
ASSESSING THE PERFORMANCE OF PROCEDURALLY GEN ERATED

TERRAINS USING HOUDINIôS CLUSTERING METHOD

by

Varisht Raheja

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Computer Graphics Technology

West Lafayette, Indiana

May 2020

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Carlos Morales, Chair

Department of Computer Graphics Technology

Dr. Tim E. McGraw

Department of Computer Graphics Technology

Dr. David Whittinghill

Department of Computer Graphics Technology

Approved by:

Dr. Nicoletta Adamo-Villani

3

Thank you to my academic adviser who guided me in this process and the committee who kept

me on track with their rigorous and flexible knowledge.

4

ACKNOWLEDGMENTS

Thank you to my supervisor, Dr Carlos M., for providing guidance and feedback throughout this

project. Thank you to the author of Terrains using Satellite Data in Houdini, David CGMK for

the inspiration.

5

TABLE OF CONTENTS

LIST OF TABLES ..7

LIST OF FIGURES ..8

GLOSSARY ...9

ABSTRACT ... 10

 INTRODUCTION ... 11

1.1 Related Work .. 12

1.2 Purpose.. 14

1.3 Problem ... 15

 BACKGROUND ... 16

2.1 Introduction ... 16

2.1.1 Heightmap .. 17

2.2 Terrain Generation Techniques .. 20

2.2.1 Digital Elevation Model .. 23

2.2.2 Lidar ... 25

2.3 Modern Terrain Generation Techniques ... 28

2.3.1 Major advantages and disadvantages of Evolutionary terrain generation 30

2.3.2 Fractional Brownian Motion ... 31

2.3.3 Hydrology .. 32

2.4 GPU based terrain generation .. 33

2.5 Volume based Terrain Generation ... 36

 METHODOLOGY ... 38

3.1 Introduction ... 38

3.2 Overall Approach .. 42

3.2.1 Houdiniôs Clustering Method .. 47

3.3 Converting points to heightfield ... 53

3.4 Data Collection .. 57

3.5 Data Analysis .. 58

 RESULTS .. 59

6

 CONCLUSION .. 63

REFERENCES ... 65

7

 LIST OF TABLES

Table 4.1 Data collected by the performance monitor .. 60

Table 4.2 T-test Results ... 61

8

LIST O F FIGURES

Figure 2.1 General Mock-up of a Terrain using Heightmap. ... 18

Figure 2.2 Showing the elevation in height maps according to color .. 19

Figure 2.3 A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50 Hz 22

Figure 2.4 Lidar data collected .. 26

Figure 2.5 Lidar waveform returned from 2 trees and the ground. (Wasser A., 2014) 27

Figure 2.6 Genetic Programming Basic Algorithm (Frade et al., 2009) 30

Figure 2.7 Procedural generation of terrain using the GPU .. 35

Figure 3.1 The performance monitor .. 39

Figure 3.2 The performance monitor with the highlighted node .. 40

Figure 3.3 Highlighted performance monitor .. 41

Figure 3.4 Point data from the text file ... 42

Figure 3.5 Image and values of raw data from Lidar ... 44

Figure 3.6 Image and values after transformation ... 44

Figure 3.7 Wrangle nodes... 45

Figure 3.8 Terrain with cluster .. 48

Figure 3.9 Terrain without cluster ... 48

Figure 3.10 Displaying the test process of the creating the cluster. ... 51

Figure 3.11 The images show the parameters of the highlighted node. 51

Figure 3.12 Selected changes to the parameter interface ... 52

Figure 3.13 Procedurally generated vegetation ... 54

Figure 3.14 Representing the mask created by a curve .. 55

Figure 3.15 Complete terrain model with procedural sphere mask technique 56

Figure 4.1 Time change in the use of clustering on the terrain. .. 62

file:///D:/Thesis/VR_Thesis_2.0.docx%23_Toc37873303

9

GLOSSARY

VFX Visual Effects

3d 3-Dimensional

HDA Houdini Digital Asset

csv Comma Separated Value

10

ABSTRACT

Terrain generation is a convoluted and a popular topic in the VFX industry. Whether you are part

of the film/TV or gaming industry, a terrain, is a highly nuanced feature that is usually present.

Regardless of walking on a desert like terrain in the film, Blade Runner 2049 or fighting on

different planets like in Avatar, 3D terrains is a major part of any digital media. The purpose of

this thesis is about developing a workflow for large-scale terrains using complex data sets and

utilizing this workflow to maintain a balance between the procedural content and the artistic input

made especially for smaller companies which cannot afford an enhanced pipeline to deal with

major technical complications. The workflow consists of two major elements, development of the

tool used to optimize the workflow and the recording and maintaining of the efficiency in

comparison to the older workflow.

 My research findings indicate that despite the increase in overall computational abilities, one of

the many issues that are still present is generating a highly advanced terrain with the added

benefits of the artists and usersô creative variations. Reducing the overall time to simulate and

compute a highly realistic and detailed terrain is the main goal, thus this thesis will present a

method to overcome the speed deficiency while keeping the details of the terrain present.

11

 INTRODUCTION

With the advent of better computer and an increase in computational prowess, the methods to

produce and replicate terrain generation has not only improved in various parts but also has

increased. Since nowadays many computers can handle dealing with complex data that arises due

to the generation of structures like terrains and other 3D geometries there has been a huge

demand for fast-paced generation of high quality and realistic looking terrain. Even though

terrain generation is primarily found in the entertainment industry, there have been evidence of it

being found in less popular areas such as, vehicle dynamics, military training, Geo-information

system (GIS), flight simulation etc. One of the main advantages of using a procedural generated

terrain is the noise used to develop such structures. This procedural noise aids in both immensely

reducing the memory used to increase the speed and thus the time taken as well as increase the

content produced. Noise here refers to the procedural generated texture that is created using an

algorithm to achieve randomness and improving on the details of an existing geometry. Since

early times the computer-generated imagery has always been visually "machine-like" and looked

highly uniform and consistent. This is where randomness has played a vital role in bringing out a

visually appealing design and features by creating a naturalistic feel and details to the virtual

scenes.

However, there are still major drawbacks to such terrains, the natural realism of the terrain wil l

affect the performance of the simulation as such high details will require extra processing steps

and therefore memory. Since video games targets performance over the accuracy of the geometry

so that consumers who cannot afford the top-of-the-line performance-based machines will also

be able to purchase the product but in doing so reduces the amount of detail in the scene. The

most popular solution to minimizing time and reducing effort would be to use a high-grade GPU

render, however, despite the technological advances the implementation of such workflows and

pipelines are few. Major studios like Walt Disney and Pixar, among others have created a

successful GPU pipeline for the many computations and processes that occur. Similarly, despite

the multitude of terrains and the techniques to create the terrains exist there has been a reduction

in the overall creativity and artistic control over such terrains. Since each technique is generated

using a mathematical model the procedural generation has gained importance but the amount of

12

variance that can be achieved has been significantly reduced. This has led to more issues as

manual variance and constraints are extremely time consuming as well it is affected by the

proficiency of the user themselves which has no substitute since no amount of algorithmic

creation can ever produce a creative exotic art which is completely customized and modified

depending on the users imagination.

1.1 Related Work

Most of the procedural generated terrains use the height-map algorithm which is based off the

fractal generation algorithm or the fractal noise algorithm which uses the Perlin noise as its basis

to generate a height-map. The perlin noise can be re-scaled and added onto itself to produce the

fractal noise. The fractal noise makes us of the randomness and the layering of noises on top of

each other to increase the complexity of the noise itself and thus the randomness. Lower the

layers will lower the details of the noise and complexity. In terms of virtual terrains and other

geometrical features much of the literature has been focused on how to improve the visualization

process and accelerate the speed of the simulation of the terrains. This led to the ever-evolving

invention of different algorithms which could handle huge datasets without a sudden drop in the

computational abilities while also reducing the rendering time and boosting the overall

efficiency. Thus some algorithms also make use of the distance between the camera and the

actually geometry which is in closer in view to the extent that the closer the object the sharper

and highly detailed that object will be in contrast to the far-away objects which will have a lower

detail and so a lower resolution. Despite the origination of such algorithms the fractal technique

is still the most prevalent, this is mainly due to their speed and ease of implementation as well as

the randomness and irregularity of the shapes while building the terrain. The randomness

generated breaks the conformity that uniformity and consistency will be more functional. In this

case, the irregularity creates a more aesthetic feeling and gives a "natural feeling" and beauty

which would be hindered if not for the discovery of some algorithms. Unfortunately, the

expressiveness and the generality of probability also comes at a cost, inference is typically

impossible. Since the very nature of randomness is to generate a value which cannot be

predicted, similarly, the variation out of this randomness also cannot be. In some areas where the

details are higher may not be a wanted decision but rather the decision of the algorithm and so

despite an increase in the overall variation of the terrain, the control has been reduced as well.

13

Nevertheless, the fractal technique has a very high realistic outcome in which the terrains have

realistic details and features but have a few variations of the design and a low control on the

result. Even though the realism of the terrain is essential this method doesn't leave room for

creative input to take place and leaves no room for attempting to represent a distinct and exotic

terrain. Fractal based algorithms and techniques are highly rigid in designing and modification of

terrains to an extent that users are unable to apply their own creative insights and are unable to

further evolve the terrain according to their own aesthetic imaginations. The main approach is to

create a terrain that is realistic versus a terrain that is aesthetically pleasing. Since creating a

terrain that has not been built from scratch and which can limit the variability of the design can,

furthermore, reduce the time taken for users to modify and re-structure the terrain depending on

their own creativity. Apart from the perlin and simplex noise generated fractals there exists

another method which is part of the random midpoint displacement method called the diamond

square algorithm. This algorithm generates 4 corner values of a 2d array to fill in the inner values

with midpoint displacement, the array requirements in width and height are as follows, (OôBrien,

2018):

2^n+1

Extreme efforts have been made in recent years to establish the alternative methods such as the

cellular automata and tile-based approach which has shown either fast non-realistic terrain

generation or slow realistic terrain generation. Many algorithms have also been developed to

augment and support the fractal-based method, but while the algorithms do produce a significant

level of realism, they are much slower compared to the noise(fractal) like method, for example,

using a hydrology-based algorithm. These methods have serious limitations not only in the

performance but also in generating autonomous generation as it involves a feature height-map

generation provided by the user. Other approaches follow suit where the realism requirement has

been met but the performance has dwindled, while other algorithms compromised on realism and

have increased controllability and randomness of the noise such as Gabor noise, wavelet noise

and random-phase noise. Interestingly, there is not a lot of literature regarding the comparisons

of these algorithms. The family of the mid-point displacement method does not use multiple

passes corresponding to the different octaves, but this algorithm also possesses limitations.

14

1. The non-locality where the h value is based upon the coordinate given by the nearest

point.

2. The quality of the generated terrain.

3. The features are defined as such that this algorithm possess less control related

parameters than the fractal method.

There are also difficulties presented in keeping the memory storage low as this algorithm is

unable to assemble different chunks of terrain data.

As derived from the information above the Perlin and Simplex noise are by far the most popular

and common means of creating a fast-paced terrain with an acceptable level of compromise of

quality in terms of realism. Noise generation is the most appropriate method due to the

combination of simplicity, speed and performance and the quality it provides. In conclusion, this

short review of existing methods and algorithms are typically not used by themselves but are

used to augment and support the previous methods to overcome the shortcomings and possible

enhance the quality of terrain generation.

The aim of this dissertation is to provide a prelude into the formation of realistic terrains while

not compromising on the speed and efficiency of the production and simulation of the terrain.

The method here is only a commencement into the tumultuous world of procedural ism which

keeps many of the previous features intact while also allowing for time optimization.

1.2 Purpose

My objectives are multi-fold. Firstly, accessing satellite data to gather data points which can be

used to generate a highly realistic procedural terrain and using HoudiniFX to convert the data

points into a volume-based height-field map which will be used as a representation of the terrain.

Secondly, the data points which have been imported inside Houdini will go through a clustering

method which can be adjusted on the user, thus defining the number of clusters the user needs to

divide the data set by. Thirdly, the speed and performance of the terrains will be compared one

with using the clustering and distribution method which utilizes a tool developed in python

inside Houdini, against the same terrain which does not use said tool. Also, the same procedure

will be done on a low level of detail in which case the amount of points will range in the lower

15

million versus a high level of detail in which the amount of points will be in the upper millions.

The purpose of this study is to evaluate any link between the speed and performance of whether

the tool being used can actually save and increase the performance of the time taken to simulate

and generate a realistic terrain depending on the change of amount of points being processed.

1.3 Problem

One of the many problems with the study (terrain generation) is that the algorithms that it uses

creates realistic looking maps but scaling it to fit infinite combinations is not possible.

Unfortunately, even with the increase in computing power, the CPU cannot withstand huge

chunks of data, so GPU needs to be used. One major problem area being faced by many

production houses is how to create a credible environment in a limited amount of time and how

to do it without affecting quality. Finally, there is a problem with the procedural-ism itself that a

solely procedural generated terrain will lack the storage and retrieval capabilities as the data set

provided would be too small while the randomness would be much too great without the

aesthetic design it required for it to look good. However, these are not the only problems that

have been left unheeded. Creating a realistic terrain also contains many limitations, where to

develop a highly realistic terrain means gathering a huge data set which could easily run up from

a few million points to a few billion points depending on the level of detail. As one moves into

the high-level detail stage despite the advanced progress in the computational world, it is quite

tedious to run a simulation smoothly on a few billion points. Thus, collecting and analyzing the

actual speed and performance of the simulation and generation of the terrain and to what actual

level of detail can they perform to would benefit not only production companies but also

educational institutes who need to keep up with the advent of novel technologies.

16

 BACKGROUND

2.1 Introd uction

Procedural content generation has become a contemporary phrase in the world of entertainment

as well. Since the advent of realistic games due to the endless demands there has been a

significant improvement in the overall structure and aesthetic quality of the games. Procedural

terrain generation has spurred this advancement as many digitally created entertainment products

do require such large creations. So, with the increase in a lot of procedural content many ways to

identify and define this term became popular. One of the ways to define procedural content

generation is as ñany kind of automatically generated asset based on a limited set of user-defined

input parametersò (Ruben M. Smelik et al.,2011). Furthermore, it can also be defined as using

the amplification algorithm which is using a small set of input parameters to deliver a fully

functional automated output of a large set of data. Togelius formulates a definition by an

antithesis, saying that procedurally generated content does not correspond to content that is

generated by users even if they make use of procedural algorithms since they must be manually

parameterized. Procedural generation is an alternative to manual design which costs unnecessary

time but the need for creative input on the features and the parameters can influence the

generated object. Shaker et al., are more concrete and define PCG by giving examples what PCG

is (e.g., a software tool to generate random dungeons without any user input) and what it is not (a

map editor that lets users place items). Although the above-mentioned myriad of definitions has

been documented the earlier usages of this technique was in multiple fields especially for

research in computer science and biology based on the amount of influence at that time. Despite

the seemingly narrowed down areas, topics like computer science possess many data structures

and formalizing them is a huge effort. So, four main areas where this was used are L-systems,

grammars, shape grammars and programming languages. As we can see programming seems to

be an area which can never be error free despite its flexibility. Hendrikx et al. introduced the

abbreviation PCG-G (procedural content generation for games) to remove this term from

animated and live-action movies. However, this shows that procedural based algorithms and

procedures can be applied to a variety of areas such as, urban planning, films, etc., showing that

there is active research and awareness of automated procedural geometry in the industry.

17

Digital created terrain generation has been used for a long time and the respective algorithms and

novel techniques have been created to improve the efficiency and the to decrease the

computational performance. As technology was developed the load on the CPU was reduced and

was passed to the GPU to bear the high-resolution geometry which accompanies from creating

the terrain. Although, there have been many algorithms each of them has distinct advantages and

disadvantages, some of the common ones are below:

¶ Low human input

¶ High degree of human control

¶ Intuitive in control

¶ Real time simulation and rendering

¶ Fast generation of a variety of terrains with quick modifications

As we can see from above there are conflicting parameters to the algorithms such as low human

input and high degree of human control, this is there as to prioritize the traits of the algorithm

depending upon the type and number of terrains being used. A large number of terrain will be

produced faster if they are fully automated with a low amount of human input and if the terrain

require a more creative input and which have to be designed very specifically to a particular type

then a high degree of human control is required. In other words, compromises need to be made

whether human creativeness is prioritized or not. Terrain generation also possess other attributes,

representation of the terrain is important, the basic structure of the terrain will influence the

overall built of the terrain, the features and the minor details. Manipulating the terrain also

creates variations in the structure itself, a heightmap is the most common way of representing a

terrain and any changes in the areas of a heightmap will produce a different result in the terrain.

Whether larger crevices, valleys or peaks are required the heightmap can procedurally modify

whatever structure as needed.

2.1.1 Heightmap

A height map is a scalar quantity meaning it has only a x-coordinate and a y-coordinate which

corresponds to an elevation variable(h). ñIn practice, a height map is a two-dimensional

rectangular grid of height values, where the axis values are spaced with regular intervals valid

18

over a finite domain (see Figure 1). The most common data structure to represent them is 2D

arrays filled with the elevation valuesò (Miguel Frade et al., 24 November 2008).

h = f (x, y)

Figure 2.1 General Mock-up of a Terrain using Heightmap.

A height map has many hidden advantages that is not completely visible at the time. Rendering

of height maps is much faster which can also be done in real-time. Not only that, but a highly

detailed mesh can also be rendered quite quickly as the algorithm considers the distance from the

camera and reduces the amount of detail as one goes further away. A hidden advantage of this

technique is the collision detection which is immensely simplified as only a few triangles need to

be checked for the collision to take place. Since height maps are based on noise which use a

color range of 0-1, where 0 is black and 1 is white, grey scale images can also be used to

construct a height map for terrain generation as shown in the figures below.

19

Figure 2.2 Showing the elevation in height maps according to color

Thus, many machine learning algorithms can also be applied including computer vision (CV)

and image processing techniques to generate a base model for the terrain and details can be

added, modified or even reconstructed using these techniques. Finally, geographical information

system (GIS) can also be used by height maps to represent real world terrain but give a far more

realistic look as satellite imagery is used to reconstruct the terrain. Height maps are one of the

widely used techniques to generate terrains as mentioned above, but there are some limitations as

well. One of the key grievances of using such a technique is that it cannot represent cave-like

features. It is not possible for the algorithm to process such data due to the ineptitude of

structuring data where multiple elevations(h) for the corresponding coordinates. As there is a

steady increment in the details of a mesh the computational speed and power slows down to

perform the necessary calculations. Thus, even height maps possess a finite amount of resolution

which cannot handle the levels of detail on the terrain after a threshold. Although the algorithm

is fast enough to compute the changes made in real-time a huge, complex and highly detailed

mesh is quite an arduous task to uphold given the limitations of the technique. Finally, it is not

possible for the technique to adapt to new scales. A height map is generally generated on a grid

but cannot be accommodated to use a spherical object or a more complex object as the density of

the height map will vary directly, the points will be substantially greater near the poles than the

middle of the object.

20

2.2 Terrain Generation Techniques

In terrain generation techniques one of the most traditional technique is the measuring technique.

This technique used digital elevation data to produce the elevation model required for real-world

measurements to generate the terrain. These models are commonly used by remote satellite

sensing techniques like satellite imagery and land surveys. The main advantage of using satellite

data imagery is the high-realistic features with minimalistic human input that are generated in

comparison to other techniques. However, due to the high realism factor the performance of the

computer is affected and if any designer modification needs to be done the time consumption

will increase dramatically to account for finding a satellite image data that would match the

imagination of the designer. Another technique apart from using pre-existing data is to sculpt and

design the terrain as directed by the client or to closely resemble an existing reference from

another location. This technique of sculpting and designing from userôs own imagination or to

take inspiration from another source is the modelling technique. This is by far one of the most

flexible techniques in which any kind of modifications and changes to large parts of the terrain

can be made quite easily. Since the user is designing the entirety of the surface from scratch, the

idea and execution are all dependent on the abilities of the user itself. Many 3d softwareôs today

provide immense control and variability when it comes to designing a terrain. However, this

technique also poses a major disadvantage where the realism and the natural resolution of the

terrain cannot be matched to the details of the satellite data, also, there will be an immense

increase in the time consumption and effort to recreate a 3d version of any exotic and custom

made design. Moreover, this is all highly dependent on the experience and the abilities of the

designer themselves. This is one of the more traditional techniques to be used. Apart from this a

slightly more modern approach is being used, the procedural technique, where the essential part

is to save the time and effort made by the designer relatively from the traditional approach.

These terrains have a strong emphasis on the technical side and are highly valued for their

capabilities to possess multiple variances without having to change the design from scratch. One

of the common ways to ensure realism in this technique is to simulate real world erosion

techniques of the water, wind and heat. As mentioned before, although these techniques produce

realistic terrains, they require highly technical knowledge in of the real-world laws. These also

require high computational performance. Other procedural approaches include using the

fractional Browning motion (fBm) noise has a well-defined power spectrum. Using the fast

21

Fourier transform (FFT) to convert the random frequencies which are calculated to convert them

the frequency components into altitudes. Despite using such advanced techniques there exists no

control over the features of the terrain. Also, the simulation does not seem to share the same

physical laws that govern real world simulations. The fractal technique is part of the procedural

generation of terrains as it allows the geometry to be self-similar, a key concept in which as the

object is magnified the subsets of the object seem to have the exact same shape as the original.

The smaller part seems to interpolate completely with the original parts. This feature of fractals

is extremely useful in generating terrains regardless of the scale in which it is displayed. Since

this technique is based of noise, every time the algorithm is run randomness is generated to

create a more visual appeal to the terrain so that not all features possess the same shape. The

speed and ease of use makes this one of the most popular algorithms. Several applications use

this algorithm such as Terragen (which is a hybrid fractal/modelling tool) and GenSurf (a

mapping tool for Quake 3 Arena video game). Due to its high popularity it is relatively easier to

spot the terrain built on this algorithm and since this is an algorithm based on a mathematical

model it presents less control for the designer to change certain features thus lowering variance.

Finally, proceduralism techniques has tried to bridge the gap between giving control over to the

designer as well as automating certain processes to reduce effort and time consumption. These

techniques heavily rely on physics and mathematical models which help establish the foundation

for generating highly detailed terrains which can simulate real world behavior for wind, soil

erosion, water, thermal etc. Since these are constructed upon mathematical and physics-based

models, they require an extensive knowledge in the same fields to implement the knowledge in

generating them. These techniques mimic real world applications and are heavy on the

processing power of the computers which may cost time. The major reason proceduralism is

favored is the reduction in the human effort and time since most of the computation is being

done by the computer itself there are way to increase it. On the other hand, proceduralism does

decrease the manual control the designer has over the terrain which decreases the creativity and

originality of it. Another commonly used procedural algorithm used is the fast Fourier transform

(FFT). This is done by using the fractal Brownian motion (fBm) noise known for its abilities to

describe random occurrences and give rise to a wide range of interesting models. This can be

best describes as, ñThe correlation of a random process B(t) for any time t_>0 and h>0 can be

22

represented as the expected value E(B) of the product of nonoverlapping increments of the fBm

process where the real number H is called the Hurst index falls in the range (0, 1), and describes

the roughness of the motion, with a higher value leading to a smoother motionò, (Fractional

Brownian MotionðAn overview, October 15, 2019). This can help in calculating the frequency

components and then the inverse of the FFT can be convert the frequency into amplitude as seen

in the figure below.

Figure 2.3 A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50 Hz

Heightfield data or heightmaps can be generated from both real-world scans and surveys as well

as from scratch by using fictional worlds. To apply the userôs own modification and creativity a

tool called a ñbrushò is used. Strokes can be applied to the terrain structure by using an input

device like a mouse and can be made interactive so the modifications can be viewed in real-time.

These brushes which apply the strokes are relatively simple to use and provide maximum

flexibility and control. However, much time and effort are required to create the necessary details

and features that make a terrain realistic. Some of the common operations include, terrain

lowering, and levelling and some brush parameters include, brush radius and effect scale.

Algorithms exist which can output realistic heightmaps and can be broadly categorized in these

23

two classes, simulation and procedural synthesis. By imitating the geological processes, the

simulation algorithms can globally transform terrains. These algorithms are an over-

simplification of natural processes which exist. With enough time and continuous

experimentation impressive results can be achieved, however, this is extremely time taxing and

require a considerable number of iterations. In contrast, procedural synthesis algorithms which

do not use the natural processes, instead they rely on the fractal techniques like semi-random

patterns like rough mountains and smooth hills. Minimum effort from the user is highly effective

when generating a procedural terrain and so this algorithm is used when multiple iterations do

not need to be evaluated as they are many times better than the simulation algorithm. However,

limitations are also several, there is a limited amount of control on the brushes as well as when

the user requires more finite control over the terrains features the parameters are limited as they

are used globally. Including the limited control this algorithm is also limited to only the creation

of a single type of terrain.

2.2.1 Digital Elevation Model

These models are extremely important and versatile in visualizing the surfaces and the terrain of

environment on Earth in a 3d space. They provide rich information regarding the topography of

surfaces that 2d surfaces cannot provide. A DEM (digital elevation model) is a set which defines

a set of points or grid cells and is a 3-float vector (x,y,z), where the x and y-coordinate are

traditional longitude and latitude measurements and the z represents the height or the elevation of

the model. There are main two types of DEMôs ï Digital Terrain models (DTM) and the Digital

Surface Model (DSM). The DTM is typically a ground only elevation model as it includes the

x,y,z values of the ground only. These points do not include the vegetation part and have been

removed from this particular model .The DSM on the other hand contains all elevation points

regardless of the area and type of the surface, these include, ground, vegetation or even man-

made structures. Since the information both contain are highly different their respective uses and

applications also vary. DTMôs are typically used in engineering, construction and hydrographic

projects whereas the DSMôs are mainly utilized in 3d visualization, infrastructure management,

line-of-sight and obstruction mapping application, essentially where the height of the surface

plays a vital role. Now, this has also been used in the entertainment industry. These two

24

techniques are frequently defined by the accuracy and high realism of the surface given the high

number of points it generates to create the terrain as well as the grid cell density (spatial

resolution). The horizontal accuracy is measured by the x,y RMSE or Circular Error (CE),

similarly vertical accuracy is measured in either z RMSE or Linear Error (LE). To provide a

small example as to the inner workings of the techniques, a 1m CE90 and a 5m LE90 mean that

there is a 90 percent confidence the DEM measurement coordinates are accurate up to 5m

respectively of their original position from the ground. Similarly, in DEM the method used to

provide the actual resolution is defined by the elevation measurements and not spatial density

like in the case of the remotely sense imagery. Raster DEMôs are identified by the grid cell size,

1m or 5m cell size or by the point spacing (distance between points) like the 1m or 5m.

Nowadays, the DEMôs are generated using the digital sensors which are attached to an aviation

machine which can fly around and scan the terrain required to formulate the points. The

unmanned vehicle such as a drone can also be used to acquire the information necessary, the data

collected by these sensors are used to gather the elevation measurements. The three main sensors

are, optical imaging sensor (frame camera / push broom scanner), synthetic aperture radar (SAR)

sensor and the laser scan (LIDAR). The Lidar data is often used by the aircraft, while optical

imaging sensor can be carried by helicopters, airplanes and satellites. The SAR data cannot be

carried by smaller machinery and so requires larger aircrafts or satellites. Photogrammetry is

sued to create topographic maps and DEMôs from aerial overlapping photographs. The process to

take out the required elevation data from such aerial photography is photogrammetry. Using the

ground control survey points (GCPôs), a 3d visualization of the terrain can be created allowing

for the direct measurement of elevation data of ground features. For complex structures like

caves and dense canopies the elevation data is interpolated especially for obscure locations. This

technique is widely used today but most of it is digitally automated. The main advantage of

utilizing this technique is the precise capture of many small features and other parts like drainage

curbs etc., to generate the 3d points which are extracted from the photographs and has a direct

correlation between features in the photos and the actual surface. Using this technique all the

small details can be extracted and used accordingly, ridgelines, drainage, etc., all these are

extremely vital for hydrological engineering. The main weakness is the expense that will be

incurred for adding the ground survey points as well as incurring the increase in time

consumption. A novel enhancement on the photogrammetry technique is being employed,

25

instead of using the traditional method of collecting satellite tracked image data, the new

approach utilizes many satellites to get the data across from many angles to capture the data in its

entirety while also preserving the highest of details and features. Another active sensing data

collection technology is Interferometric Synthetic Aperture Radar (IFSAR) helps in emitting the

data signals from aircrafts down to the surface of the Earth, these are radar pulses which reflect

off the surface containing the valuable information required to yield accurate measurements.

Elevation mapping with SAR technology is also called InSar or IFSAR mapping. Moreover,

even in obscure lighting conditions and where the areas have a persistent cloud coverage

especially in tropical regions the SAR sensor is extremely capable of capturing and collecting the

elevation data. Although, this provides coarse data set, the cost of acquiring such data is

comparatively lower than other sensors.

2.2.2 Lidar

Lidar stands for Light Detection and Ranging. The need to characterize and analyze large

vegetation and surfaces of the Erath require large computations and visualization such that

certain tools are required that can essentially ñscanò the region or ecosystem to collect all the

information. Since, manually speaking one cannot go through the entire ecosystem and collect

data from small features and details, remote sensing is used. This kind of sensing is digital and

does not require physically being present due to the advancement in technology such as drones.

These sensory as stated above scan the landscape and record all the details and information to

estimate the characteristics of the terrain including vegetation or data across huge surfaces,

sensors can be deployed into remote areas and can measure and collect the required information.

Lidar helps in acquiring all the information required to generate any surface of which it is

scanned. Multiple structures like height, vegetation, density ,etc., can be mapped over time using

this sensor. Since it directly measures the height and density of vegetation of the surface it makes

it extremely popular tool over large areas. Thus, using Lidar one can build a real-time map of

any surface. The sensor can emit a light from a rapidly firing laser which in turn when gets

reflected from the trees and branches gets converted into the information which is recorded and

collected by the sensor.

26

Figure 2.4 Lidar data collected

 To calculate the distance travelled which is ten converted into elevation from the surface the

time it takes to send a signal to when it hits back is recorded. Once the measurements have been

collected, the inbuilt GPS records the position in 3d space as well calculating the light energy

and Internal Measurement Unit (IMU) which provides the orientation (yaw, pitch and roll) of the

airplane. For trees a photon made up of light particles moves towards the ground and hits the

branches on trees which can reflect the light off and then send the information back to the sensor.

This works on small like objects but if there are gaps between the surfaces then the light will

pass through, some light will continue to hit the ground and so multiple reflections may be

recorded. When the light returns to the sensor it creates a waveform. The amount of light being

returned is the intensity. Peaks can form in the waveform, depicting that the light hit certain

vegetation like leaves, branches, etc.

27

Figure 2.5 Lidar waveform returned from 2 trees and the ground. (Wasser A., 2014)

There are many different types of uses of Lidar, some of them are listed below:

1. To export high resolution data

2. Elevation height

3. Canopy cover

4. Leaf Area Index

5. Vertical Forest Structure

6. Species identification (Wasser A., 2014)

The light energy that is used to scan the surfaces are represented in the form of waveforms.

These waveforms can be classified as Discrete Return Lidar System and Full Waveform Lidar

System. The Discrete Return Lidar System can identify the highest point in the waveform and

record the information at each location. The individual points are called returns. This system has

the capability to record a range of 1 to 4 returns from each pulse. Each lidar point contains its

own kind of metadata which can be determined by the attributes of said point as well as the

attributed itself may vary depending on the information has been collected. All points possess the

basic x,y coordinates as well as the elevation (z) attribute. Each lidar point also possess a light

energy which is recorded by the sensor the amount of light energy here is represented in intensity

values. Apart from the intensity, lidar data also classifies the data which essentially means

representing the type of object the laser successfully scanned. So, if the light successfully

scanned a tree, it could be classified as ñvegetationò and the ground can be classified as

28

ñgroundò. However, this is not perfect, some of the representation can overlap especially when it

comes to infrastructure as there is no ñbuildingò type and this cannot be categorized above.

2.3 Modern Terrain Generation Techniques

Modern techniques have been inspired from Darwinôs theory of evolution of the species where the

continuous survival of the species depends on its adaptability and desire to change with the

continuous times and the species are thus rewarded through their own survival. Many modern type

algorithms can be divided into three main categories. The first, evolutionary algorithms, are used

as a search technique and are advantageous in situations which require high flexibility and

adaptability to many different scenarios. This key factor helps in a lot of different fields of study

such as, science, engineering, robotics, etc. Apart from using search techniques, through the work

being done in artificial life, the theories surrounding natural selection and biological evolution can

be validated through this technique. Another prominent technique of modern algorithms is using

the evolutionary design which utilizes aspects of design and computational abilities to enhance the

design. Using automated techniques with visually appealing design aspects have increased the

process and changed the norm. Art forms are very similar in generating new and creative image

stop display which requires human evaluation to provide a value based on subjective design. One

of the earliest forms of evolution was to incorporate the ability to use mathematical equations and

formulae to define the interactivity of computer graphic elements. ñKarl Sims used GP to create

and evolve computer graphics by mathematical equations. The equations are used to calculate each

pixel. He created several graphic art pieces including Panspermia and Primordial Dance and

allowed visitors to interact with his interactive art system at art shows and exhibitions.

His Galapagos is an L-system-based interactive evolutionary computation (IEC) system that

allows visitors to create their own graphic art through their interaction.ò (Frade et al., 2009).

Tatsuo Unemi developed another application, Simulated Breeding Art (SBART) which was open

source. This particular software uses genetic programming to develop the mathematical

equations required to calculate the coordinates of each pixel. Moreover, mathematical operators

can also be used as well as trigonometry functions. These works are based on nodes which are

treated as variables. A system of 3 coordinates are computed using the mentioned equations by

29

assuming the constants are 3d vectors and the variables are 3d tuples (x,y,0) (Frade et al., 2009).

Ong et al. were one the of the very first authors to propose generating procedural terrain using he

genetic algorithms. Using the evolutionary design optimization technique, heightmaps were

converted by applying the algorithm required for the transformation to take place. This approach

takes place in 2 stages. Firstly, using a rough 2d map of a surface of the desired terrain which can

be randomly generated by the designer is required. Secondly, by using the first stage it helps in

removing any unwanted edges and then searches through databases to preselect heightmap data

for an optimal arrangement which approximates the 2d surface designed. Both the terrain

generated maps will possess variance due to the inherent randomness of the generation

algorithm. A more advanced technique which automatically solves many problems regarding the

structure and form in advance. Its main advantage is getting the compute to resolve the issues

without any intervention. The programs establish a base and learn from the programs to evaluate

the weaknesses and remove them. Since it revolves around programable applications, results

cannot be guaranteed but this algorithm is useful for artificial intelligence, robotics, prediction,

etc. The figure below explains the steps taken by the algorithm to achieve the results. (Frade et

al., 2009) .ñThe primary genetic operators used to create new programs from existing ones are

the following:

¶ crossover: the creation of a child program by combining randomly chosen parts from two

selected parent programs,

¶ mutation: the creation of a new child program by randomly altering a randomly chosen

part of a selected parent programò. (Frade et al., 2009)

30

Figure 2.6 Genetic Programming Basic Algorithm (Frade et al., 2009)

In genetic programming the data structure resembles the Heap data structure, which is similar to

a tree like structure. The variables and constants act like leaves in the structure, the mathematical

equations resemble the nodes called functions and the sets of functions form the system.

2.3.1 Major advantages and disadvantages of Evolutionary terrain generation

The Terrainosaurus algorithm can be used as sample terrains that will help to meet the

requirements of a specific genre if an existing database of game maps exist then this algorithm

would be an effective way to ensure that genre maps meet the requirements. This also allows for

post-game variations where the user can change certain features of the map layout even after post

game completion. This is particularly useful in multiplayer games where exploration is not a top

priority but rather developing strategies by learning in-depth information regarding the maps.

However, slight variations will force players to change strategies and so it is disadvantageous if

enough samples are not provided. Developing the L-system is important as it is based on the

fractal techniques discussed in previous sections, so this also possesses all the details and

randomness the fractal technique can provide. However, the way in which the algorithm is

developed the terrain being generated cannot be distinguished from regular fractal technique and

do not inherit the symmetrical nature of the fractal-based techniques. The L-System has a similar

limitation where if the appropriate reference terrain is not provided then the system does not

produce the correct results. In certain algorithms the implementation is not as effective as their

31

certain features and properties which upon change causes disturbance to the player and becomes

a distraction and will not have an impact on the entertainment value of a game map. Adjusting

certain properties such as the feature scale require a pre-designed map and may not provide

variety in strategic gameplay. In the GenTP (Genetic Programming) algorithm, the main

advantage was the use of many different types of mutation which can prevent the height function

from being too aggressive. However, the patterns created by this algorithm as typically unusually

flat and do not provide much variance in terms of features of the terrain and are thus highly

predictable, such terrains have serious limitations in their applicability to game genres. In the

algorithm presented by Togelius et al. was able to generate complete maps which were made

possible in many games, however, the terrain which is generated is highly basic and lacks any

additional details like soft and round peaks, in a present-day height map.

2.3.2 Fractional Brownian Motion

The Brownian motion uses randomly bursts of increments over time to change the position of an

object. These movement although defined to be random but are highly similar in the sense that

the zoomed in paths are part of a larger path which resembles the entire structure. Thus, the

fractional Brownian motion (fBm) is very similar and possess the same characteristics, in which

the increments are not completed independent but there is a sort of a link to each other. Future

changes in the same direction will occur only if the link between the objects is positively

correlated, including the path would be much smoother. However, if it is negatively correlated

the path would be randomized and the positive change would lead to a negative change. The

parameter which controls the self-similarity, the fractal dimension is the Hurst Exponent (H). In

terms of mathematics, this parameter allows control of the white noise to generate different

characteristics and visuals. The H value is between 0 and 1, ranging from smooth fractals to

rough ones, the default value is typically 0.5.

Apart from generating natural looking terrains other types of environments can be generated as

well due to the self-similarity structures and the randomization. These shapes in the real-world

follow the same principles of possessing a few big shapes that give them a basic outline and

some smaller shapes which add the details, the smaller shapes also distort the contours and edges

to bring out some randomization so that there is some non-uniformity. The amin advantage of

using this characteristic is the ease of coding this into any object to procedurally generate the

32

shapes required. This also helps in establishing level of details, filtering and anti-aliasing, due to

these reasons it is widely used in commercial films. The most common method of applying this

technique is to use a recursive function which can implement and generate the smaller noises

incrementally as the size of the noise decreases, initially, a smooth noise function is used. The

pseudo code is provided below:

//Create a function with two variables

//Initialize a variable to add to

//Begin the loop

//Compute the noise by using a noise and pow function

//Return the value

The accumulation of each noise signal or waves when gets additively combined at the end of the

function as well as the horizontal compression which is applied to by reducing the wavelength

and amplitude is what creates the self-similarity. However, the code above is not time optimized

for dealing with highly realistic and large terrains so another more popular method is used as the

expensive pow function is used. The pseudocode provided below does not use that code:

//Keeping the major part similar, initialize more variables to replace the pow function

//Begin the loop

//Multiply back the variables with H exponent.

//Add the noise back

//Return the value

ñIn this new code implementation, not only has the frequency generation been replaced from a

power-based formulation to an iterative process, but the exponential amplitude has been replaced

to decay as well, the Power Law, with a geometric series driven by a "gain" factor G. One needs

to convert from H to G by doing G=2-H which you can derive easily from the first version of the

code.ò

2.3.3 Hydrology

There have been large and various amounts of research which has been done in generating

terrain, in the sections above we have discussed many different types, like modelling and

33

procedural techniques. These are the existing types of techniques which exist today. Procedural

and physics-type techniques often lack the controllability and the artistic control that a designer

may be going for if creating an exotic type of terrain. Modelling methods can be tedious and time

consuming. Among all of these only the physics type techniques provide a far more realistic

design than any of the others. As mentioned previously there seems to be a lot of issues

regarding terrain generation, another unmentioned issue is the absence of algorithms which

provide controllability to the generation of terrains. Furthermore, the scalability of these terrains

also becomes an issue since the scale data seems to be fixed in the height map which is the

standard data representation in many terrain-modelling systems. The height field can be then

converted into a mesh. A way to quickly search and identify terrains is by searching the

neighboring areas for a river network. The structure around these network areas have clearly

defined structures of the terrain. Apart from this, regardless of the scale of the aforementioned

data, the geological and tectonic attributes including the climate do not create any modifications

to it and possess identical features despite all these factors. The terrain surface is partitioned into

patches due to the rivers on the map.

2.4 GPU based terrain generation

From earlier times, traditional approaches to generation of terrains have always been limited to

height maps being generated on the CPU and the process to render (is an automatic process of

generating a photorealistic or non-photorealistic image from a 2D or 3D model based on

mathematical models) them on the GPU. However, despite the advances in modern technology

the CPU is still unable to keep with the demanding tasks that come with generation of highly

detailed geometry. For a long time perlin noise has been the base for generating any terrains and

similar types of geometry especially exotic features like caves, deep valleys, etc. However, as

described above all of these are run on the CPU and require immense memory and computational

prowess. In this section as a basic form of terrain generation is provided, tessellation shaders can

also be used to generate the terrain in the OpenGL pipeline. No specific algorithm is required to

generate any details of the mesh however, a few basic steps are consistent throughout the

creation of most terrains. Firstly, the dimensions of the terrain are important and needs to be

specified. The terrain should be generated as a flat grid made up of triangles. Secondly, a popular

noise algorithm is used in the vertex shader to give the terrain an approximate shape. Thirdly,

34

tesselate the terrain based on distance from the camera . Fourthly, the normals need to be

calculated for the primitives/polygons (triangles) and lastly, the terrain will be shaded based on

the normal data and light direction. The vertex shader is the starting point for all processes in the

OpenGL pipeline. The perlin noise is used in the vertex shader to generate the randomness

present in the terrain which uses a Hermite curve based on input values. The height values

should not change with the camera motion, to keep it consistent passing in the world coordinates

to the perlin function which will then return the noise values is ensured. This shader runs parallel

to each vertex so as to generate a coarse grid. The tessellation control shader is used to control

the amount of subdivisions that will be applied to a primitive. Since the distance from the camera

is vital, the tessellation amount is directly proportional to it. Other areas which lie outside the

view of the camera can be calculated using the projection matrix and the field of view of the

camera. The tessellation evaluation shader is called for all the vertices present, the barycentric

coordinates are used to calculate the positions of any new vertices. These positions all lie on the

same plane as the triangle. After passing through this shader a mesh is created. These vertices are

assembled and are converted into primitives in the geometry shader. This is where each primitive

face normals are created using the cross product of the edges. Thus, a single normal is formed on

each face. After the formation of the primitives and before the pixels can be rasterized, they are

colored in the fragment shader which is based on the height of the pixel from the ground. A mix

function can also be used to smooth gradient colors from the ground.

Another approach to reduce the load and the computation on the CPU is to use the GPU for

rendering purposes. As shown earlier the multiple algorithms have their own pros and cons, thus

simply stating the conclusion that this algorithm works effectively without any data cannot be

made. Similarly, even in interactive rendering of large DEMôs the effective loading of 3d

graphics needs to be prioritized depending on the algorithm in use. Thus, to improve on the

performance of the rendering an appropriate level-of-detail (LOD) needs to be selected for each

rendered frame. However, certain LOD rendering should make use of the batched graphics

primitives for rendering out the vertices instead of basing it in on the individual geometric

primitives for optimization. Using the individual primitives may cause excessive load on the

CPU which will consume too much time to perform any optimization. The LOD itself has

characteristics which can achieve a targeted rendering quality and frame rate.

35

The serial processing nature of the CPU does not seem to suit the generation of complex and

highly realistic terrains which is a highly parallel task as well as the height maps do not include

the interesting exotic features which can be seen in caves and other valleys. Nowadays, to

overcome the limitations provided by the CPU the GPU is looked at to enhance and effectively

eliminate in speed deficiency that can be found. More complex terrains can be generated with

high interactive frame rates due to the GPU. Features like the DirectX10, the geometry shader

(GS), stream output and rendering to 3d textures, makes the generation of the terrains relatively

faster especially the generation of larger blocks of a complex terrain.

Figure 2.7 Procedural generation of terrain using the GPU

The simplest way to describe the creation of the terrain is by using the density function. In any

given point in 3d space (x,y,z) the function produces a floating point number and if the said

number is positive then the point in space is inside the solid terrain otherwise if its negative then

the point is located in an empty space such as air or water. The location of the point if in between

these two values, where the density value is 0 then it is located on the surface terrain. Along this

surface is where the polygonal mesh is then created. The GPU is used to generate ñblocksò of

terrain at a time and then these blocks are subdivided into smaller voxels or cells. These voxels

are used to generate the appropriate polygons required to generate the terrain. The marching cube

36

algorithms allows us to determine if an arbitrary point lies within that object and bounds within

that object exist as well as generate correct density value in the eight corners of the polygon

within a single voxel. The infinite world where the terrain needs to be generated is lined up with

1x1x1 size blocks, within each size of the blocks lies 323 voxels that potentially contain

polygons. These polygons exist inside the block only if they are inside the camera frustum as

these blocks have the higher priority since they are closet to the camera. 300 vertex buffers are

dynamically assigned to blocks visible in the frustum and as the new bocks come into focus the

newly culled blocks are evicted and reused. The polygons inside the blocks also depend on

complex calculations where only after the block is generated a stream out query is put out to the

GPU asking whether the polygon exists or not. If not, these blocks are considered to be empty

and are put inside a list to increase efficiency and so it wonôt be uselessly regenerated. In every

frame the same steps are followed to build a systematic and consistent terrain, the vertex buffers

are sorted from front to back and then new blocks are generated while evicting the older

generation blocks. Eventually, the sorted blocks are rendered in the same process to reduce the

load on the GPU and to reduce the time consumption on the shaded pixels which might be

occluded by other features of the terrain.

2.5 Volume based Terrain Generation

An improvement in the heightfield data structure is to use a layering technique of more than one

height value per 2d terrain position. These additional layers can be used effectively to simulate

different types of rock-based structures just like in the earthôs surface. Each layer of these

structures contains a different material type which allows for different rates of water absorption

and erosion simulations. This kind of layered data structure compromises between the realism

and accuracy of the terrain relative to a potentially slower but more flexible voxel data structure.

The main property of an ideal data structure for realistic terrain generation is to represent

boundaries as efficiently as possible. This data structure should also allow for enough flexibility

to generate overhangs. Terrain algorithms with this data structure will lower the total

computational processes. Simulating is not the final process for any 3d geometry thus interactive

rendering is also a process which is associated with this data structure. Surface based data is used

quite extensively for rendering rather than volumetric data and so a polygonal mesh is extracted,

37

however, mesh extraction can be quite expensive. A water layer can be modelled and added as an

additional layer above the heightfield normal strata.

Due to the fact that vertically overlapping vertices are allowed, a Triangulated Irregular Network

(TIN) unlike heightfields does not use regular 2d data and are irregular meshes which consists of

triangle primitives which can fully represent 3d features. Unlike pixels which comprise of flat

rectangles in 2d space, voxels (Volume Pixels) are similar to the representation of pixels, instead

being a 3d representation. The main limitation of voxels is the storage requirements needed to

contain highly detailed terrains. Since an increase in resolution of voxels will increase the overall

resolution of the terrain this will increase the storage space required. Using voxels

comparatively to heightfields can provide a far more precise physical simulation data due to the

unique characteristics of each voxel. A densely populated layered heightfield representation is

similar to using voxels. The process of editing a 2d heightfield is relatively straightforward when

compared to editing a 3d voxel grid thus a technique called voxel carving was developed. The

naiver-stokes equations can be used to establish the flow of water. This allows the flow field to

be calculated using mathematical models and physical behavior instead of using an ad hoc

attempt. A hidden advantage of using a voxel-based terrain is that it avoids any self-intersection

that arises from using surface base topologies. The LOD is directly proportional to the size of the

voxel. The LOD itself can be adaptively increased in certain sub-volumes of a data set. This

increase in adaptivity must also be met by the renderer. A voxel is represented by a single bit

where 1 represents the voxel to be ñfullò and 0 to be empty and so this can be stored in a 3d

array. If the data set has dimensions of n3, the memory used is also represented as n3, the cost of

this can grow quite large.

38

 METHODOLOGY

3.1 Introduction

In short, the main idea regarding this process was to increase computation performance and

speed while reducing the time taken to simulate certain conditions. Since the GPU was not being

used and since most of the simulations in Houdini run on the CPU, a technique called clustering

was used to distribute the highly detailed terrain meshes into multiple parts. The imported data

has a high resolution as it is making use of the satellite to gather the data, Lidar data is a form of

satellite data which can produce realistic terrains, the higher the point count the more the features

and thus an increase in realism. However, even computing such high data points require high

computational power and so distributing them into clusters or groups of points can potentially

save that time. The clustering technique is based upon the k-means clustering algorithm in which

the algorithm will group similar data points together based upon position to discover underlying

patterns. This algorithm is extremely popular in unsupervised machine learning techniques and is

what is used to define the clusters, control on the number of clusters is also given. However, just

creating clusters is not enough as that itself takes computational time so a tool was developed to

use the cluster attribute as a source of export and save each clusterôs positional data points to a

file on the computer which can be parsed and imported back in.

This technique distributes the data into clusters and write out all the points into separate files

based upon the user defined number of clusters. Since each cluster is a portion of the entire file,

the details of the natural terrain have been kept as points from within the data have not been

removed to decrease computational time, instead a portion of the entirety has been segregated

thus reducing the computational time but keeping all the features and details. Once the particular

cluster has been imported back in, the procedure to convert it into a heightfield has commenced,

which will convert it into a volume-based terrain and uses Houdiniôs many customizable nodes

to re-structure and modify the terrain since the points itself cannot be modified directly but upon

conversion given the variety and considerable number of nodes to provide that extra artistic

control and creativity the terrain itself can be modified. Thus, one of the major questions to

navigate the labyrinth of terrain generation is providing a realistic terrain which does not

39

overload the performance of the computer, although there has been a substantial reduction in the

overall cost of accessing and owning high-performance based computers, the underlying

statement is that not everyone has said access nor can purchase those computers despite the

decrease in cost. Moreover, small to medium sized companies cannot afford such advanced

technology for all artists thus using the distributive system as well as those who own personal

computers may not have a high-performance computer and so this technique will keep the

realism intact while not overloading the machine. The simulation data will be produced by the

software itself using the heightfield erosion node which will create the time taken in seconds and

compare that data with the simulation time taken when using the distributive tool. The data will

be recorded by Houdiniôs performance monitor itself, the moment the simulation starts the data

will automatically start recording and will stop when the simulation stops. The performance

monitor figure is provided below.

Figure 3.1 The performance monitor

As we can see from figure 3.1, the part which is most important is the heightfield erode node and

the time taken to complete the simulation. This value will be used to compare the data which is

monitored after applying the cluster distribution technique. As the color becomes more reddish in

color from a green color the slower the simulation or longer the time has been taken, essentially a

more reddish bar color takes longer time to simulate than the nodes with a green bar color. This

also shows the processes and the time taken for all the other nodes, apart from this the node itself

is highlighted with a red outline emphasizing that node is slower to ñcookò or simulate relatively.

40

Although this procedure is not a standard form data collection and methodology, it particularly

works for understanding how long and how much time is taken to complete the simulation

although it does not give us a thorough explanation as to the reason it does narrow down the

particular node in question and can provide details of that node and information regarding the

time taken. Also, we can use the ñ+ò button on the left-hand side and a drop-down menu with

more nodes will appear which can tell us which sub-node inside this node is using most of the

computational prowess. An example is provided below.

Figure 3.2 The performance monitor with the highlighted node

The information in the figure provided clearly shows that the highlighted node is the affected one

in respect to the amount of time taken to simulate and the computers computational abilities.

Moreover, we can dive into the node and it will show us the exact node which is taking the

longest time. As shown in the figure below, the highlighted part tells us where the computational

time is slowest and which part of that sub-node does that node main exists.

41

Figure 3.3 Highlighted performance monitor

Using the softwareôs inbuilt functionality, the validity of the performance is guaranteed as the

performance monitor uniquely computes the time taken for every node and displays the results of

each by also using a color visualizer ranging from green to red. Since this in an inbuilt system

which comes with the software itself and no tertiary application is being used the test accurately

measures the parameters which it is intended to measure. Since this is a simulation in the digital

world there is no real-world counterpart to compare it to, however, since the application itself is

able to test the performance of each node then validity remains intact as it is not being influenced

by any external factors. Apart from validity, for quantitative data the reliability requirements also

need to be met. Re-testing the same simulation on the same computer specifications and with the

same control variables the results were highly consistent with very minimal changes in the time

taken. Since the re-test reliability is essential, there are no unaccounted parameters which exist.

However, if the changes are frequent then this can be attributed to the state of the computer itself

meaning, is the computer itself working at the optimal peak. Since dealing with computer

generated applications, the control variables will be the specifications of the computer itself,

these variables cannot change as then the results will be heavily biased towards the higher-

performance computer. In this experiment the time taken to simulate although does depend on

the specifications of the computer itself but also on the quality of the terrain, in other words, the

amount of points generated for the heightfield map. The higher the number of points the more

the detail and thus an increase in the time taken. So, the independent variable here is the number

of points used to generate the terrain and the dependent variable here is the time taken to

complete the simulation.

42

3.2 Overall Approach

The overall approach which was used here has been divided into three main stages, first the pre-

processing stage, then the simulation stage and finally the processed stage. Then first stage was

completely dependent in acquiring the data to make any significant contribution to this field of

study. Using data acquired from a public resource which can be downloaded by anyone with an

internet connection. Lidar data was used as a basis to gather the points and create the data set

required to build and generate the terrain inside the 3d software (HoudiniFX). The lidar data was

used, as the software stated above, possesses a node which can allow the import of such data

smoothly without having to rely on an external application to first read the data and the export it

out in a format which can be easily processed. However, since HoudiniFX also boasts of having

a robust foundation in its cross-platform abilities, it contains a python module as well - called the

HOU module. This module is extremely versatile as it allows us to do multiple modifications to

the different sub-parts of a geometry namely, the points, primitives(polygons) and vertices.

Using the module one can import the data into HoudiniFX. Assuming we were trying to read in

the points using the python language from a text(.txt) file and the text file was like the figure

provided below.

Figure 3.4 Point data from the text file

#The hou module calls all the built-in functions for houdini

node = hou.pwd() #This is calling the current node

geo = node.geometry() #This is calling the current geometry(points,primitives,etc.)

file = open("points.txt","r")

for lines in file:

 lines = lines.replace("]","]_")

 result = lines.split("_")

res = []

for x in result:

 res.append(x.split(','))

43

X = []

Y = []

Z = []

for item in res:

 if not item[0]:

 continue

 #print(item[1])

 points = geo.createPoint()

 X.append(item[0][1:])

 Y.append(item[1][1:])

 Z.append(item[2][1:-1])

 X = list(map(float,X))

 Y = list(map(float,Y))

 Z = list(map(float,Z))

 for i in X:

 x = i

 for j in Y:

 y = j

 for j in Z:

 z = j

 points.setPosition([x,y,z])#set position is the built-in function to set the position of

#all points in x,y,z co-ordinates

The major drawback of using python to read in the data as shown in the code above, is the

amount of computational time it will take for pre-processing the data to a format which is

readable. Since the node is far more streamlined and can read in the data far more easily the node

has been used. In other words, parsing the data to a format which can be used to import the file in

python will take more time than simply using a pre-existing node.

After the dataset has been imported in completely, most of the operations will be modified and

calculated at the sop(surface operator) level. The lidar data typically can be distributed into two

44

separated files which can be imported as a single file, however, for easier computation it is

necessary to divide them into two smaller sized files. It is important to note that a higher data

point count will result in slowing the performance of the computer, so it is imperative to start off

with a smaller sized dataset and then to move into a larger size one. Once the correct size of the

data set has been chosen data points went through a transformation sub-stage. The

transformations applied here were done so that the data points itself when imported do not

contain a ñx,y,zò co-ordinate system which is used inside any 3d application including

HoudiniFX, since this was the case any kind of importation which will occur will arrive in the 3d

space without user control away from the (0,0,0) position. This can cause other issues like

camera orientation and zooming in and out may be difficult since the camera and the data points

do not lie on the same plane so to overcome this small limitation a transformation was applied

using the extensive node-based library. The before and after images can be found below.

 (a) Raw data set (b) Raw transformation values

Figure 3.5 Image and values of raw data from Lidar

 (a) Image after transformation (b) Data after transformation

Figure 3.6 Image and values after transformation

As we can see from the above data the initial transformation values are high (Houdini deals in

meters.) thus to bring the values to a more readable stage, transformation of the values was

