, ZI?). Despite established evidence of the influence of
landscape structure on animal space use and mov@vhanaies and Ellner, 2002here is limited
information on the connection between landscape structure and active subsidy distributions. My
work is the first that links spatial subsidies to the influence of landscapegeneity on animal
movements using a combination of indivichbased and movement ecology approackas.
resultsfrom simulatingthe effect of landscape heterogeneity on juvenile wood frog subsidy

distributions show that the relative proportional conmpmss, spatial configuration and suitability
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of multiple habitat types influences emergent spatubsidy patterns. Consumer and nutrient
subsidy distributions vary with animal mortality, movement and settlement behavior as a function
of corresponding siial heterogeneity in habitat structure (e.g., quality, spatial extent and
configuration). Animals move further in heterogeneous landscapes with larger proportions and
greater aggregation (i.e., cohesion, contagion) of favorable habitat, displacingp@odieg

nutrient and consumer subsidies at higher densities further into recipient ecosystems. This is
consistent with urban wetland research showing that amphibian species abundance, richness and
regulation of invertebrate pest populations varies witlextent and density of green space foliage,

and decreases as impervious surface cover and structural complexity in¢H@ses and
McDonnell, 2008)

Spatial subsidy models can enrich our understanding of the ecosystem impact of animal
nutrient and consumer subsidy distribution in processes like anediated seed dispersal by
accounting fothe influence of landscape heterogeneity on animal movement, mortality and habitat
space use. Our results show that consumer subsidies move further in landscapes with greater
proportions and cohesion of more favorable habitat, indicatingahdstape Herogeneity can
affect consumer and nutrient subsidy distribution in ecological processes such asaetiaétd
seed dispersal. Many frugivorous birds and primates consume and disperse significant amounts of
fruit and seeds deep into large, continuowsetl canopy forests compared to smaller dispersal
kernels in fragmented forest habitéia Silveira et al., 2016; Link and Di Fiore, 2006; Saavedra
et al., 2014)Stripedcheek greenbuls in the Tanzanian Usambara Mountaimsume Letonychia
tree fruits and disperse seeds into large, continuous tropical forests in the Ashanei Reserve
over twice as far as they do in adjacent forests interspersed with tea plani@bohsiro and

Howe, 2003) Similarly, spider monkey communities in the Lacaddhaya rainforest in
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southeastern Mexico deposititrient subsidies at high densities around sleeping trees and sites
deep into tropicalainforest and away from interspersing rural farmlands and human settlements
(GonzélezZamora et al., 2012Proppings facilitate forest regrowth and plant species diyers

near abandoned farmland, but forest regeneration declines with spider monkey movement and the
spatial extent of forestdthbitat as human settlement and farmland cover increases.

Proportional composition and spatial aggregation of land cover types across different
degrees of favorability in heterogenous landscapes influences the consumer subsidy distribution.
Maintaining large, continuous forested habitat via silvicultural managferae enhance dispersal
and survival, as well as persistence and genetic diversity for organisms whose movements are
extremely sensitive to timber harvé&tobben et al., 2012; Litvaitis and Villafuerte, 1996ur
results show that given low mortalitstraighter movement in landscapes with greater proportion
and spatial aggregation of suitable habitat resulted in juvenile wood frog consumer subsidy
deposition at higher densities further from source poMdsly amphibian species rely on large
tracts of closed canopy forests to provide cover from desiccatmpraaator detection during
natal dispersal and breeding migrations between ponds and the surrounding terrestrial landscape
(Chelgren and Adams, 2017Amphibian consumers disperse and regulate invertebrate
agricultural pest communities farther from source ponds into rural farmlands with greater
proportion of connected @sed canopy habitdKhatiwada et al., 2016)Amphibian consumer
subsidy spread and corresponding impactsvertebrate herbivore and pollinator communities
affects plant productivityMcCoy et al, 2009) Heterogeneous forests with greater proportion and
cohesion of closed canopy forests around ponds can enhance amphibian dispersal and increase

correponding spatial extents and impactgofential trophic cascades. Accounting for variation
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in animal dispersal in response to variability in the spatial extents and aggregation of quality habitat
can improve our understanding of corresponding consumer subsidy distributions and impact.
Landscape heterogeneity as proportional composition and spajgegation of
unfavorable habitat affects nutrient subsidy distribution and related ecosystem impacts like
nutrient hotspots with corresponding spatial variability in primary produ¢Bolis et al., 1997;
Polis and Strong, 1996)ncorporating reduceiinpact logging approaches in silvicultural and
general landscape managemgmactices can enhance naht subsidy spreadby limiting
attenuating effects of clearcutting on the dispersal success and survival of species that are sensitive
to timber harvegtPutz et al., 2008)Thisis consisent with our firding that mortality in landscapes
with greater proportion and spatial aggregation of unsuitable habitat constrained animal dispersal
success and resulted in dense nutrient subsidy distributions close tdopesidecosystem
boundaries. Conservatidrasedtimber harvest practices like large, continuous closed canopy
forest buffers around source ponds or populations, as well as single tree selections arutgatch
to provide transition habitats with partial canopy forests waiigate impacts upon animal
dispersalFreidenfelds et al., 2011; Veysey Powell and Babbitt, 201&hg a mix of silvicultural
and landsape managemenpproaches could enhance species diversity as function of habitat
preferenceand resource selection by specialist species. For instance, while-dweilimg
frugivorous and insectivorous birds respond negatively to dense canopy forest, lower branch
dwellers like nectarivores and granivores respond positively to selective lodgyingalova et al.,
2015; Thiollay, 1997) Landscape heterogeneitputd therefore affecthe spatial extent and
impact of nutrient subsidy feedback (e.gegetation growth at latrine sites) as a function of
variation in species habitat preferenc&patial sbsidy research can provide insights into

landscapescale subsidy impact by considering the influence of heterogeneity in unfavorable
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habitat matrix compositio(Haynes and Cronin, 2004hd configuration on dispersal movements
(Cline and Hunter, 201@nd spatial subsidy impacts.

Our research provides a fodation for connecting spatial impacts of aquatic insect and
amphibian contaminant transport, disease transfer and nutrient export to movement behavior
influenced by spatial heterogeneity in habitats of different quality across landscapes. While
variationin microhabitat and microclimate conditions with forestry practices has been shown to
affect amphibian and aquatic insect movements and habitat selgectach and/icCauley, 2019;

Volpe et al., 2016)no research explored effects on subsidy spatial patterns prior to our work.
Emerging amphibians have been shown to transport bioaccumulated trace elements (e.g., heavy
metals) as well as diseases (e.chytridiomycasis, ranavirus) from aquatic to terrestrial
ecosystemgHarper and Petranka, 2006; Kolby et al., 2015; Unrine et al., 2@QK)research
demonstrates that predicting spatial impacts of amphtiipgrsported contaminants and disease
transfer in terrestrial food webs and metapopulations vgtlire knowledge about how amphibian
behavior changes with habitat and landscape structure-ye&lstudy on naturally occurring

wood frog populations in central hardwood forest revealed a mean net export of 12.8 kg carbon
(C), 3.5 kg nitrogen (N) andKg phosphorous (P) in the form of emerging juveniles from a single
pond(Capps et al., 20157 he study suggests that vernal pooéssabsidy hotspots that transform

low quality nutrients like leaf litter into high quality nutrients like amphibians and
macroinvertebrates, which move into forest landscapes. However, factors affecting the spatial
distribution of these nutrients are ueat, impeding our ability to predict and understand the spatial
impacts of amphibian related ecosystem services. A similar perspective could presented for the
role of these animals in pest contf{blocking et al., 2014)Our work shows that considering

emerging aquatic insects and amphibian behavior in response spatial variation in microhabitat and
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overall landscape structure will improve estimates of the spatial distritarttbmpacbf nutrient
exportin wildlife andecosystem management scenarios

To improve model realism in future work, active subsidy models should account for spatial
subsidy responses to the influence of habitat edges on animal movement behavior and mortality.
Animals move differently and expeniee different mortality conditions at habitat edges compared
to interior habitat, resulting in corresponding variability in active subsidy distribyfroas et al.,
2005; Heim et al., 2015; Pittman et al., 2013; Popescu and Hunter, 2011; Walston and Mullin,
2008) Therefore, differenmovement behavior or mortality conditions at habitat edges could
affect active subsidy distributions if animals avoid unfavorable habitat by either moving along or
away from habitat edges. Demographic processes and animal body size could also affentihe
movement behavior and the amount of nutrient deposition from mortality g@dgs et al.,
2012; Demi etal.,, 2012; Peterman et al., 201&ccounting for body size from variation in
resource distributions as a function of landscape heterogeneity in our model could affect resulting
nutrient and consumer subsidy deposition patterns differently. Considegogdary and tertiary
movement of carcasses by scavengers could also influence nutrient subsidy deposition patterns in
response to habitat heterogendiBarl and Zollner, 2017)In future work, pattesmatching
modetbased subsidy distributions to field observations of spatial subsidy patterns will help test
model improvements in realorld applicationsSpatial subsidy models that consider edge effects,
animal body size, demographic processes and potential spatial transience of nutrient subsidies as
a function of scavenger or other secondary movements can be more useful for estimating the

location andmpact of nutrient subsidies in landscape and wildlife management scenarios
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4.6 Conclusion

We used an individuddased model of juvenile dispersal from forest ponds into
surrounding landscapes in central hardwood forests to show that landscape heteroganeity is
important factor for active subsidy distributidle demonstrated that the relative proportion and
spatial aggregation of favorable to unfavorable habitat can affect the extent and intensity of living
and dead subsidy distributions via animal movemesettlement and mortality. Greater
proportional composition and spatial aggregation of higher quality habitat in heterogenous
landscapes displaces consumer subsidies further and at higher densities in recipient ecosystems.
Nutrient subsidy displacement agéposition densities decrease in heterogeneous landscapes with
higher proportional compositions and spatial aggregation of lower quality habitat types. Spatial
subsidy research can improve our understanding of how animal movements impact ecosystems by

acounting for the influence on landscape heterogeneity.
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4.8 Tables and Figures

Table3 State vaiables with parameter values used in individbalsed model simulationB experiment 1, state variable parameters
varied across Low, Medium (Mid) and High levels corresponding to homogewieinas landscapes with a single canopy closure
category Except for movement settlement probability in experiment two, state variable parameters were randomly selected from a

random uniform distribution between Low and High values corresponding tc&acpy closure categoiy heterogeneous
landscapes. Wexed movement and settlement probabilities at-Micel for all experiment 2 runs because experiment 1 showed that
they their influence on subsidy distribution metrics was generally limited compared to the other state variables.

Canopy Closure Category
State Variables Open Canopy Partial Canopy Closed Canopy
Low Mid High | Low Mid High Low Mid High

Mean Vector Length (MVL) 0.52 0.67 0.82| 0.41 0.52 0.63 0.14 0.3 0.46
Mean Step Length (MSL) (m) 0.26 039 0.52| 023 027 031 0.18 0.28 0.38
Mortality Probability 0.005 0.0075 0.01| 0.001 0.0025 0.005| 0.00075 0.001 0.0025
Settlement Probability 0.0005 0.00075 0.001| 0.001 0.0025 0.005| 0.0025 0.005 0.0075
Movement Probability 0.5 0.55 0.6 0.7 0.75 0.8 09 0.95 0.99

A4
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Figure16 Design conceptSimulation design, procedure and process flow for IBMraoldels
(i.e., movement, settlement and mortality) and outcomes (i.e., living and dead subsidies)
Recipient ecosystem consists of homogeneous or hetemggforest canopgtosure
categoriesopen partial and closed canopy. Movement was implemented in simulations using
perstep movement probability and correlated random walk (CRW) based-gstepanean step
and vector lengths derived from HEE juvenileodidrog track surveys by canopy densitye
implemented pestep probabilities of ortality and settlemertihat varied with canopy closure
category and occurred stochastically as dispersers travelled through recipient ecdsystgm

subsidies settle andortality results in dead subsidies.
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W Landscape Contagion (Living Subsidies) Landscape Contagion (Dead Subsidies)

o

Figurel7 Predictor importance measured as increase in percentage mean square prediction error for most influential metrics of living
(consumer) andead (nutrient) juvenile wood frog subsidy distribution in heterogeneous landscapes (i.e., experinaggelyalues
indicate greater importanc&nimal movement behavior is more important for subsidy displacement than lantstaqpgeneity and
landscape heterogeneity is more important for subsidy density than animal movement b&widdrars represent results for living
subsidies and patterned bars represent results for dead subsidies. Taller bars indicate greater predictor importdimeT$ee sec
supplementary informatiofAppendix C)for detailed tables with values for variable (¥MSE) and precision (IncNodePurity) (Table
12)).
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Figure18 Synthesis of subsidy displacement trendseiterogeneous landscap&ven lower
mortality and straighter movements with greater step lengths in heterogeneous forests, greater
cohesion of closed canopy habitat resulted in greater subsidy displacement. Lower mortality in
partial canopy habitat gersed intermediate subsidy displacement. Straighter movement in
open canopy displaced subsidies farther into recipient ecosygtartisylarly for dead
subsidies. Chart relationships delineated with heavy lines represent instances where 6
representative CRTs agreed while relationships delineated with lighter lines represent instances
where at least half but not all constituent CARTSs agreed. See 8§umesupplementary
materials(Appendix C)for detailed CARTSs synthesized here.























































































































































































































































































































































































