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ABSTRACT

Guizani Nadra Ph.D., Purdue University, May 2020. Prediction of Disease Spread
Phenomena in Large Dynamic Topology with Application to Malware Detection in
Ad Hoc Networks. Major Professor: Arif Ghafoor.

Prediction techniques based on data are applied in a broad range of applications

such as bioinformatics, disease spread, and mobile intrusion detection, just to name

a few. With the rapid emergence of on-line technologies numerous techniques for

collecting and storing data for prediction-based analysis have been proposed in the

literature. With the growing size of global population, the spread of epidemics is

increasing at an alarming rate. Consequently, public and private health care officials

are in a dire need of developing technological solutions for managing epidemics. Most

of the existing syndromic surveillance and disease detection systems deal with a small

portion of a real dataset. From the communication network perspective, the results

reported in the literature generally deal with commonly known network topologies.

Scalability of a disease detection system is a real challenge when it comes to modeling

and predicting disease spread across a large population or large scale networks. In

this dissertation, we address this challenge by proposing a hierarchical aggregation

approach that classifies a dynamic disease spread phenomena at different scalability

levels. Specifically, we present a finite state model (SEIR-FSM) for predicting dis-

ease spread, the model manifests itself into three different levels of data aggregation

and accordingly makes prediction of disease spread at various scales. We present

experimental results of this model for different disease spread behaviors on all levels

of granularity. Subsequently, we present a mechanism for mapping the population

interaction network model to a wireless mobile network topology. The objective is to

analyze the phenomena of malware spread based on vulnerabilities. The goal is to
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develop and evaluate a wireless mobile intrusion detection system that uses a Hid-

den Markov model in connection with the FSM disease spread model (HMM-FSM).

Subsequently, we propose a software-based architecture that acts as a network func-

tion virtualization (NFV) to combat malware spread in IoT based networks. Taking

advantage of the NFV infrastructure’s potential to provide new security solutions for

IoT environments to combat malware attacks. We propose a scalable and generalized

IDS that uses a Recurrent Neural Network Long Short Term Memory (RNN-LSTM)

learning model for predicting malware attacks in a timely manner for the NFV to

deploy the appropriate countermeasures. The analysis utilizes the susceptible (S),

exposed (E), infected (I), and resistant (R) (SEIR) model to capture the dynamics of

the spread of the malware attack and subsequently provide a patching mechanism for

the network. Our analysis focuses primarily on the feasibility and the performance

evaluation of the NFV RNN-LSTM proposed model.
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1. INTRODUCTION

Throughout history there has been a number of pandemic waves that have struck the

world at large. We can go as far back as the Bubonic plague. Currently in the year

2020, we are dealing with the Novel Coronavirus (COVID-19) which has now become

a world wide concern and crisis. Before this virus came the MERS outbreak of 2012,

SARS in 2002, Swine Flu of 2009, AID epidemic in the early 1980’s, and of course

the all to infamous Spanish Flu 1918. All these epidemics have one thing in common,

the spatio-temporal network that is the human connection.

Public Health care officials are routinely faced with the challenge of finding an

effective way to predict and prevent control epidemics. When dealing with epidemics,

quickly developing effective countermeasures is crucial for saving lives. A key factor

in this decision making process is to understand the spatio-temporal dynamic of the

epidemic [1]. For pre-planning exercises, disease spread models can be developed and

analyzed. In essence, such models should capture human-to-human interaction among

population as such interaction generally serves as a medium of disease transmission.

Interaction within a population can be modeled in terms of social networks. These

models can be developed at various levels of population granularity ranging from an

individual level up to an aggregated scale representing the total population.

Modeling disease spread data on social networks does not only benefit the longevity

of the human race but also provide efficient ways to combat dangerous diseases. These

models can be utilized in multiple domains such as data spread in mobile ad hoc net-

works, power consumption spread in a power grid system, etc [2,3]. In fact, any type

of spread that can be defined within the scope of a graph network can benefit from

a network based prediction model. Computation and storage of disease spread data

for every node in a network is not scalable when it comes to dealing with very large

social networks. Also, the computation speed of prediction decreases as the number
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of nodes in the network increases. The faster the prediction data is available, the

faster the end user can employ countermeasure techniques to stall the spread of the

disease.

Likewise, epidemic models can be applied to analyze the spread behavior of viruses

in mobile networks. In these networks, each device can be represented as an agent

that communicates, either through blue-tooth or wireless connections. The main

countermeasure to combat mobile viruses in the network is by deploying software

updates/patches. The issue here is that mobile networks do not support global up-

dates, rather by sending updates in turn to specific groups and areas. Utilizing the

epidemic models to predict the spread of the virus can help efficiently deliver updates

(vaccines) to the groups with more need so that the spread is contained as efficiently

as possible. Mobile networks can also be observed at different levels of population

granularity, as discussed later in Chapter 3.

1.1 Disease Spread Models

There are three different classes of mathematical approach for modeling infectious

disease dynamics: statistical-based methods for epidemic surveillance; mathematical

state-space models; and empirical learning-based models.

1.2 Prediction Techniques

Statistical-based methods or prediction techniques (referred to as forecasting) de-

picts certain events that materialize or occur at any point in time and space. The

process of prediction (statistical inference) has been utilized in science, art, finance,

and many other fields. Prediction can be performed by any of the several statistical

inference approaches. Statistical inference deals with both descriptive prediction of a

whole data set or infers properties of an entire population through a sample data set.

Large scale social network predictive problems take advantage of both models of in-

ference. Predictive techniques such as Bayesian network, genetic, regression, Hidden
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Markov models, Neural Networks algorithms and many more are employed to solve

the corresponding problem. This research uses two of the above predictive techniques

and discuss how these techniques use disease spread model necessary for both social

and mobile networks.

Bayesian network represents the probabilistic relationships between diseases and

symptoms. Given a set of symptoms, a network can be used to compute the probabil-

ities of the presence of various diseases. The authors in [4] connect Bayesian estima-

tion to several different social network topologies in terms of learning in the network.

Initialization at each node (agent) is chosen from a Gaussian distribution [5]. The

research concludes that all the nodes converge to obtain the same conclusion without

having direct access to all private information. This process is computationally effi-

cient and depends on the size of the network being analyzed. The process preserves

the privacy of individuals while still providing the right conclusion to all nodes in the

network.

Bayesian classifier can be incorporated with many other learning algorithms. Au-

thors in [6] utilize a probabilistic neural network (PNN) to create a more efficient

Bayesian classifier through the use of a genetic algorithm. In this case the PNN does

not require large datasets or the initialization or assumption of certain smoothing

parameters. This specific research takes advantage of several prediction (learning)

techniques which include: feed-forward neural network (FFN), and support vector

machine (SVM) .

Genetic algorithms are applied to an optimization problem to generate a bet-

ter solution. Genetic algorithms are utilized for solving optimization problems that

examine network topology structures [7–9].

The successful implementation of these techniques are based on the type of net-

work which are analyzed. A substantial volume of research focuses on the infection in

a population network. Other networks that can be analyzed with these implementa-

tions are but not limited to: mobile networks, IoT networks, and data disseminated

networks.
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1.2.1 Mobile Networks

Many hardware and software mobile technology organizations have been highly

concerned with the latest increase in security attacks/breaches that can start in mobile

networks (including IoT devices) and extend to other parts of the overall global

network. It is important to note that different types of attacks that can threaten the

network at both ends. That way, it can be ensured that a virus does not evolve to be a

vulnerability for other network types/devices. During the last few years, viruses have

been compromising both the mobile network and the mobile device/agent individually.

These attacks are expected to increase with the increase of new technologies and the

increased usage of mobile devices. Accessing IoT devices over a mobile network

is another security risk that can be potentially be introduced to the overall social

network.

Throughout the last decade, mobile technologies have become more prominent in

our daily life. Daily activities such as social interactions through social media, online

shopping, and most importantly transactions of all types (rent, credit card, groceries,

food delivery, etc.) have become the social norm. Because of the increase in personal

information (name, social security number, birth dates, credit cards, etc.) being saved

on mobile technologies, such information has become an increasingly attractive target

for online criminals. As a result, hackers are investing in devising more sophisticated

attacks that are effective in stealing valuable personal data, and causing disruptions

of server, and network functions. In 2016, the mobile threat reported that Android

apps containing malware to be three times as many as those that occurred in 2013

and 2014 combined, an increase of 230%. In recent years vulnerabilities on the iOS

platform have accounted for the greatest number of mobile vulnerabilities, which is

due to the ability to jail-break iPhones thus making it more vulnerable to malware

attacks. Also cross over threats have increased drastically given that mobile and web

applications are being linked more regularly [10, 11].
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From the statistics listed above, this dissertation investigates the development of

classification models that predict threats of virus attacks in mobile networks. We use

the theory behind epidemic spread models in terms of finite state machine (FSM) im-

plementation on complex networks. This theory can be applied to effectively analyze

the issue of information dissemination or virus spread in mobile networks. Mobile

human networks (i.e., ad hoc networks composed by devices carried by individuals)

can be frequently and temporarily disconnected imitating a behavioral FSM. Figure

3.2 shows an example of a finite state machine for a mobile agent connected to a

spatio-temporal network. Spatio-temporal networks are usually seen in terms of the

movement of people. The mobile agent in this case is synonymous with a person

agent; having the same characteristics of daily movements.

The FSM model would take into consideration the prediction of mobile agents at

different points of time in the day, week, or year. At what points in time does a mobile

agent become a susceptible agent versus a host agent in terms of different viruses?

These predictions provide software stakeholders access to deploy network or mobile

updates to the right locations. Creating a more optimized spread of ”vaccination”

for mobile agents/network. These predictions also provide different stakeholders with

statistical information for future research and mobile updates, and network updates

(hardware and software). Prediction techniques can be developed through several

learning models. They can utilize neural networks, genetic algorithms, Bayesian net-

works, etc. In this research work, we apply a customized Hidden Markov Model

(HMM) to categorize and predict different mobile nodes in a network to their be-

havioral states. Several categories/classes are developed and estimated using the

Baum-Wells estimation maximization technique. The training technique that is de-

veloped is generalized to create any HMM-FSM category whether it be for human

based diseases or mobile based software viruses. These categories can be added to

the preexisting model. HMM is used in particular with networks where the desired

nodes’ characteristic output can only be observed through one or more hidden pro-



6

cesses. The characteristics seen do not directly provide the necessary information

that the stakeholder requires.

1.3 Malware in IoT

IoT devices are becoming the new norm in our daily life. IoT technology provides

solutions to creating a smarter environment that saves time, reduces energy consump-

tion and reduces cost, to name a few. The number of devices connected to emerging

IoT applications and infrastructure are expected to reach 50 billion by 2020 [12], giv-

ing rise to an enormous amount of valuable data. IoT devices are used across various

sectors including ehealth, smart homes and intelligent transportation, for instance.

From wearable diabetes machines to the Amazon Alexa, these devices are becoming

embedded in the fabric of society. The integration of IoT technology with the network

poses enormous security challenges and creates a path in which malicious users can

get access to, manipulate, and/or utilize personal and highly classified information.

Due to the increased usage of IoT devices, IoT systems have become a main

resource for collecting various types of data such as personal, marketing, and admin-

istrative data [13]. IoT networking technologies use a multitude of protocols for data

communication and network connectivity. IoT devices can utilize a variety of sen-

sors. Each sensor within an IoT device can utilize different data and communication

protocols as shown in Figure 1.1. Protocols within one device are used for interac-

tion between: device to device (D2D), device to server (D2S), and server to server

(S2S). In addition to the protocols listed above, Table 1.1 lists several protocols that

handle connectivity, data management and communication of IoT devices that must

be taken into consideration when gathering or analyzing network traffic data. Each

protocol generally uses a different mechanism for processing traffic data dependant

on the computing available framework. Computing frameworks include but are not

limited to: Fog computing, Edge Computing, Cloud Computing, and Distributed

Computing [14].



7

Table 1.1: List of IoT Protocols.

Communications Data Transfer Connectivity

Constrained Application Protocol (CoAP) SSI IPv6

Datagram Transport Layer Security (DTLS) Websocket LPWAN

MQ Telemetry Transport (MQTT) SMCP Zigbee

Time Synchronized Mesh Protocol (TSMP) XMPP-IoT Bluetooth Low Energy

Advanced Message Queuing Protocol (AMQ) DDS Z-Wave

Virtualization forms the basis of cloud computing technologies, offering on-demand

access to different applications and services by sharing a pool of configurable resources

(e.g., networks, servers, and storage). Due to the growing size of IoT networks and the

increased data intake that comes with it, a Network Function Virtualization (NFV)

system offers the best security solution in terms of combating complexity and creating

efficient attack prediction models to process and patch malware attacks [15, 16]. 5G

has been the leading communication network for supporting NFV applications [17,18].

Lightweight virtualization has been implemented for security frameworks focusing on

the quality of service performance of IoT edge node devices [19] and the efficiency of

Security-as-a-Service features for IoT edge devices [20, 21].

Analysis of IoT data poses an important data science question: what is the best

data model that can be efficiently processed by an IDS in terms of detecting attack

patterns? To analyze and mine such data, efficient and scalable machine learning al-

gorithms are needed. These algorithms must be capable to analyze data for different

protocols employed by the IoT framework. In the literature, prominent prediction

techniques are classified in two categories: statistical and machine learning. Sta-

tistical techniques such as linear regression and Bayesian estimation concentrate on

models in terms of their interpretability, precision and uncertainty. The second cat-

egory includes machine learning (ML) techniques such as neural networks and fuzzy

systems. These techniques focus on large scale applications and prediction accu-
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Fig. 1.1.: IoT Architecture [22,23].
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racy [24]. Machine learning algorithms have become the go-to analysis techniques to

create better marketing strategies for a business or combat malicious users in high

traffic networks. Recently, neural networks have become widely popular due to the

easy access to processing power needed to analyze large data sets [25, 26]. The in-

creased access to larger data sets is crucial for the prediction accuracy. Accuracy in

prediction is dependant on the type of the neural network used to analyze a specific

data set. Image processing, signal processing, and time series estimation applications

use a specific type of neural network. As we focus on IoT network security challenges,

we propose to use a recurrent neural network time-based formalism. An advantage

of neural network and deep learning is to add new features to an already trained

model without considerable modifications. Such extensibility helps expand the scope

of viruses and malware detected by the model [27]. Specifically, the RNN model

has shown to perform superior to other deep learning algorithms when dealing with

time-based data sets.

Due to the dense connectivity among IoT devices and with the internet, authors

in [28] categorize IoT vulnerabilities based threats into four groups: (1) Denial of

Service (DoS) attacks which deny users access to their resources by injecting useless

traffic through a network device; (2) Malware attacks that use code injected into

the device to access and obtain sensitive information of the user and the system;

(3) Data breaches are spoof packets that can retrieve confidential information and

communication among users; and (4) Weakening Perimeters in IoT devices which

make it easier to breach the security of the network. Different security issues hold

higher priority due to the vast range of communication protocols applied to different

IoT devices. These threats can be detected by analyzing the network data traffic.

Different threats can be associated with different part of the network traffic. Misuse

and anomaly intrusion patterns are the generalized versions of threat when analyzing

data packets. Misuse intrusion detection is defined as traffic patterns that resemble

an intruder’s traffic, used in detecting known threats. Anomaly intrusion detection

identifies unusual change in traffic patterns as an intrusion. Anomaly is used to find
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or compose a set of threats that might be new to the system. When analyzing a new

system/network, the use of both techniques is important. Using anomaly detection

is necessary to keep threats up to date and the misuse technique is to detect known

threats.

1.4 Challenges

The challenges that will be addressed in this dissertation work are:

1. Analysis of epidemiological spread parameters when predicted on differnt levels

of data aggregation. For example, the higher global population data aggregation

versus the agent-based (tuple) level.

2. Implementation of these epidemiological models to mobile and IoT networks at

different levels of data aggregation.

3. Comparison of parameter prediction of the middle layer (state based) to the

global population to identify the importance of the spatial aspect of the popu-

lation definition in different types of social networks.

4. Development of real time intrusion detection system (IDS) for detection and

response/recovery of virus spread in mobile ad hoc and IoT Networks.

5. Analysis and comparison of different machine learning algorithms (HMM and

Neural Networks) to best develop a real time IDS.

1.5 Organization

This dissertation attempts to answer the challenges listed above through discussion

in each chapter. This dissertation covers the following topics: A dynamic system

model for a dynamic network that can be generalized to encompass/define different

types of information dissemination. The system model includes different levels of

an aggregated spatio-temporal social network. Experiments on the dynamic network
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is on population networks and mobile ad hoc networks in terms of prediction of

disease/virus spread. Chapter 2 delves into the literature that has contributed to

topics introduced in Chapter 1. Chapter 3 details the different components of the

system model and their connection to each other, discussing the dynamic network

model developed to apply a probabilistic SEIR disease spread model to a spatio-

temporal population network. It continues to further test these models on different

aggregated levels of a population dataset. Chapter 4 examines the similarities between

a mobile ad hoc network (MANET) and a population based network. We explore the

classification of mobiles in terms of their threat in contracting a virus. Introduces the

IDS that is developed and tested in Chapter 5. Chapter 5 introduces and connects an

NFV based IDS to an RNN prediction model that is utilized in malware prediction

for IoT networks. Answering the challenges 4 and 5. Chapter 6 lists what research

tasks will be pursued to continue developing components of the NFV architecture

to create an efficient patching malware system for all types of node structure in the

network.
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2. RELATED WORK

2.1 Disease Spread Models

The effect of network structure with respect to epidemic spread models has been

investigated in a variety of ways. Authors in [29] implement these models to analyze

and predict viral marketing problems. Concentration has been on analyzing the

different network’s characteristics (tested 35 different network structures) and the

infection seeding strategy (initial infection) of each network. Characteristics of the

network were used to analyze as to which one had the most impact on diffusion.

The authors have concluded that the size of the network does not have an impact on

the diffusion of the disease. Previous research on network characteristics generally

focus on network size. The authors in [29] concluded that other researchers should

provide other characteristics of network. Average node degree and number of network

edges are characteristics that effect the network topology of disease spread in terms

of direction and speed of the spread.

SIR model is utilized in [30] to study the effects of clustering on network structures.

Clustering is defined as the density within the connection of the network which the

authors defined as community structures. Areas of high density with strong connec-

tions between nodes creates a strong community structures making the connections

among communities weak. If the density of a network is high in a certain area, the

connections within that area are stronger than the nodes of the outer laying areas.

This density factor is taken into consideration in terms of rate and time of spread

when introducing the SIR model. Infection factors are computed with dependence

on the interconnections of the community structures. The authors in [30] present

an important conclusion, the higher the community structure strength, the lower

the number of people that can get infected. Other factors that have an effect on
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the network is the seeding strategy. If the initial infection is all in one community

structure, then the disease has a higher probability of being contained within that

community (since relationships across communities are weak). Another important

conclusion; is that the larger the initial infection, the earlier the peak of infection.

Which makes it easier for stakeholders to draw conclusions by just concentrating on

the very beginning of the infection [31].

The authors in [32] present a variety of methods to ascertain an approximation of

any given network, connecting network theory with epidemiological theory. Utilizing

methods such as contact or infection tracing to predict the shape and size of the

network. In contact tracing only a partial piece of the network is identified since only

the neighbors of the infected individual are sought out. But this can be helpful to

identify the areas in the network with the highest disease spread. On the other hand,

infection tracing uses the initial point of infection to trace the network. This can give

more information about partial identification of the network, and can only be used

when the initial point of infection is known. The authors also reviewed six computer

generated networks and how disease spread is characterized within each network.

Subsequently, they have compared their results to the random-mixing model. All

networks show a lower initial disease growth than the random-mixing model. The

reason is that random networks are characterized by a lack of clustering causing a

low early growth rate and low final epidemic size. Lattice networks are generated as

a Cartesian product of a complete network graph. That is why lattice networks have

high spatial clustering causing them to have a local rapid spread and distribution

of infection size mimicking a power law distribution. Scale-free networks have a

similar characterization as the lattice networks. An emergent network generated from

partnership models can be used to test which network properties, such as number

of partnerships, concurrent relationships or network positions, are epidemiologically

important [32].
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2.2 Network Topology

Authors in [33] take the position of exploring the effect of the Agent Based (AB)

and Global Population (GP) models on different types of network structures/topologies.

These two models can be applied on different types of social structures. The spread

of epidemic as well as the spread of computer viruses is dependent on the underlying

network topology. Considering five different network structures, the authors simu-

lated the GP model and compared it to the AB model. The closeness of the GP

model to the AB model is measured by a confidence interval percentage. For all the

networks simulated, a classic diffusion model (spread initially increases at a high rate

and then gradually declines as the time passes) for epidemic spread was used.

In a fully connected network, an infected node can contact every other node in the

network minimizing the contact overlap giving the fastest initial growth of a disease.

The GP model compares perfectly to the AB simulation due to the fact that, with

low clustering, this network experiences the fastest initial disease growth but does

not experience early disease burn out staying within the 75 % confidence interval.

The lattice network has maximal clustering (all agents have neighbors), which

means that the infected agents repeatedly contact the same agents. After these

neighbors are infected, the chance of contacting a susceptible agent declines. Clus-

tering makes it highly unlikely to generate new cases of infected agents. So for the

lattice, the epidemic die-out is slightly faster than that of fully connected or random

network. Since the latter two go through infecting the whole network whereas the

former only spreads to the closest of neighbors.

In a scale free network, one can see a change between the AB and GP models when

the disease spread enters a hub of connected nodes. All metrics (diffusion fraction,

peak time, and peak prevalence) essentially remain within the 75 percent confidence

interval very similar to the random and fully connected graphs. But slightly higher,

for the AB simulation for which it is 95 percent. The major difference observed is

that in a homogeneous case, the diffusion rate begins at a slow pace as compared to
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the GP model whereas in the heterogeneous case, the rate is faster. This is due to

the well connected nodes in the heterogeneous case.

A Small World network is where most nodes are not neighbors of one another,

rather nodes can be reached from every other node by a small number of hops. In the

Small World network, diffusion is even slower than all the previous networks. This

is due to the fact that clustering in such networks is significantly higher than the

other networks. This only effects the peak time of infection which reduces it slightly

in comparison with the GP model. The lattice network also exudes a slow diffusion

compared to the GP model. This results in very early burn out rate for the epidemic.

In general, the higher the clustering of a network the earlier the burn out of the

spread. Otherwise, there are only a few differences that can be observed among

the networks when simulating GP and AB models. The major contributor of the

difference in metrics is the high or low clustering of nodes. The heterogeneity and

main structure of the network do not have a great impact on the behaviour of the

disease spread phenomena.

2.3 Intrusion Detection System (IDS)

Prediction of disease or virus spread in many technology sectors has become a

major part of the machine learning research community. Phone and application based

companies like Apple, Google, and PayPal face growing security challenges as mobile

technologies proliferate. Government entities such as the FCC and others have become

weary of dealing with fraudulent cases due to security flaws in applications that house

private personal data. Developing threat prediction techniques for networks whether

social (for disease spread such as the flu) or mobile (for effectively disseminating

updates to avoid security threats) has become an very important research challenge.

Further extending this concept towards developing secure networks in IoTs is essential

if IoT technology needs to be widely deployed.
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A myriad of models exist to detect various attacks mentioned above. Authors

in [34] employed a mixture of fuzzy classifier with a genetic attribute selection method

to detect cyber attacks for wireless mobile networks. Experimentation to test the

fuzzy genetic classifier was performed on the KDD Cup dataset.Researchers have

developed a two way mapping technique to classify 25 types of malware families.

Support Vector Machines are used to train the classes in the data set used in [35].

Authors in [36] use machine learning to detect the performance differences in Android

applications without the need to run the application itself. This can help with the

detection of malicious Android applications.

Many researchers have developed models for intrusion detection system (IDS)

to detect anomalous behavior in the network. These systems are constructed and

deployed at different points of the network. Different characteristics of the network are

used to detect misuse attacks such as, buffer overflow, packet exchange, or application

system calls. Many researchers prefer to use a probabilistic modeling technique since

a users’ behavior is non-deterministic. The techniques proposed in this dissertation

fall into this category.

In [37], researchers use Hidden Markov Model (HMM) to detect whether TCP

network traffic is malicious or normal using the KDD Cup 1999 dataset. The model

concentrates on five specific TCP sessions. Authors in [38] use HMM to detect ab-

normal behavior pattern by analyzing log information. The agents in the mobile

network are used as part of the IDS to help mitigate the network intrusions. In [39],

researchers apply HMM to develop an IDS for network sensors. They run a small case

study to test their algorithm. Authors in [40] create an IDS through the development

of a discrete HMM to discover the type of intrusion attack. Their proposed HMM

utilizes IP sweeping and use the IP’s attributes as the corresponding observation.

One of the key attributes is the CVSS score for each attack. This limits the data

set for their model. HMM modeling is also used for mobile networks for predicting

energy level [41], and combining prevention and authentication techniques [42].
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The detection and modeling systems for all the previous research focus on specific

attacks and for specific computer network topologies. The test dataset for these

systems are limited to small or specific case studies. Our proposed prediction model

is general and is applicable to any type of attack. For this purpose is an observable

sequence and corresponding hidden states are given to the system to develop the

required prediction model. In addition, we not only classify on one HMM class but

several classes can be trained and tested.

2.3.1 Hidden Markov Model De�nition

There are two stochastic processes of HMM states, observable and hidden states.

Observable states are the data points that are given/known to the user. Observable

states are usually defined from the characteristics of the node in the network. For

example in a social network the node can be a person, with associated demographic

and spatio-temporal characteristics. The hidden states are states that cannot be

deduced directly. The connection between the observable and hidden is what dictates

the hidden state outputs. Considering the same example of a population network,

the hidden states would correspond to a disease spread state.

HMMs are used to answer one of three problems: [43]:

1. Given an observation sequence (O = O1O2::::OT ) and a model � = fA;B; �g,

compute the probability of the observation sequence for the given model �.

2. Given an observation sequence (O = O1O2::::OT ) and a model � = fA;B; �g,

how can a hidden state sequence (Q = q1q2:::qT ) be chosen.

3. Adjust the model � = fA;B; �g to optimize and maximize the probability of

the observation sequence [P (Oj�)] given the model �.

The general definition of the HMM and the parameters for the proposed model

� = fA;B; �g are listed below. These definitions results in the implementation of the

model designed for the mobile network.
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� S is the set of hidden states S = s1; s2; :::; sN)that a mobile node can transition

through. In the proposed model there are four states (N = 4).

� O is the set of observable states (O = O1O2::::OT ) that are the known attributes

of each mobile node. T is the end of the observable stream of data for each

mobile network

� A is the transition probability matrix that connects the hidden states of set S

to each other. A is given by the equation below:

A = faijg = P [qt+1 = Sijqt = Sj] (2.1)

where qt is the actual state at time t

� B is an observation probability matrix that connects the observable states O to

the hidden states S.

B = bj(k) = P [vkattjqt = Sj] (2.2)

Where vk is the observable state at time t.

� � is the initial distribution vector illustrating the probability of the mobile node

initially for each hidden state. Is given as:

�i = P [q1 = Sj] (2.3)

2.4 Mobile Viruses

The number of mobile phone users has grown from 38% in 2014 to 50 % in 2018.

It is expected to reach 67 % by the end of 2019. The benefits of mobile technologies

are ever growing and they come with a plethora of security threats that are evolving

and causing interceptions, alterations and disruptions [44].

Mobile viruses over the last ten years have increased with the advancement of

technology and interdependence of multiple technologies, such as bluetooth, WiFi,

4G/LTE, etc.
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Viruses can get unauthorized access in terms of different methods and intents.

In earlier years, these viruses had limited access points. Now with the growing app

development, world mobile viruses come in many shapes and sizes. Hackers are using

advertising click fraud. Advertisement fraud is one of the most profitable criminal

enterprises. Trojan apps have been developed to steal private credentials and pass-

words for other services, including email; intercept and send messages to infiltrate

the owner’s contact list.

Since ad hoc networks generally do not have a centralized access point they can

be vulnerable. Ad hoc networks are defined as peer-to-peer networks among wireless

devices that do not have an access point among them [45]. Due to the decentralized

nature of the ad hoc networks Denial of Service (DoS) attacks are easily accomplished

by utilizing off-the-shelf equipment. Two things can be accomplished through a DoS

attack. First, the sender’s transmissions are deferred because the medium is sensed

as busy. Second, the receiver’s reception is interfered with due to jamming signals.

Both of these effects degrade the MANETs network performance significantly.

Mobile viruses can be categorized to three security goals: confidentiality, integrity,

and availability. For confidentiality, examples include information theft, bluebugging,

and bluesnarfing. In bluebugging a mobile agent becomes a bugging device. Blues-

narfing lets attackers connect without alerting the owner giving them access to phone

book entries, calendars, and even the phone’s International Mobile Equipment Iden-

tity. Another confidentiality issue that MANETs face is Trojan Apps. This threat has

have become wide spread and focuses on stealing banking credentials and passwords

for other services such as emails and SMS transations. Integrity comprises of hijack-

ing mobile devices, which includes making phone calls or sending expensive texts.

Availability is comprised as a result of Denial of Service attacks (DoS), or draining

the battery power. Due to decentralized nature of MANETs, there are many access

points in the network that can be used as vulnerable points [46]. DoS attacks can be

easily caused by using off-the-shelf equipment [45]. A DoS attack can defer a sender’s

transmission because the connection is sensed to be busy, due to a jamming signal
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at the receiver’s end. This degrades the MANETs network performance significantly.

Another recently popular availability virus is Crypto-mining which is code disguised

as battery saving utilities. This virus can also be embedded in gaming application

software and sent as an update to the application. The code can deplete the battery

power to mine cryptocurrency.

2.5 Machine Learning and Malware Spread

Previous literature has suggested multiple ways to use machine learning technolo-

gies to accurately predict malware and intrusion attacks in the network. Different ML

algorithms have been tested and results have been reported in the literature based on

the data sets used for experimentation including Android, MANET, and IoT network

traffic.

Authors in [47] investigate IoT malware based on OpCode sequences using a long-

short term memory (LSTM) structure. Their detection accuracy is 98%. However,

this experiment uses a very small ARM-based data set. Authors in [24] estimate the

stability of paths in MANETs utilizing the Recurrent Neural Network model. Path

stability prediction effectively improves routing in MANETs. The experimentation

in [24] is to find the most optimal structure for RNN and it is achieved when there

are 5 to 10 hidden layer nodes and input nodes.

Alam et al. [48] consider eight well-known data mining algorithms, SVM, KNN,

and ANN, just to name a few. Different performance evaluation benchmarks such as

processing time and computational requirements are utilized to determine the best

algorithm. Several experimental tests have been applied on these data sets. They

show that artificial neural network (ANN) and deep learning artificial neural network

(DLANN) algorithms performed far better than SVM, KNN, NB and LDA. The

researchers conclude that a DLANN algorithm provides the best accuracy. Careful

consideration should be given to computational requirements and processing time,
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when the goal is to capture hidden knowledge of the IoT device in terms of a real-

time scenario [49].

In the last few years, researchers have investigated attacks launched against IoT

gateways. IoT gateways are used to aggregate and communicate data from IoT de-

vices to their corresponding servers for data processing. Due to the fact that IoT

gateways are usually the connection between the actual device and the internet, they

are vulnerable to a plethora of attacks (IP, wireless sensors, network), Denial-of-

Service, and Denial-of-Sleep, just to name a few [50, 51]. Authors in [52] propose

a sliding window bound mechanism to analyze the packet data through a dense re-

current neural network (DRNN). The DRNN can detect an ongoing attack based on

packet information that is presented through the sliding window on a synthesized

data set.

Authors in [53] investigate the effectiveness of deep neural networks in terms of the

classification of malware in Android applications. They have proposed a sequential

convolution neural network (CNN) and compared it to an LSTM and other deep

neural network algorithms. They have categorized 8 different malware groups and

used a data set of 1016 unique Android APK files. This resulted in a high accuracy

for malware detection but a low accuracy for the classification of the malware group.

They also have experimented with API sequence length and size of training set to

show the change in accuracy of the different MLs. A similar approach has also been

proposed by authors in [54,55]

Nauman et al. [56] apply several deep learning models and compare these with

the Bayesian machine learning model to predict Android malware. They utilize the

DESTN data set to run their experiments. Their main conclusion is that different data

set sizes provide different accuracy results for the many algorithms tested. Therefore,

one can choose the corresponding machine learning algorithm that administers the

greatest accuracy.

Authors in [57] address the challenge of identifying if an Android sample is ma-

licious or legitimate. Through the design of a convolutional neural network, they
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experiment on a real-world data set. The accuracy of their test data was in the 75-

80% range. Due to their real world sampling, we consider the accuracy produced in

their experimentation as a comparison to the experimentation documented in this

Chapter.

There is considerable research that connects wireless networks and mobile cloud

architecture to service-based architecture [58–61]. However, additional research is

needed in terms of connecting the Network Functional Virtualization (NFV) service-

based architecture to IoT devices. NFV is a network architecture that creates com-

munication services by building virtual blocks to connect network nodes functions.

In general, the 5G network is an important technology for the communication com-

munity. So, the usage of IoT devices as stated above is increasing exponentially and

security risks are increasing with it. As stated in [62], there is a considerable research

need to connect service based network to the communication technology of IoT de-

vices. The research introduces one way of developing that into the IoT infrastructure.

Globally, there is a growing use of mobile components and with that we observe

a rise in malware and intrusion to gain access to sensitive information. Exploring

previous work gives an insight to numerous challenges that need to be investigated.

The first being that the previous work is mostly focused on developing and tweaking

algorithms for a specific data set. In many cases, the data sets that are utilized are

small. Based on the literature surveyed, we chose to incorporate a RNN-LSTM due

to the time sequence dependencies of the threats in IoT network data traffic.
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3. AGGREGATED POPULATION MODEL FOR

EPIDEMIC SPREAD

The system model we propose is composed of three blocks designated for different

stakeholder needs. Each block is connected to the other in terms of how the prediction

model is utilized. The full system model is shown in Figure 3.1.

The Semantic Events block is split into two categories counting based events

and complex spatio-temporal events described below:

� Counting based events are predicted at each aggregated level to analyze

the effects of the spatial component of prediction. The spatial component is

diminished as the aggregation gets coarse. Analyzing certain effects due to

aggregation are listed in Challenges 3 and 4 in Section 1.4.

� Complex Spatio-temporal Events are detected in the AB model level of

aggregation, utilizing either Hidden Markov model (HMM) or the Petri Net

graph model. In case HMM, each agent is classified into a specific state (pre-

estimated from historical disease data). As for the Petri Net Model overall

Fig. 3.1.: Aggregated Model System Architecture.
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spatio-temporal events are detected. For example, direction of disease, emerging

disease, disease decline, etc.

The Access Control block is what motivates the three-level aggregation block.

Different stake holders of the system have different levels of access to the proposed

system, creating a prediction model for semantic events that appear at all access

control levels.

3.1 Three Layer Aggregation Model

The Three Layer Model is an aggregated structure of the population social

interaction graph model. Aggregation a solution is computationally intensive. The

three level aggregation model takes care of counting-based semantic events within a

specified window of percentage accuracy.

3.1.1 Agent Based Model

Agent Based (AB) modeling has been applied to many different fields, such

as traffic analysis, social networking, and economical studies, just to name a few

[63,64]. Two types of modeling approaches have been used in previous research work;

individual-based model and computational epidemiology model. The AB model al-

lows spatial and temporal aspects of an epidemic visually. A major shortfall of AB

model is that it can computationally intensive for graph driven analysis. Due to this,

alternate models are presented in terms of granularity thus reducing the computa-

tional cost of the simulation.

The AB model can be used to simulate the disease spread. Using Figure 3.2 as

a reference to the states, each agent can reside in a state with specific rules that

are assigned for the agents to traverse from one state to the next. In our social

network structure, population is divided in terms of three daily activities (home,

work, transportation). Home activity refers to an agent being at their home and can
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only interact with agents assigned to the same location (home). The transportation

activity refers to an agent being on public transport and interacting with agents that

are assigned the same bus. During the work activity, an agent is at its work location

and can only interact with agents in the same location and at the same time. Each

activity has a corresponding disease spread rule associated with it. Therefore, agents

in different activities have different thresholds for transitioning from state S to state

I.

The parameters used in such a model are shown in Tables 3.1 and 3.2. The

contact rate is the probability that an individual agent comes in contact with another

individual agent. The contact rate of agents is based on which activity they are in

and each state of the two connected agents. A susceptible agent can be infected

by either an exposed or infected agent. cES is the contact rate between an exposed

and susceptible agents. cIS is the contact rate between infected and susceptible

agents. The same subscripts are also used for the infection rate. The infection rate

is the probability that an individual is infected based on the activity and state of the

other individuals. The heterogeneity factor which is defined as the strength of the

interaction link between two agents is listed in Table 3.2. Each activity has a duration

which has a uniform distribution. In addition, each agent is randomly assigned a

heterogeneity factor from the given uniform distribution. A quick observation of

Table 3.2 shows that the home activity has a lower factor than the transportation

activity. This is because the close proximity of agents in transportation requires

a higher heterogeneity factor. The infection rate, contact rates, and heterogeneity

factors are all part of the infection rate equation that directs the transition of the

agent from a susceptible state to an exposed state.

Fig. 3.2.: SEIR Finite State Model.
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Table 3.1: Contact Rate for Proposed SEIR Model.

Contact Rate cES cIS

Home 4 1.50

Work 5 1.00

Transport 3 2.00

Infection Rate iES iIS

All Activities .05 .06

Table 3.2: Heterogeneity Factor of the Proposed SEIR Model.

Heterogeneity Factor �

Home U[0.25-1.00]

Work U[0.05-0.25]

Transportation U[1.00-1.50]

3.1.2 Spatial Based Model

The Spatial Based (SB) model can be viewed as an aggregated version of the AB

model. The SB model divides the population spatially in a grid like structure. Ma-

ciejewski’s et al. work creates the SB model to analyze the effect of decision measures

when implemented for different infectious disease scenarios in Indiana counties [65].

The SB model is unique because it takes into account the distance factor between

spatial grids in order to analyze spread of disease in terms of speed and direction.

Since the SB model is developed by aggregating the AB model, its contact rates are

computed in terms of grouping some of the parameters of the AB model such as

age [65]. Each activity in every county has its own infection spread rate (iu;a;t) taking

the AB model’s total transmission rate equation discussed in the previous section into

account:
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iu;a;t = pu � �u; a � !a: (3.1)

where !a is the proportion of the population in a target activity (a). �u;a is where

the AB model comes into play. �u;a is the disease rate modifier for activity (a) in a

specified area (u) such as a county or town. It is be derived from equation 3.9.

�u;a = p(xuj�) =

puX
i=1

hu;ag(xij�u;aΣu;a) (3.2)

The summation is over the population of a specific area (u) in a specific activity

(a), with the Gaussian distribution being in terms of the activity and area identified.

hi is the heterogeneous factor of the specific area and activity. pu is the number of

individuals in that specific area.

3.1.3 Global Population Model

The Global Population (GP) model is a course granularity of the population.

The GP model is a generalized version of the AB model that provides more efficient

prediction strategy as the GP model takes into account only the infection rate and the

contact rate of individuals. It does not take into account any attributes or network

structure between individuals [66].

The rate equations for an SIR GP Model can be represented as:

ds

dt
= �bs(t)i(t) (3.3)

di

dt
= bs(t)i(t)� ki(t) (3.4)

dr

dt
= ki(t) (3.5)

where b = S
N
� is aggregated number of new infected cases.

Taking into account all activities and weighted heterogeneous factor calculating

through the following equations:
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sn = sn�1 � bsn�1(in�1 + en�1)∆t (3.6)

in = in�1 + ("en�1 � �in�1)∆t (3.7)

rn = rn�1 + �in�1∆t (3.8)

Through the above equations, it can be determined that the AB level model can

be abstracted into a SB level model which can be further condensed into the GP

level model. Each AB, SB, and GP model can be presented as a distinct finite state

machine (FSM) behavioral model as shown in Figure 3.3.
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Fig. 3.3.: Aggregated Levels of the Socio-Temporal Network in terms of SEIR-FSM.
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3.2 Disease Spread Model Simulation

Mapping disease spread models on network topology has been investigated thor-

oughly in the literature. But none of this work has dealt with spatio-temporal net-

works (dynamic networks). For dynamic networks, disease spread models need to be

redefined by taking into account the variability in these networks. Creating these

redefined disease spread models provides health care stakeholders with a better un-

derstanding of how to predict the spread of disease.

Disease spread models are simulated to depict the effect of epidemic under various

epidemiological rules. As shown in Figure 3.2, an SEIR/SIR model is represented as

a four stage finite state model (FSM) for each individual (represented as an agent) in

a general population. In the susceptible state (S ), an agent is prone to get infected at

any point in time dependent on the spread rules and network dynamic. The second

state, exposed state (E ), depicts an individual who does not show any symptom of

the disease but can infect others. The third state is the infection state (I ). After

a specified time period, an individual recovering from the infection enters into the

recovered state (R). The transition from the I to the R state depends on a combination

of time passed since exposure and the number of agents connected/intersected to that

specific individual.

The SEIR model can be further classified into probabilistic and deterministic

spread models. In a deterministic model, each individual/agent traverses one state to

the next in a fixed amount of residency time when all infection criteria are met. The

probabilistic models have been developed to more accurately capture the dynamic

aspects of an epidemic. In these models, the residency time of each state follows a

probabilistic distribution providing a more realistic disease spread model. The main

objective of both deterministic and probabilistic SEIR models is to analyze various

decision making choices based on the behavior of the disease that encapsulates numer-

ous factors: the maximum infected population, the peak time of the disease, and the

final percentage of the infected population [67]. Such analysis provides stakeholders
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with a better understanding on how different network structures behave in terms of

network connectivity.

The existing disease spread models such Susceptible-Exposed-Infected-Recovered

(SEIR) are subsequently incorporated with the social network model to analyze the

dynamics of the epidemic under various context. The same models can be used to

analyze spread of viruses in communication networks.

The objective here is to present an agent-based spatio-temporal statistical epi-

demic model (graph data model) depicting interactions among a large scale popula-

tion. To model this interaction, a unified SEIR model has been developed.

3.3 Developed SEIR-FSM AB Model

In the dynamic social network structure being simulated, an agent has four paths

to transfer from the susceptible to the exposed state. A unified SEIR-FSM is devel-

oped to take into account an activity based social network. The transmission rate

(�) of an agent from the S state to the E state is calculated through a cumulative

equation of exposed and infected contacts. First, a Gaussian Mixture Model (GMM)

is utilized below to create one unified path from the S state to the E state.

p(xj�) =
MX
i=1

!ig(xj�i;Σi) (3.9)

The summation equation shows the probability of infection due a number of different

activities. M is the number of activities within one process. In our case, there are

four activities: home, transportation to work, work place, and transportation towards

home. In the AB model, weights for each activity are specific to each individual.

Weights can also be dependent on the heterogeneity factor of the given network

graph.

Once each agent’s probability is calculated through equation 3.9 , then � can be

calculated as follows:

� = �j[iESEc + iISIc] (3.10)
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Where Ei is a random variable that follows a Poisson distribution with rate �i. Let

Ei1; Ei2; :::; Ein be the number of contacts in state E of activity i per susceptible

individual. Ec is the sum of the Ei random variables. Ii is a random variable that

follows a Poisson distribution with rate �i. Let Ii1; Ii2; :::; Iin be the number of contacts

in I state of activity i per susceptible individual. Ic is the sum of the Ii random

variables. The transmission rate (beta) of an individual is then calculated as shown

in equation 3.10. This differs from the GP model with respect to the heterogeneity

factor (�j) for the transmission rate. In the proposed unified SEIR, the transmission

rate has to take into account the heterogeneity based on the different activities of the

social network. The GP transmission rate contains one uniform distribution among

the entire population for the heterogeneity factor. Since the social network changes

in time and the contact rate changes due to the heterogeneity factor the GP model

does not show these nuanced network characteristics. Note given Ic; Ec; and�j; � can

be calculated as:

E and I are the number of exposed and infected individuals, respectively. Then

parameters are calculated using a Poisson distribution. �i is the heterogeneity factor

for each activity as listed in Table 3.2.

3.4 Experimentation and Results for a Synthesized Population

In general, the higher the clustering of a network, the earlier the burn out of the

spread. Otherwise, there are few differences that can be concluded in the networks

when checking at GP and AB model simulations. The major contributor of the

difference in metrics is the high or low clustering of nodes. The heterogeneity and

main structure of the network do not have a great impact on the outputs of the

disease spread.

The AB Model has exact data analysis of all states in any SEIR model that is

implemented. The one drawback is that it is computationally intensive. This can

hinder the effect of decisions when time is a crucial factor.
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As mentioned earlier, the drawback of the SB Model is that the granularity be-

comes coarser making specific disease queries unattainable. Specifically, the activity

based queries that are important in a spatio-temporal graph model. The SB model

instead uses spatial distance between counties and does not focus on the individuals’

day-to-day activities.

The GP models’ lack of granular information is the hindering factor to produce

specific output. Certain healthcare decisions can not be made based on specific char-

acteristics of the population. Since the GP equations focus on the overall counting-

based semantic events.

Table 3.3: Estimated Disease Parameters (b, k).

I0 b k

Scenario 1 600 1.24 0.24

Scenario 2 153 0.848 0.099

Scenario 3 146 5.8e-07 9.79e-04

Using the AB model simulation data discussed in section 3.1.1 and the GP equa-

tions mentioned in section 3.1.3, we analyzed the data from both AB and GP per-

spectives. The data is from a synthesized population data set developed in [68]. In

Figures 3.8 and 3.9 it is seen that the GP model data has a more gradual increase in

the infection of individuals and peak infection time is a week later than the AB mod-

els’ peek infection time. This corresponds to the susceptible graph shown in Figure

3.8 where the rate of decrease in the GP model is smaller than that of the AB model.

These results are just a preliminary analysis of the GP model approximation using

the Eulers’ method of an SEIR model.

The experiments were run on three different scenarios. Scenario 1 implements

the disease spread when the initial infection (I0) = 600, transmission rate (b) = 1.24

and (k) = 0.24. Scenario 2 applies the paramteres listed in Table 3.3 to convey the

disease spread of a more densely interconnected network. Scenario 3 represents the
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Fig. 3.4.: Number of Individuals in state I in Scenario 1(GP Model vs AB Model).
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Fig. 3.5.: Number of Individuals in state S in Scenario 1(GP Model vs AB Model).




