BAYESIAN-BASED MULTI-OBJECTIVE HYPERPARAMETER
OPTIMIZATION FOR ACCURATE, FAST, AND EFFICIENT

NEUROMORPHIC SYSTEM DESIGNS

A Dissertation
Submitted to the Faculty
of
Purdue University
by

Maryam Parsa

In Partial Fulfillment of the
Requirements for the Degree
of

Doctor of Philosophy

December 2020
Purdue University

West Lafayette, Indiana

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF DISSERTATION APPROVAL

Prof. Kaushik Roy, Chair

School of Electrical and Computer Engineering
Prof. Anand Raghunathan

School of Electrical and Computer Engineering
Prof. Vijay Raghunathan

School of Electrical and Computer Engineering
Prof. Saeed Mohammadi

School of Electrical and Computer Engineering
Dr. Catherine D. Schuman

Oak Ridge National Laboratory

Approved by:
Prof. Dimitrios Peroulis

Head of the School Graduate Program

11

To Hannah, My Sweet Little Angel..

\Everything you can imagine is real"

111

v

ACKNOWLEDGMENTS

I would like to acknowledge Intel Corporation and Semiconductor Research Corpo-
ration (SRC) for their support of four years of my PhD studies under INTEL/SRCEA
PhD Fellowship, Oak Ridge National Laboratory (ORNL) for supporting this jour-
ney for a year under ORNL/ASTRO program, and also Center for Brain Inspired
Computing (C-BRIC), a Joint University Microelectronics program (JUMP) center
sponsored by DARPA.

Some people leave footprints in your life forever, some people are so humble that
when you talk with them you feel they are your closest friends, some people are so
strong that no matter how stressed you are you feel relieved after talking with them,
some people have no limits in their ideas, imaginations, support, and encouragement,
some people are the best and caring advisor, teacher, role model, friend, and mentor,
all at the same time. Prof. Kaushik Roy is among those, and I'm so fortunate to call
him my PhD advisor. I'm truly grateful for all his advise, feedback, guidance, and
being there for all of us no matter what time of the day and what day of the week is.
All T can hope for is to make him proud of being my advisor someday.

I would like to thank my PhD committee member, my ORNL mentor, my dear
Katie, Dr. Catherine Schuman, who is the best that could have happened to my
career. I would like to thank her for helping me not only frame my research path and
ideas, but also develop professionally by facilitating collaborations within and beyond
ORNL. She is a fabulous researcher, supportive mentor, kind friend, and in a word a
gem.

I also like to express my sincere gratitude to the rest of my PhD committee, Prof.
Anand Raghunathan, Prof. Vijay Raghunathan, and Prof. Saeed Mohammadi for
their invaluable feedback throughout my PhD journey. I'm also thankful to all my

Purdue family, specially Prof. Ali Shakouri who is the best listener, and a marvelous

mentor, Prof. Ganesh Subbarayan, Prof. Shreyas Sen, Prof. Abhronil Sengupta,
Prof. Priyadarshini Panda, Aayush Ankit, Nitin Rathi, Mustafa Ali, and Nicole
Piegza. Special thanks to all my ORNL family, Parker Mitchell, Dr. Shruti Kulkarni,
Daniel Elbrecht, Dr. Steven Young, Dr. Travis Johnston, Dr. Bill Kay, Dr. Prasanna
Date, Dr. Derek Rose, Dr. Robert Patton, and Dr. Thomas Potok.

I wouldn’t have been in a place I am right now without amazing guidance, help,
and support from my phenomenal mentors at Intel Corporation, and University of
Ottawa (uOttawa). I would like to thank Katherine Hoopman (Intel), with no doubt,
she helped me to be the best version of me, and Prof. Mustapha Yagoub (uOttawa)
who has been by my side since August 2011, the first day I left my home country. I
will never forget what he told me the last time I met him before leaving uOttawa,
“no matter what happens, and what you do, never ever forget your smile!”.

Words cannot express how grateful I am to my parents, Maman Gita and Baba
Parviz, to their devotion, unconditional support, sacrifices, and love. They are
strength, backbone, and pillars of my life. I would also love to remind my beloved
mother-in-law, Maman Sonia, who is the strongest woman I ever met, who I still
cannot believe is not among us anymore, who I miss every single day that passes by.
I'm also thankful to my father-in-law, Baba Farrokh, who is the symbol of patience
to me.

I would like to thank my siblings, Moti and Mina, my brother-in-laws, Ali, Kavian,
and Kamyar, and my beautiful niece, Melissa, for listening to me, and making my life
meaningful, and cheerful. I'm so blessed to have every single one of you. I would like
to specially mention my little Mina, who is mature enough to be on my side during
the days I needed her the most, and who is young enough to cherish Hannah as if
they are the same age. Also thank you Kavian to be the best brother I have ever
wanted in my life! T also like to specially thank Chirine, who is my favorite and a
friend that became family, and Yasaman, my person, who I can talk with for hours

and nothing at all, and who I can say everything to with just a look.

vi

I cannot thank enough my soulmate, Amir Koushyar, for his beyond words devo-
tion, love, and care, who went above and beyond to make my PhD journey possible.
Thank you for always having my back, and being the most phenomenal person in the
universe. Finally, thanks to our magnificent little Hannah who has been the meaning
of life, joy, and happiness to us. Because of you we laugh, and we dare to dream more

than we ever have!

vii

TABLE OF CONTENTS

Page
LISTOF TABLES : :: oo oo on i oo ix
LISTOF FIGURES :::::::ooorror ooy nrrrrrn xi
ABSTRACT @ oo i oo i oo oo ooy
1 INTRODUCTION :: oo orrrrrrrrrrrrorrrrs 1
1.1 Contributions : : :::: i rr i rrrrin 9
2 BACKGROUND AND RELATED WORK : @ :: oo onrn 11
3 METHODOLOGY ::::::::::: ooy orororrrr16
3.1 An Introduction to Bayesian Optimization : : :::::::::::::: 16
3.2 PABO: Pseudo Agent-based Bayesian Optimization : : @ :::::::: 19
3.3 Hierarchical-PABO: Hierarchical Pseudo Agent-based Bayesian Opti-
mization @ > :iirrirriirrirrirrrirrrrrrrrrin 20
4 PABO FOR NON-SPIKING NEUROMORPHIC SYSTEMS : :::::::: 25
4.1 Artificial Neural Network Architecture @ @ :::: o000 000 25
4.2 Baseline Accelerator Overview : @ @ @ oo rrrr i 25
4.3 PUMA Energy Consumption : : @ : @000 26
4.4 Experimental Setup and Results : @ @ oo rrrrrrr 29
4.4.1 Single-Objective Optimization @ : : 00000000 30
4.4.2 Multi-Objective Optimization (PABO) @ 31
45 Discussions = ::iriiiriiiiiiiiiiiiriiiiiiiin 35
5 HIERARCHICAL-PABO FOR EVOLUTIONARY-BASED SPIKING NEU-
ROMORPHIC SYSTEMS ::: oo ororrrrorori00 36
5.1 Imtroduction @ : :::::::rrrrrorrrrrrrrrrnrrrrrrn 37

5.1.1 EONS: Evolutionary Optimization for Neuromorphic Systems : 38
5.1.2 Input/Output Coding Module : : :::: o000 39

Page
5.1.3 Neuromorphic Hardware : @ ::::: 000000040
5.2 Experimental Setup and Results : @ @ o0 oonon o n 4l
5.2.1 Single-Objective Optimization @ : @ 0000 42
5.2.2 Multi-Objective Optimization @ : :::: 00000 44
5.3 Discussions @ ::::rrirrrrrrirrrrrrnrrrrrrrn 49
6 HIERARCHICAL-PABO FOR BINARY NEUROMORPHIC SYSTEMS : : 53
6.1 Introduction : : ::::::::orrrrrrrrrrirrrrrr i b3
6.2 Whetstone : @ @ oo rrrrr o rrrnn b4
6.3 Experimental Setup and Results : @ : @000 56
6.4 Discussions @ @ iiiiiiliiiiiiiiiiiiiiiiiiiii60
7 HIERARCHICAL-PABO FOR BACKPROPAGATION-BASED SPIKING
NEUROMORPHIC SYSTEMS @ ::::: o101 66
7.1 Introduction @ : ::: ;i 66
72 SLAYER : ::: oo nnn oo er
7.3 Experimental Setup and Results : : 1 oo rniil 68
74 Results: ooy oorrnn oo 69
7.5 Discussions @ ::::iiirrirriiriirriirrinrinnrnn 1
8 HIERARCHICAL-PABO FOR CONVERSION-BASED SPIKING NEURO-
MORPHIC SYSTEMS :::: o078
81 HYBRID::::::::r:orororrrrrrnrn oo T8
8.2 Experimental Setup and Results : : oo oonn 079
83 Discussions @ ::::irrrrrrorrrirrirrrrrrirrirrrn 83
9 DISCUSSION AND FUTURE WORK : : o000 87
9.1 Broader Impact : :::::: oo rr i n oo 88
REFERENCES @ :: ooy ornonoror 89

LIST OF TABLES

1X

Table Page

4.1 Details of ANN architectures used in the PABO for non-spiking neuro-

morphic systems experiments . ;iDL il

4.2 Evaluated parameters for three different case studies for using PABO on
ANN with PUMA as underlying hardware. ANN’s accuracy, and PUMA’s
energy consumption were the two objectives we optimized in these case

studies @ @ i nrnrnrrrnrnrnnnnnn
4.3 PABO for ANN on PUMA for case study one, hyperparameter analysis : :

5.1 Energy estimate per spike for miDANNA : @ oo oo onn

5.2 Evaluated parameters for six different case studies for using Hierarchical-
PABO on EONS with DANNA2 and mrDANNA as underlying hardware. :

5.3 Observation Three. Hierarchical-PABO for EONS. Evaluated parameters

for best and worst networks for isolated HP optimization analysis : : : @ :
5.4 Hierarchical-PABO for EONS. Sensitivity analysis for SOO @ : @11
6.1 Hierarchical-PABO for Whetstone: Evaluated hyperparameters : : ::::

6.2 Hierarchical-PABO for Whetstone, case study two: Optimized hyperpa-

rameters and their corresponding classification accuracies for different dataset59

6.3 Hierarchical-PABO for Whetstone, case study one: Details of the Bayesian

search direction : @ @ @ @ o oinonnounonnnunonuonunnnnnnnn

6.4 Hierarchical-PABO for Whetstone, case study two. Sensitivity Analysis:
Comparing CIFAR-100 classification accuracy for different experiments : :

6.5 Comparison of the SNN classification accuracies on MNIST, Fashion-
MNIST, CIFAR-10, and CIFAR-100 dataset : : : :::::: @1 ..

7.1 Hierarchical-PABO for SLAYER, case study one. Fixed and evaluated
HPs with their corresponding values, as well as details of HPs for maximum

accuracy (Point A) and minimum time (Point B) @

7.2 Hierarchical-PABO for SLAYER, case study one on DVS Gesture dataset
using SLAYER. Hyperparameter combinations for Pareto points shown

with blue stars in Figure 1. Search space size: 512 : @ @ @110

63

Table Page

7.3 Hierarchical-PABO for SLAYER. Hyperparameter combination for the op-

timum accuracy of 96:421% on DVS gesture dataset : : @ @ :: @
7.4 Hierarchical-PABO for SLAYER, case study two on DVS Gesture dataset.

Search space size: 14,929,920. Results are shown in Figure 7.4 © : .

7.5 Hierarchical-PABO for SLAYER, case study two. Pareto Points and the
Corresponding HPs for HP ranges given in Table 7.4, and results shown

inFigure7.4 oo nrnoinrnnnnrnnnnn

7.6 Comparison of the results of our Hierarchical-PABO framework with other
SNN models on DVS Gesture dataset [40] @ :: i

8.1 Hierarchical-PABO for HYBRID. Summary of results for the two-level

hierarchical Bayesian HPO compared with results from [17] 1 @ @ @111

8.2 Hierarchical-PABO for HYBRID. HPs for the Pareto points given in Table 8.180

8.3 Hierarchical-PABO for HYBRID. Single-objective optimization (SOO):
Search space size: 12,096 for SOO on Underlying ANN @101

8.4 Hierarchical-PABO for HYBRID. Details of the HPs for the Pareto Points

inFigure83 i
8.5 Hierarchical-PABO for HYBRID. Details of the HPs for the Pareto Points
inFigure84 o

8.6 Comparison of the results of our Hierarchical-PABO framework with other
SNN models on CIFAR10 dataset @ @ : @i

x1

LIST OF FIGURES

Figure Page

1.1
3.1

3.2

3.3
4.1
4.2

4.3

4.4

4.5

4.6

An overview of the Hierarchical-PABO framework : : : ::::::: 111 4

Summary of single objective Bayesian optimization. Reproduced with
permission from [25] @i 17

a. Overview of PABO framework, b. Estimated correlated posterior Gaus-

sian distributions for multi-objective Bayesian optimization problem using
PABO @ @@ ooy 20

Overview of Hierarchical-PABO framework : @ : @@t 21
High-level overview of PUMA [7] hybrid accelerator architecture @ : ::: 27

PABO for ANN on PUMA for case study two, single-objective optimiza-
tion results for Table 4.2, obtained using SKOPT [89] python Bayesian
optimization package. a. Optimizing HPs for hardware energy consump-

tion only. b. Optimizing HPs for ANN’s performance only. : ::::::: 30

PABO for ANN on PUMA for case study one: AlexNet on Flowerl7
dataset with 192 possible set of HPs. Comparison between grid search
for all HP combinations (grey cross), random search with evaluating 40
different sets of HPs (blue dots), NSGA-II with population size of 10 and
maximum generation of 50 (black squares), and PABO (red triangles).
The red dashed line, gray line and the black dashed line are the Pareto
frontiers obtained by PABO, grid search and NSGA-II approaches. : : :: 32

PABO for ANN on PUMA for case study one: execution time for PABO is
92x faster than state-of-the-art NSGA-II technique on one Nvidia GeForce
RTX 2080 Ti TU102 GPU with 11 GB of memory. : :::::: 1011 33

PABO for ANN on PUMA for case study two: a. Comparison between
PABO, NSGA-II, Grid Search and Random Search for AlexNet on Flower17
dataset with 6912 different set of HP combination. b. The expanded view
of the region inside the green box in panel (a). : @ 1t 34

PABO for ANN on PUMA for case study three: VGGI19 network on
CIFAR-10 dataset with 3072 different set of HP combination. Other meth-
ods cannot be run on this case study due to significant computational

requirements. ;I Irlllllllrilllllniiiriinriiiild 34

xii

Figure Page
5.1 High-level Overview of a Spiking Neuromorphic Computing System : : : @ 37
5.2 Hierarchical-PABO for EONS on DANNAZ2 for case study one: Compar-

9.3

5.4

9.5

5.6

5.7

0.8

5.9

6.1

ing grid search with HP optimization for problem with HP combinations
shown in Table 5.2, case study one. a. Grid search: 100 runs for each
of the valid 240 different HP sets according to [71]. b. Bayesian-based
HP optimization: 10 runs for selected 40 HP combinations. Both tech-
niques report the same optimum HP set (bx = 2, px = 8, charge = [0; 0:5],
function = flip flop) with median fitness value of 52% (Reproduced

with permission from [26]). @ :: i 43
Hierarchical-PABO for EONS on DANNA2 for case study one: Histogram
of the HP combinations for 40 evaluations. @ :::::: 00000 43

Hierarchical-PABO for EONS on DANNA2 for case study two: Median
fitness value after 100 runs with 50 different HP evaluations for the pa-
rameters given in Table 5.2. The optimum set of HP combination in this
case study is shown in Table 5.4 with median fitness value of 70:99% : : : 45

Hierarchical-PABO for EONS on mrDANNA for three-objective hyperpa-
rameter optimization (network performance, hardware energy consump-
tion, and number of synapses) for Iris classification dataset on mrDANNA
with HP search space of a. 1458, case study three, b. 35640, case study
fiveinTable5.2 @ @ oo nr il 46

Hierarchical-PABO for EONS on mrDANNA: Comparing three-dimensional
results, pairwise for a. case study three with search space size 1458, b.

Hierarchical-PABO for EONS on mrDANNA for three-objective hyperpa-
rameter optimization (network performance, hardware energy consump-
tion, and number of synapses) for case studies four and six in Table 5.2,
Radio classification dataset on mrDANNA, a. search space size 1458, b.

search space size 35640 © @ : ;i ooiiliiLiiLilnniniinnn 48
Hierarchical-PABO for EONS. Partial dependence plot for case study two
inTableb5.2 ooy ooy rrrn bl
Hierarchical-PABO for EONS. Sensitivity analysis on different types of

HPs. Comparing the fitness values for best and worst HP combinations : 51

Hierarchical-PABO for Whetstone case study one: Comparing grid search
and Bayesian hyperparameter optimization for hyperparameters given in
Table 6.1 with search space size of 256 : : @ ::: 0000059

Figure Page

6.2 Hierarchical-PABO for Whetstone case study two: Performance value
(accuracy (%) for each hyperparameter optimization search iteration for
MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 dataset with opti-

mum hyperparameters given in Table 6.2 : : : o orrrn

6.3 Hierarchical-PABO for Whetstone, case study two: Histograms of each
hyperparameter value for CIFAR-100 dataset experiment for the 30 itera-

tions of the optimization search process : @ @ : @ il

7.1 Hierarchical-PABO for SLAYER, case study one. Grid search results are
shown in, (a) for accuracy; and (b) for training time per epoch; for all
possible HP combinations based on the HPs given in Table 7.1. Please
note, the x-axis in (a) and (b) are NOT the same, as the combinations
are sorted in descending order according to accuracy in (a) and time in
(b). (c) Pareto front obtained using Hierarchical-PABO framework with
only 15 iterations. The green data point, shows the best result from [15].
Points A, and B, refer to maximum accuracy and minimum training time
per epoch, respectively. The corresponding HPs for these two points are

givenin Table 7.1. oo oo n o n o

7.2 Hierarchical-PABO for SLAYER, case study one. Grid search results for
Accuracy with their corresponding HPs for all possible combinations of
HPs givenin Table 1 © @ @ ¢ oo oo oo oo nn oo

7.3 Hierarchical-PABO for SLAYER, case study one. Grid search results for
Training Time with their corresponding HPs for all possible combinations
of HPs given in Table 1 : @ @ oo oo nnnn

7.4 Hierarchical-PABO for SLAYER, case study two on DVS Gesture dataset.
Search space size: 14,929,920 with HP ranges given in Table 7.5 : : 1 ::

8.1 Hierarchical-PABO for HYBRID. CIFAR10 on VGG5. Architectures with
better performances are shown in the Pareto frontier. These designs im-

prove the accuracy by 2-4%, with 50% reduce in time-steps. : : @ : @ ::

8.2 Hierarchical-PABO for HYBRID, Single-objective optimization. Search
space size: 12,096 for SOO on Underlying ANNs with HP ranges given in
Table 8.3 & & 1 o ol

8.3 Hierarchical-PABO for HYBRID. CIFAR10 Image Classification on VGG
and RESNET architectures = @ @ @@ @@ nn

8.4 Hierarchical-PABO for HYBRID. CIFAR100 Image Classification on VGG
and RESNET architectures = @ @ @ @ oo n oo

X1v

ABSTRACT

Parsa, Maryam Ph.D., Purdue University, December 2020. Bayesian-based Multi-
Objective Hyperparameter Optimization for Accurate, Fast, and Efficient Neuromor-
phic System Designs. Major Professor: Professor Kaushik Roy.

Neuromorphic systems promise a novel alternative to the standard von-Neumann
architectures that are computationally expensive for analyzing big data, and are not
efficient for learning and inference. This novel generation of computing aims at “mim-
icking” the human brain based on deploying neural networks on event-driven hard-
ware architectures. A key bottleneck in designing such brain-inspired architectures is
the complexity of co-optimizing the algorithm’s speed and accuracy along with the
hardware’s performance and energy efficiency. This complexity stems from numerous
intrinsic hyperparameters in both software and hardware that need to be optimized
for an optimum design.

In this work, we present a versatile hierarchical pseudo agent-based multi-objective
hyperparameter optimization approach for automatically tuning the hyperparameters
of several training algorithms (such as traditional artificial neural networks (ANN),
and evolutionary-based, binary, back-propagation-based, and conversion-based tech-
niques in spiking neural networks (SNNs)) on digital and mixed-signal neural accel-
erators. By utilizing the proposed hyperparameter optimization approach we achieve
improved performance over the previous state-of-the-art on those training algorithms
and close some of the performance gaps that exist between SNNs and standard deep
learning architectures.

We demonstrate > 2% improvement in accuracy and more than 5X reduction
in the training/inference time for a back-propagation-based SNN algorithm on the

dynamic vision sensor (DVS) gesture dataset. In the case of ANN-SNN conversion-

XV

based techniques, we demonstrate 30% reduction in time-steps while surpassing the
accuracy of state-of-the-art networks on an image classification dataset (CIFARI10)
on a simpler and shallower architecture. Further, our analysis shows that in some
cases even a seemingly minor change in hyperparameters may change the accuracy
of these networks by 5-6X. From the application perspective, we show that the opti-
mum set of hyperparameters might drastically improve the performance (52% to 71%
for Pole-Balance control application). In addition, we demonstrate resiliency of dif-
ferent input/output encoding, training neural network, or the underlying accelerator

modules in a neuromorphic system to the changes of the hyperparameters.

1. INTRODUCTION

Advances in computing engines and graphic processing units (GPUs) as well as
massively produced data from smart devices, social media, and internet, create an
immense opportunity for machine learning and in particular deep neural networks
(DNN) to solve tasks such as recognition and classification. DNNs are computa-
tionally expensive, and require substantial resources. Therefore, their computation
is either carried out in the cloud, or in a neuromorphic computing system through
domain-specific energy-efficient accelerators built with CMOS [1-4], or speculatively
on resistive crossbars [5-7] and spintronics [8] based technologies to boost the perfor-
mance and speed of DNNs.

Spiking neuromorphic system is an alternative computing platform that takes
direct inspiration from biology in how information is processed. These biologically-
inspired computing platforms not only offer tremendous energy efficiency for com-
puting in resource-constrained environments such as mobile and edge devices, but
also extend the ability to solve challenging machine learning problems due to their
massive connectivity of synthetic neurons and synapses [9].

The in-memory computing capability of neuromorphic systems proposes a promis-
ing alternative or complement to von Neumann architectures that suffer from the
low bandwidth between CPU and memory, also known as the von Neumann bot-
tleneck [10]. In addition, the brain-like structure of spiking neuromorphic systems
is suitable for on-line, real-time learning for certain tasks such as smart healthcare
diagnosis on edge devices, special purpose applications on drones, and robotics.

Designing a high-performance neuromorphic computing system is reliant on not
only maximizing accuracy, and speed of training or inference of the neural network,
but also minimizing energy and area requirements of the underlying hardware. There-

fore, the algorithm-hardware co-design is an indispensable step toward empowering

high-performance neuromorphic computing. The optimum design for a neuromorphic
system (non-spiking or spiking) is highly dependent on the selection of the inherent
hyperparameters (HPs) that belong to the algorithm, underlying hardware, the appli-
cation, and in the case of spiking neuromorphic systems, the input/output encoding
schemes.

In the deep learning community, for traditional artificial neural networks (ANNs),
hyperparameter and network architecture decisions are often made by choosing an
“off-the-shelf” network architecture and then relying on manual tuning (often based
on the user’s intuition) to customize the model’s hyperparameters for a particular
application. With ANNs, the community has had decades to build up “intuition”
on how to make these decisions, though even that community often relies on opti-
mization approaches to help make those decisions on non-standard problems [11].
However, in a non-spiking neuromorphic system, optimizing the ANN performance
without considering the strong correlation between its HPs and the corresponding
hardware specific parameters results in a sub-optimal and inefficient hardware archi-
tecture. For an ANN, the HPs include, but are not limited to, the number of hidden
layers, kernel sizes, the choice of optimizer and non-linearity function. In addition,
examples of hardware specific HPs are memory bandwidth, and pipelining in CMOS
technologies [12], and the number of bits, the number of crossbars and the crossbar
sizes in memristive crossbar accelerators [7].

In the spiking domain, the input/output information is received and generated
in the form of spikes over time. Additionally, network dynamics include a notion of
time in how the information is processed, which is often in the form of delays on
the synapses or axons. Due to these differences with ANNs, spiking neural networks
(SNNs) require adaptations to existing training algorithms or entirely new training
approaches in order to train the networks to effectively perform new tasks. Liquid
state machines [13], evolutionary-based algorithms [14], backpropagation-based [15,
16] and ANN-SNN conversion-based techniques [17, 18] are among the commonly

used training algorithms for SNNs. Similar to ANNs, the network architecture and
hyperparameters of the model for SNNs must be defined before training begins.

For SNNs, a similar approach to determine HPs and network architectures is often
taken. That is, the same “off-the-shelf” hyperparameters and network architectures
for ANNs are chosen and then manually tuned. Unlike ANNSs however, there is limited
“community intuition” to help guide the manual tuning of these parameters. Addi-
tionally, as SNNs have fundamentally different computational characteristics than
ANNS, there is no guarantee that HPs that behave well on ANNs will also behave
well on SNNs. In fact, SNNs often fail to achieve the same level of accuracy as ANNs
on tasks such as image classification, but it is not clear whether that difference in
performance is due to the computational characteristics of SNNs or the algorithms
that are training them, or if it is due to the lack of customization of hyperparameters
and network architectures for SNNs.

Selection of HPs is critical for the design of accurate neuromorphic systems; how-
ever, there are often other considerations, such as optimizing speed of processing or
energy efficiency, when utilizing custom hardware. In spiking neuromorphic comput-
ing systems, HPs and neural architecture decisions can have a significant impact on
the network latency—the time required for processing of a single input spike across
all the layers. A larger latency leads to an increased inference time, and in turn,
compromises the energy efficiency of SNN architectures. Therefore, it is often neces-
sary to take these factors into account when optimizing the HPs for the best network
accuracy, which requires solving a multi-objective optimization problem.

In this work we propose a novel optimization framework built upon agent-based
modeling and hierarchical Bayesian optimization techniques to obtain the optimum
set of HPs for any neuromorphic system design. This generic framework is not only
suitable for both non-spiking or spiking neural networks, but also handles different
types of hardware (CMOS [19-21] or beyond-CMOS [7]). Bayesian optimization is a
powerful tool for finding the optimal point of objective functions that are unknown

and expensive to evaluate [22]. However, for problems with more than one objective

function Bayesian-only techniques are mathematically complex, and suffer from high
dimensionality limitations in parameter-heavy models [23]. Other approaches such as
Neural Architecture Search (NAS, [24]) also require massive computational resources.
These factors were the driving forces to search for alternative algorithms to find the
optimal set of hyperparameters.

Our proposed approach, Hierarchical Pseudo Agent-based Bayesian Optimization
(Hierarchical-PABO [25-29]), is built upon using a supervisor agent correlating the
results of isolated Bayesian estimations for each of the objective functions. The agent
creates an extra set of Bayesian estimator focusing only on finding the Pareto frontier.
The hierarchy of Bayesian optimizers enables predicting the Pareto frontier for com-
plex problems regardless of the number of objective functions. The Pareto frontier
is a set that consists of solutions in which no other is superior in optimizing objec-
tive functions (i.e. performance matrices such as maximizing the neural network’s
accuracy and speed of training/inference as well as minimizing the energy and area
requirements of the underlying hardware). In other words, each member of the Pareto
set is not dominated by other members of the set, where the dominance is defined as:
The vector & dominates vector B notated asa Bor® 4, iff 8i;fi(a) Fi(bh) where

Ti is the i-th objective function [30].

: Classification = Control
/| Flower17, MNIST CIFAR-10 IRIS
| Fashion-MNIST CIFAR-100 Radio DVS Gesture [;i| Pole-balance RoboNav
’ Applications
CNN EONS Whetstone Slayer Hybrid
(Traditional) || (Evolutionary) (Binary) (Back-prop) (Conversion)

Software core (Training NN + Hierarchical-PABO for HPO)

Devices
Memristive Memristive
CMOS-based ! Crossbars Cells
Digital } : Mixed-Signal

Fig. 1.1.: An overview of the Hierarchical-PABO framework

Figure 1.1 demonstrates an overview of the Hierarchical-PABO framework for a
multi-objective optimization problem. The software core trains a neural network and
optimizes the HPs using Hierarchical-PABO. We validated the approach on traditional
convolutional neural network (CNN) on AlexNet [31] and VGG architectures [32],
EONS [14] as an evolutionary-based spiking training algorithm, WHETSTONE [16]
as a binary network approach, SLAYER [15] which is a backpropagation-based tech-
nique, and HYBRID [17] as a modified ANN-SNN conversion approach. We chose
three different underlying hardware, digital (CMOS-based DANNA2 [19]), and mixed
signal (memristive crossbar, PUMA [7], and memristive cells, mrDANNA [33]). We
also considered several benchmarking applications such as image classification tasks
(Flower17 [34], MNIST [35], Fashion-MNIST [36], CIFAR10 [37], CIFAR100 [37],
IRIS [38], satellite radio signal [39], and DVS Gesture dataset [40]) as well as control
tasks (canonical pole balancing [41], and autonomous robotic navigation [42]).

We demonstrate that by utilizing Hierarchical-PABO for neuromorphic computing
system designs (ANN-based and SNN-based) we automatically discover optimum hy-
perparameters that outperform the network accuracy of the previous state-of-the-art
results for all algorithms shown in Figure 1.1. Moreover, we show how this hyper-
parameter optimization (HPO) approach can include additional objectives beyond
accuracy (e.g., minimizing training/inference time, energy and area requirements of
the underlying hardware) and demonstrate that Hierarchical-PABO can find hyper-
parameters that produce models that simultaneously optimize several objectives. For
example, we observe > 2% improvement in accuracy and more than 5 reduction
in the training/inference time for the SLAYER [15] algorithm on the DVS Gesture
dataset. In addition, in the case of the HYBRID [17] technique, we demonstrate 30%
reduction in time-steps while surpassing the accuracy of state-of-the-art networks on
CIFARI10 on simpler VGG13 architecture, which we would expect to be more en-
ergy efficient. Our analysis further clarifies the significance of the present work by
highlighting cases where even a seemingly minor change in hyperparameters can dras-

tically change the performance of the network (by 5 6). The speed and accuracy of

the framework enables designers to perform sensitivity analyses on hyperparameters
to determine the resiliency of the system to the changes of the hyperparameters.

The salient features of our work are summarized below:

In [25], we introduced PABO, which was the first step toward designing the Hi-
erarchical PABO. In the case of PABO, there is no hierarchy of Bayesian estima-
tors, rather the supervisor agent decides for the search direction in favor of the
Pareto region, without any Bayesian estimator. By turning off the extra set of
Bayesian estimator that is used to predict the Pareto frontier, Hierarchical-PABO
reduces to PABO. We tested PABO on both AlexNet and VGG19 architectures on
a memristive crossbar accelerator (PUMA [7]). Using PABO, we estimated sets of
hyperparameters that belong to the Pareto region of a multi-objective optimiza-
tion problem, where the objectives were maximizing the neural network’s accuracy
and minimizing the energy consumption of the underlying hardware. Compared to
grid search, random search, and evolutionary-based hyperparameter optimization
approaches (NSGA-II [43]), PABO obtains superior performance both in terms of
accuracy and computational time (predicting the Pareto region at least 100x faster

compared to the NSGA-II).

Our work [26] is, to the best of our knowledge, the first in the literature that a hy-
perparameter optimization technique for spiking neuromorphic computing system
was proposed and the effects of different types of hyperparameters on the overall
performance of the system were analyzed. We not only discovered an optimum set
of hyperparameters to maximize accuracy of an SNN, but also performed sensitiv-
ity analysis on spiking neuromorphic system hyperparameters, and discussed the
strategic role of some sets of hyperparameters on the system’s final performance. In
addition, we demonstrated that hyperparameters of a resilient training framework
for spiking neuromorphic systems such as EONS [14] have the least impact on the fi-
nal performance of the system compared to the input encoding or hardware-specific

hyperparameters.

In [27], we showed that an optimum set of hyperparameters drastically increases
the performance of Whetstone [16] as a binary neural network approach that can
be deployed to neuromorphic hardware. We also observed that the best hyper-
parameters found for different datasets differ across the datasets, indicating the
importance of specifically optimizing hyperparameters for each new problem when
converting to binary communication. In [44], Whetstone is deployed on SpiN-
Naker [45], with slight drop in accuracy due to issues with input/output encoding.
Here, we optimized the network using Whetstone, but we do not map the resulting
networks to a neuromorphic hardware implementation, such as SpiNNaker [45] or
Loihi [20]. As observed in [44], several other hyperparameters such as input/output
encoding, different network topologies and training parameters will have an effect
on this mapping performance. In the future, we plan to include how the network
performs on real neuromorphic hardware as part of our training objectives in the

hyperparameter and network architecture optimization process.

In [28], we introduced Hierarchical-PABO as a novel approach that, with its sim-
ple yet effective underlying mathematics, is able to predict a Pareto frontier of a
multi-objective hyperparameter optimization for both non-spiking and spiking neu-
ral network systems with only few evaluations. We defined sets of hyperparameters
and estimated a Pareto region for three-objective optimization problem (perfor-
mance, energy, and network size). This framework also paves the way to further
analyze and study sensitivity and resiliency of the system due to the changes of
the hyperparameters. The main current limitation of Hierarchical-PABO is scal-
ability and ability to parallelize the approach. The goal of Hierarchical-PABO is
predicting the Pareto region for a search space with reasonable ranges for the hy-
perparameters and with only few evaluations; it is not designed to compete with all
NAS-based approaches that search the entire search space with massive computa-
tional resource requirements. However, improving scalability of Hierarchical-PABO
paves the way for incorporating the technique in different frameworks with multiple

layers of optimization problems and hyperparameters.

In [29], we illustrated an approach for Hierarchical-PABO that has been successfully
applied to two distinct SNN training algorithms, SLAYER [15] and HYBRID [17]
with the goal of simultaneously optimizing SNN’s accuracy and latency (the time
required for processing of a single input spike across all the layers). Optimizing
the latter further improves the practical usability of these algorithms. For the
SLAYER [15] algorithm on the DVS Gesture dataset [40], we demonstrated that
this approach achieved state-of-the-art results by increasing the Top-1 accuracy
from 94.13% to 96.2%. In addition, we showed that with a multi-objective hyper-
parameter optimization approach, we are able to reduce network latency (train-

ing/inference times) by 5 while obtaining comparable accuracy.

Using the proposed hierarchical Bayesian optimization, that contains a single-
objective Bayesian approach for hyperparameter optimization of the ANN and an
agent-based multi-objective Bayesian approach for hyperparameter optimization of
the SNN, we optimized and trained networks that outperform the previous state-of-
the-art HYRBID [17] training SNN results on the CIFAR10 and CIFAR100 dataset
with VGG and RESNET architectures in terms of accuracy with more than 40%
reduction in network latency (time steps). We demonstrated that the proposed ap-
proach can discover hyperparameters for simpler architectures that achieve higher
accuracy and lower latency than previously published results. Both the reduction
in architecture size and network latency have significant implications for energy
efficiency of these architectures. For example, we demonstrated the results for CI-
FAR10 on VGGY with improved accuracy compared to a much deeper and more

energy-consumptive VGG16, and with 30% reduction in inference time.

Through these numerous examples, we also achieve one of the key goals of this
work, which is to help close the gap in performance between ANNs and SNNs in
resource-constrained environments without compromising the practicality of utilizing

SNNs.

1.1 Contributions

We made the following contributions:

1. A novel optimization framework based on hierarchical Bayesian opti-
mization and agent-based modeling, suitable for both non-spiking and
spiking neuromorphic systems. With simple yet effective underlying mathe-
matics, Hierarchical-PABO estimates the Pareto region for multi-objective hyper-

parameter optimization problems with few evaluations.

2. One of the rst techniques in the literature for co-designing software-
hardware that is not limited to the number of objectives to optimize
(network performance, energy consumption, size, speed of inference,
etc.). Based on our knowledge, our proposed technique is one of the first tech-
niques in the literature that simplifies the mathematical complexity of exclusive
Bayesian approaches for multi-objective optimization. We do this by adding a
supervisor agent and performing Bayesian optimization in different levels. This

paves the way to effectively optimize more than two objective functions.

3. Generic framework extendable to various arti cial and spiking neural
networks and the underlying digital, analog, or mixed-signal acceler-
ators. We tested our framework using various training techniques on several
classification and control applications with both digital and mixed-signal acceler-
ators as the underlying hardware. We were able to estimate the Pareto frontier
regardless of the number of performance matrices, size of the search space, training

algorithm, type of application or hardware.

4. Superior performance in terms of accuracy and computational speed
in nding the Pareto region compared to the state-of-the-art Genetic
Algorithm (GA) optimization approach (in scenarios where GA-based opti-
mizations were available for comparison, [43]). Please see [25] for details of this

contribution.

10

5. Hierarchical-PABO closes the gap in performance between ANNs and
SNNs for resource-constrained environments without compromising the

practicality of utilizing SNNs.

11

2. BACKGROUND AND RELATED WORK

In the era of the exigent need to design energy efficient neuromorphic systems for
resource-constrained environments such as mobile edge devices, several approaches
have been proposed in the literature to reduce the massive energy requirement of
these systems. For artificial neural networks (ANNs), these techniques span from
simplifying models, such as pruning and quantization [24,46-48], to designing energy
efficient architectures [49-52], and neural architecture search (NAS) [24]. In spiking
neuromorphic domain, these include different training algorithms such as evolutionary
optimization [14,53], modified backpropagation techniques [15,54, 55], binary com-
munication [56], and hybrid approach [17] while deploying them on neuromorphic
hardware such as [57,58]. In this section, we briefly review the literature on each
of these methods and continue with the added complexity of co-designing algorithm
and hardware for neuromorphic systems. We then present the contribution of our
work (Hierarchical-PABO) and how we fill the existing gap in a generic approach of
co-designing software and hardware in the literature.

To reduce the energy requirement of neural network architectures, there have
been a variety of model simplification techniques proposed by [46], and continued
with [24,47], and [48]. Each of these techniques focus on simplifying the neural net-
work with different approaches of pruning, quantization, learning the connections,
and leveraging sparsity. Designing energy-efficient architectures are also well-studied
in the literature with flattened Convolutional Neural Network (CNN) [49], factorized
CNN [50], conditional CNN [51,59], and staged-conditional CNN [52]. More recently,
compact structures such as MobileNets [60] and ShuffleNet [61] are also introduced
and are specifically designed for mobile devices. Although both approaches of model
simplification and efficient architecture design demonstrate promising results in re-

ducing the energy requirements of neural networks, they do not necessarily yield to

12

the optimum designs for energy efficient accelerators. This is mainly due to the fact
that they only locally search the space. In addition, layers with more parameters do
not necessarily consume more energy [23,62].

Spiking neural networks (SNNs) have great algorithmic promise as an energy-
efficient machine learning technique, but training and learning in SNNs have proved
to be difficult with the existing approaches. A common learning mechanism for
SNNs is synaptic plasticity, such as spike-timing dependent plasticity (STDP) [63,64],
but the utility of these approaches has been relatively limited. Another approach
is evolutionary algorithms [14], which have the advantage that they can design all
aspects of the network (structure and parameters) and are flexible with respect to
applications, but can be slow to train.

Adapting existing backpropagation methods to work with SNNs is a widely used
approach for training SNNs. These include training a traditional artificial neural net-
work and then developing a mapping to an SNN [18,65-68], adapting the training
procedure to accommodate spiking neurons or binary activations [56], or changing
the training procedure to leverage timing in the SNN [15,69]. There are several
key issues with these backpropagation-based approaches. First, by utilizing existing
training approaches without much adaptation, it is not clear that SNNs will be able
to establish an advantage over existing approaches. Second, defining the appropri-
ate neural architecture and hyperparameters of these approaches is difficult and can
require a tremendous amount of human effort. Third, to achieve comparable results
with their ANN counterparts, these types of training algorithms require large train-
ing/inference time (time-steps), which negates many of the underlying benefits of
spike-based approaches.

Several stakeholders play a role in designing a high-performance neuromorphic sys-
tem, such as neural network itself (ANN or SNN), underlying hardware (CMOS-based
on Beyond-CMOS), and in the case of spiking neuromorphic system, input/output

encoding modules to encode the real-world data to spikes and vice-versa.

13

Different training algorithms, both in the non-spiking and spiking domains, have
several HPs that have to be set and that can potentially significantly affect per-
formance of the algorithm, such as ANN-specific HPs (kernel sizes, optimizer type,
learning rate, etc), crossover and mutation rate for genetic algorithm approaches,
number of neurons in spiking reservoir computing, and back propagation parameters
and network structure in deep SNNs [18,68]. In addition to algorithmic HPs, neuro-
morphic hardware also have HPs that can be set as part of a design process. These
HPs include the number of required input/output neurons (sensors and actuators in
the hardware), the range or resolutions of synaptic or neuronal delays and weights.
Each of these HPs can play a role in the performance and energy requirements of the
neuromorphic computing system. There have also been a variety of approaches pro-
posed for converting data into spikes and some training or learning algorithms rely on
a particular type of encoding to function properly. Rate-based and temporal-based
are two of the most popular approaches for input encoding ([70]). Other approaches,
including binning, have also been proposed to allow for higher resolution input values
to be encoded over a shorter time period ([71]). These different encoding approaches
require one or more HPs that have to be defined for the problem. Examples include
the number of bins and spikes per bins for binning-base, and Poisson rate, lateral in-
hibition and homeostasis for temporal-based encoding. HPs for these modules should
not only be optimized for their performances, but also be co-optimized to obtain the
maximum algorithm-hardware performance (at least maximum accuracy, minimum
energy and area requirement, and maximum speed of training/inference). Of course,
there will be other possibilities for performance matrices such as sparsity, resiliency,
and robustness.

We first review different hyperparameter optimization (HPO) techniques that are
proposed in the literature for single objective optimization (neural network accuracy
only) for both non-spiking and spiking domains, and then review the hardware-aware

HPO techniques that is required in the neuromorphic computing platform.

14

HPO for neural networks used to be largely governed by rules of thumb [72]. Ex-
amples of these rules and practical guidelines for efficiently training large-scale deep
neural networks are given in [73]. In addition, it is shown that random search outper-
forms grid search and manual search for HPO and has good theoretical guarantees
and empirical evidence [74]. Continuing along this line of research, another approach
is greedy sequential algorithms, which have shown promising results compared to
random search [75].

Bayesian-based approaches have also been used for optimizing the hyperparam-
eters of deep neural networks. It is shown that algorithms based specifically on the
Gaussian process are the most call-efficient for hyperparameter optimization of deep
neural networks [76]. DeepHyper [77] is a Python package that leverages the Bal-
sam workflow and provides an interface for implementation and study of scalable
hyperparameter search methods. In addition, HORD [78] is a deterministic and effi-
cient method for hyperparameter optimization using radial basis function as the error
surrogate in Bayesian-based methods, and its effectiveness is shown on MNIST and
CIFAR-10 datasets.

To achieve higher performance and avoid human driven optimization, significant
effort has been placed on automating architecture selection. A powerful method
for obtaining the best performance ANN architecture designs is Neural Architecture
Search (NAS) [24,79]. The objective of these techniques is to automate architectural
engineering to discover a network design which provides maximum performance [80—
84]. NAS was started by Google Brain [24] to find an optimal neural architecture by
searching for architectural building blocks on a small dataset and then transferring the
block to larger ones. NAS was a starting point for a series of NAS-based approaches
in recent years [85-87]. Reinforcement learning NAS [88] has also been used for HPO
of deep neural networks. This approach suggests architectures with significantly less
trainable parameters, shorter training times, and accuracies matching or surpassing

the state-of-the-art models used on cancer dataset [89]. All of these works were

15

proposed to design a neural network with optimum performance, regardless of the
energy requirement of the underlying neural accelerator.

Hardware-aware neural architecture designs can be categorized in three domains
of multi-layer co-optimization [90], hardware-aware NAS [91-95], and Bayesian-based
hyperparameter optimization [12,96,97]. Each one of these approaches have their pros
and cons. While defining an optimum neural architecture with energy-efficient hard-
ware in mind, the multi-layer co-optimization approach cannot easily be extended to
generic platforms. Hardware-aware NAS techniques are time consuming and require
substantial resources, and Bayesian-based methods are not well-suited for parameter-
heavy models [23].

While the above approaches catered to deep neural networks, NAS approaches
have been much less common in the realm of SNNs, where learning algorithms are
still in their infancy. Differential evolution (DE) and self-adaptive differential evo-
lution algorithms (SADE) is proposed by [98] to optimize the parameter space of
synaptic plasticity and membrane adaptivity learning mechanisms in the lobula giant
movement detector (LGMD) neuron that is driven by a dynamic vision sensor (DVS)
camera. A neuro-evolutionary algorithm to optimize the hyperparameters of spiking
neural networks is given at [99] and shown that the model trained using this ap-
proach outperforms all other models. In general; however, HPO and NAS approaches
specifically for SNNs and spiking neuromorphic systems have been largely unexplored.

In Hierarchical-PABO [25-28] we propose a novel hardware-aware approach with
minimum mathematical complexity suitable for both non-spiking and spiking neu-
romorphic computing systems. This framework is based on hierarchical Bayesian
optimization and agent-based modeling. Using a set of Bayesian estimators in differ-
ent levels and correlating them with a supervisor agent, we overcome the drawbacks of
exclusive Bayesian approaches available in the literature. In addition, with the need
to optimize several performance matrices in any neuromorphic computing system, the
number of objective functions that Hierarchical-PABO is optimizing simultaneously

is flexible.

16

3. METHODOLOGY

In order to systematically take the human knowledge out of the loop in selecting the
optimum set of hyperparameters for a neuromorphic computing system (and in gen-
eral any artificial intelligence-based platform), we chose Bayesian optimization as the
core of our approach. In this section, we first review the basic mathematics of Bayesian
modeling and Bayesian optimization for single objective optimization (SOO) prob-
lems [22,26,27]. We then present PABO (Pseudo Agent-based Bayesian Optimiza-
tion) [25] for multi objective hyperparameter (MOO) problems, and finally we add
a hierarchy to PABO design (Hierarchical-PABO: Hierarchical Pseudo Agent-based
Bayesian Optimization), to improve efficiency and speed of predicting the Pareto

region for MOO [28].

3.1 An Introduction to Bayesian Optimization

Bayesian optimization is a powerful tool for finding the optimum point of objective
functions that are unknown and expensive to evaluate [100]. The problem of finding

a global optimizer for an unknown objective function is formulated in Equation 3.1.

X = argmax T (X) (3.1)
x2X

where X is the entire design space, and T is the black-box objective function with-
out simple closed form. As summarized by [22], in a sequential manner, we search
for the best location Xp+1 to observe Yn+1 point in order to estimate . After N iter-
ations, the algorithm suggests the best estimation of the black-box function f. This
sequential approach is based on building a prior estimation over possible objective

functions, and then iteratively re-estimating the prior model using the observations

17

from updating the Bayesian posterior model. The posterior representations are the
updated knowledge on the objective function we are trying to optimize. We explore
the search space by leveraging the inherent uncertainty of the posterior model and
mathematically introducing a surrogate model, called the acquisition function .
The maximum point of this function is the next candidate point to observe X+1)
and guides the search direction toward the true representation of the objective func-
tion. The e ciency of Bayesian approach to estimate the global optimizer for the
expensive black-box function with fewer evaluations relies on the ability of Bayesian
technique to learn from prior belief on the problem and direct the observations by
trading o exploration and exploitation of the design space.

In the context of neuromorphic computing,x is the system's hyperparameters
such as inherent hyperparameters for di erent input/output encoding schemes, or
population size or optimizer choice for various training techniques. Hardware-speci c
hyperparameters are also another choice for parameter Function f is the black-box
objective function, such as accuracy of the network, energy or area requirements of
the system, and speed of inference, for stochastic observations/ofA summary of
the Bayesian approach is illustrated in the Figure 3.1. (See [75, 100, 101] for detailed

tutorials.)

Fig. 3.1.: Summary of single objective Bayesian optimization. Reproduced with
permission from [25]

In Figure 3.1, we are estimating an unknown objective function, ground trutlf .
We only have two observations (likelihood model) in iteration one (red dots). We

rst build our prior distribution (current belief) based on these observations using

18

Gaussian processes. The Gaussian distribution is shown with mean and standard
deviation, solid black line, and highlighted dashed area, respectively. A surrogate
model, acquisition function, is estimated for this posterior distribution, which is shown
as the highlighted green function. The maximum point of the acquisition function
(green dot) is the best next point to observe in the next iteration. As the new points
are added to the observations in di erent iterations, the standard deviations, and
therefore the uncertainty of estimating the ground truth function, is reduced. Each
observation requires evaluating an unknown, expensive objective function. The ability
of the Bayesian technique in predicting this function (ground truth in Figure 3.1) with
few evaluations, speeds up the process of nding the optimum set of hyperparameters
with minimum computational resources.

For con guring the Gaussian process, the covariance function is a positive de nite
kernel that speci es the similarity between points of observations. There are di erent
methods to estimate this kernel function based on the smoothness, noise level and
periodicity of the ground truth. In our experimental setup, we selected the Matern
kernel function with smoothness value of:b. This particular kernel is selected due to
the intrinsic stochastic nature, and noise level of our problem. Once we estimate the
posterior distribution based on the likelihood model and the prior distribution, we
build an acquisition function to guide the search direction. This acquisition function
de nes whether to search the space where the uncertainty is high (explore) or sample
at locations where the model predicts high objectives (exploit). There are di erent
methods to calculate this surrogate model such as improved-based, optimistic, and
information-based policies [100,102{108]. The choice of the method to use directly
impacts the speed of convergence to the ground truth in Bayesian search. We chose
\expected improvement"approach for the acquisition function. This selection does
not impact the e ectiveness or performance of our approach; rather, it only impacts
the speed of searching the hyperparameter space and avoid trapping in local minima.

(More details in selecting kernel or acquisition function can be found in [22]).

19

3.2 PABO: Pseudo Agent-based Bayesian Optimization

Figure 3.2a summarizes the PABO search process. The framework starts with
selecting observations (at least two) from the design space. The design space is a set
containing all possible HP combinations. The observations are the performance ma-
trices values for a set of HP. These observations are then passed to separate Bayesian
estimators for each performance metric. In this gure, for example, performance of
the neural network (in terms of accuracy), energy usage, and size requirements of the
underlying neural accelerator are the objective functions and performance matrices
we would like to optimize. GP stands for Gaussian Process, and AF stands for Acqui-
sition Function. For each objective, a Gaussian distribution is estimated followed by
a surrogate model (acquisition function, AF). In this step, for each objective function,
the optimum point of AF is the best HP to observe in the next iteration regardless
of the search direction for other objectives. The process is then followed by a super-
visor agent that evaluates the impacts of output HPs on the other posterior models
and decides which HPs it must pass along. This agent decides on the set of HPs
to evaluate at each step, the direction of the search process, and when to stop the
technique. With a supervisor agent we reduce the complexity of the joint optimiza-
tion problem, which in turn speeds up the algorithm to obtain the Pareto frontier
compared to the state-of-the-art methods. Such capability is further bene cial for
solving multi-objective problems with more than two objective functions.

In Figure 3.2b the estimated correlated posterior Gaussian distributions are shown
for this example which is a three-objective optimization problem. This gures shows
how each observation for isolated Bayesian estimators is helping the search direction
toward the Pareto region of the problem using the supervisor agent. Throughout the
process, the supervisor agent guides the search process to the Pareto frontier region
and speeds up the procedure without adding extra complexity to the underlying

mathematics.

20

Fig. 3.2.: a. Overview of PABO framework, b. Estimated correlated posterior Gaus-
sian distributions for multi-objective Bayesian optimization problem using PABO

3.3 Hierarchical-PABO: Hierarchical Pseudo Agent-based Bayesian Op-

timization

Hierarchical-PABO (Hierarchical Pseudo Agent-based Bayesian Optimization) is
an ultra-e cient Bayesian-based optimization framework to nd an optimum set of
hyperparameters for designing an accurate neural network while minimizing the en-
ergy consumption and area requirement of the underlying hardware.

Figure 3.3 summarizes the Hierarchical-PABO framework. We randomly select
two hyperparameter (HP) combinations from the design space. In the rst level,
these current observations are used to build Bayesian estimation posterior distribu-
tions for each objective function separately. We then de ne the acquisition function
for each posterior model. The optimum point of these acquisition functions are the
best next point (HP combination) to evaluate for their corresponding objective func-
tion. In the second level, the supervisor agent level, the process starts with all current

observations (set of HP combinations) and the candidate HP combination that led to

21

Fig. 3.3.: Overview of Hierarchical-PABO framework

the optimum value of the acquisition functions in the previous iteration. For these
observations, we estimate an intermediate Pareto frontier function using a Gaus-
sian distribution. This is calculated based on the observation points (on the Pareto
front set), as well as a score calculated based on L1-norm of these points after be-
ing normalized. Therefore, a corresponding surrogate model (acquisition function)
for this Gaussian distribution explores and exploits the search space with the goal
of estimating the current intermediate Pareto function. The next best observation
for this Pareto is then added to the observations for each Bayesian estimator. With
this technique, we force the Bayesian approach to add extra observations that help
in minimizing the current intermediate Pareto function. This function is updated

iteratively and moved toward the actual Pareto region of the problem.

22

In Hierarchical-PABO, the Pareto Bayesian estimator in the second level plays
a vital role in correlating the Bayesian estimators for each objective function in the
rst level. However, to speed up the search process, the supervisor agent might turn
o this Pareto Bayesian estimator. If this extra Bayesian estimator is turned o, the
supervisor agent takes HP combinations taken from optimum point of the acquisition
function for each objective and only allow those that are in favor of moving toward
the Pareto region.

Algorithm 1 illustrates the pseudo-code of Hierarchical-PABO framework. In this
triple-objective optimization algorithm the black-box objective functions are shown
With fperf, feng, and fgize. fperr is the performance of the neural network (ie. error),
feng is the energy consumption of the underlying neural accelerator, arfd,e is a
proxy for area requirement of the design.

In iteration n, we have observations from the isolated Bayesian estimators for the
objective functions. Among all these observations, we select and store those points
that belong to the Pareto frontier (i.e. the HP points coming from any of theD e,
Deng, Or Dgize that are non-dominated), and their corresponding score vector (i.e.
the vector containing the results of evaluating performance, energy, and size for that
speci ¢ HP). Please note that this vector is not limited in size and can be adjusted
based on the number of objective functions. These non-dominated points for this
iteration, create Dy, Set. In this step, assume that you would like to estimate a
completely new function using Bayesian optimization (intermediate Pareto function).
Bayesian optimization helps in estimating black-box functions with sets of observa-
tions. In the second level, this black-box function is a intermediate function that
changes in every iteration as we learn more about the isolated Bayesian estimators
in the rst level. To build a posterior model for this intermediate function, we re-
quire a likelihood model (i.e. our observations) and a prior model. Observations
are non-dominated HPs stored in theD p, Set. The prior Gaussian distribution
model uses these observations along with a score dedicated for each observation. In

Hierarchical-PABO we use a normalized summation of the score vectors for each HP,

23

and in this way, we represent a single score for each non-dominated point. We esti-
mate a Gaussian distribution for these non-dominated HPs (Fror® ,par) and their
corresponding scores IntPgr;, calculate an acquisition function AF,(IntPar)), and
optimize it. The optimum point of this acquisition function is the new HP that helps
moving the current Pareto to the corner. This new HP is then added to all isolated
Bayesian estimators in the rst level and help with improving those estimations. By
repeating this process, we move the intermediate function in the second level closer
to the corner and therefore actual Pareto region of the problem.

In the Hierarchical-PABO framework, there are two di erent stopping criteria.
One is after a prede ned number of iterations in the Hierarchical-PABO process, and
the other one is when the new observations (new set of hyperparameter) does not
improve the Bayesian estimation. This happens when the surrogate model (acquisi-
tion function) converges to zero and the optimum point of this acquisition function
cannot suggest a new set of hyperparameter that helps in exploring and exploiting

the search space.

24

Algorithm 1 Hierarchical-PABO (for triple-objective optimization: performance,
energy, size)

Notations:

Inputs:

Initialize:

AF : Acquisition Function; p-norm: jj:jjp; HP : hyperparameter;
n. iteration number; O: Observations; . estimated Pareto front set; Ix = f1;2;:5;K g
Three objective functions (performance, energy and size): fperf, feng, fsize
HP 4 : The set containing all possible combinations of hyperparameters (HPs)
Initial training datasets: ; ;
n 1
flag True
n= n= n=fhpl;hp2g, where setfhpl;hp2g is randomly selected from HP 4

On() [fpert(n):feng(n)ifsize()l

Dpert = : Set for storing all selected HPs for estimating f per

Deng = ; : Set for storing all selected HPs for estimating feng

Dsize = ; : Set for storing all selected HPs for estimating f gjze

Dintpar = ; : Set for storing all selected HPs for estimating IntPar (intermediate Pareto front)
LEVEL 1

1 Dperf = Dpert [ny Deng = Deng[n, Dsize = Dsize[n.
2: Posterior Gaussian distributions:
foart = P(fpert i(fperf s Dpert), Fong = P(féngi(fengiDeng)), fsize = P(fsizei(fsize; Disize))
while flag do
Calculate AFn(fpar), AFn(féng), AFn(fsze)

n+l
if

else:

= argmax AF n (f gerf), n+1 =argmax AFn (féng), n+1 =argmax AFn (fsze)
HP 4 HP 4 HP ay

n+#1 = n;and p+ = p;and pe1 = op
flag False

Dperf = Dperf [n+, Deng = Deng[n+l Dsize = Dsize [n+1.
Evaluate Opn+1(); On+1(); On+1 ()

LEVEL 2

10:

11:

13:
14:
15:
16:

17:
18:
19:
20:

calculate , =f8i2Ixj 1ig
(where On () are non-dominant points. Please note K maybe dierent in each iteration)
Dintbar = Dintpar [n
calculate On;norm (), (by normalizing each element of On() to [0;1])
IntPar n = 18§ 2 Ixj IntPari = jjOl.norm ii10
IntPar n = p(IntPar nj(IntPar ;D npar))
Calculate AF y, (IntPar)

n+1 =argmax AF,(IntPar) (Next best data set to move the current Pareto the corner)
HP

Dperf = Dperf [n+l Deng = Deng[n+l Dsize = Dsize[n+l -
Evaluate Op+1 ()

n n+1

update fgerf, féng, fsize, INtPar.

25

4. PABO FOR NON-SPIKING NEUROMORPHIC
SYSTEMS

In this chapter we use PABO as hyperparameter optimization framework to maximize
accuracy of a traditional ANN while simultaneously minimizing the energy require-
ments of a memristive crossbar-based underlying accelerator. The experiment and
its corresponding results are published in [25]. Details of the neural network archi-
tectures, an overview on the underlying accelerator, and how to estimate an abstract
energy consumption for this accelerator are given in this section. This is then followed

by the experimental setup, and results for three di erent case studies.

4.1 Arti cial Neural Network Architecture

Throughout this chapter we present arti cial neural network (ANN) architecture
with the following notation: for dividing layers, c for convolution layers, p for
pooling layers, andfc for fully connected layers. For example 128128 3 12c5
2p 100 is a four-layer ANN with 128 128 2 input followed by 12 convolution
Iters with size 5, a 2 2 pooling layer, and nally 10 output neurons. Details
of the AlexNet [31], and VGG19 [32], architectures for owerl7 [34] and CIFAR-
10 [37] datasets are given in Table 4.1, respectively. This table only shows a sample
architecture for AlexNet, and VGG19, and the architectures are modi ed based on

the hyperparameters given in the experimental setup for ANN.

4.2 Baseline Accelerator Overview

This section provides an overview of a memristive crossbar-based accelerator,

shown in Figure 4.1. Typical memristive accelerators employ a spatial architecture,

26

Table 4.1.: Details of ANN architectures used in the PABO for non-spiking neuro-
morphic systems experiments

| Name | Architecture |

227 227 3 96c5 p3 2563 p3 3843 3843 2563 p3 4096c
AlexNet
4096¢c 17fc
VGG19 32 32 2 64c3 64c3 p2 12&3 1283 p2 2563 2563 2563
2563 p2 5123 5123 51Z23 5123 p2 4096c 4096c¢ 100Gc

where the DNN is executed by mapping the model across the on-chip crossbar stor-
age in a spatial manner [7]. This is because the memristive devices have high storage
density, but are limited by the high write cost. Consequently, the high storage density
enables mapping DNNs spatially in practical die sizes while alleviating the high write
cost which would be required if a crossbar was reused for di erent parts of the model
in a time-multiplexed fashion. At the lowest level,N Matrix Vector Multiplication
Units (MVMUSs) are grouped into a single core. Each MVMU is composed of multiple
crossbars and performs a 16-bit 128 128 matrix-vector multiplication. Note that
multiple crossbars are needed to store high precision data required for DNN inference,
since typical memristive crossbars store low-precision data such as 2-bits [5,7]. At
the next level,M cores are grouped into a single tile with access to a shared memory,
which enables data movement between cores (inter and intra tile). At the highest
level, T tiles are connected via a network-on-chip that enables data movement be-
tween tiles within a single node. For large scale applications, multiple nodes can be

connected using suitable chip-to-chip interconnect.

4.3 PUMA Energy Consumption

We use an abstract energy consumption model to evaluate the e ciency for PABO,
where we consider the energy consumption of the MVMUs only. First, the abstract
model enables evaluating the impact of hyperparameter optimization while isolat-
ing the bene ts obtained from microarchitectural techniques. This isolation enables

widespread applicability where DNNs optimized with PABO can be executed over

27

Fig. 4.1.: High-level overview of PUMA [7] hybrid accelerator architecture

a wide range of memristive accelerators, where each accelerator may be leveraging
di erent data ow, compute to control granularity, etc. Second, while a typical mem-
ristive accelerator expends signi cant energy in shared memory, network on chip and
chip-chip interconnect due to the data movements in a spatial architecture, reduc-
ing the number of MVMU operations typically reduces the total energy consumption
commensurately [109].

A layer (fully connected or convolution layer) is partitioned into smaller blocks of
size N Nto ta MVMU (sized N N). Each layer will map across multiple MVMUs
that may span multiple cores and multiple tiles (see Figure 4.1). Further, a MVMU
may be used multiple times (once) for an input in a convolution layer (fully connected

layer) due to weight-sharing. Hence, the number of MVMU operations required to

28

execute an inference of deep neural network will depend on the several HPs such as
the number of layers, the number of extracted feature in each convolution layers, and

the kernel sizes in the network architecture (Equations 4.1, and 4.2).

num.xbarc = o d d & ki kig 4 NG g (4.1)
XS XS
num xbar f; = d'ie ¢ M (4.2)
XS XS

In these equationsnum xbar_c, and num _xbar_f; are number of crossbars for the
iy, convolution layer and the fully connected layers, respectively; is the dimension
of the output, nc; is the number of input features for convolution layeii. Similarly,
nf; is the number of input features for the fully connected layer. k; is the kernel
size iniy, convolution layer, andxs is the crossbar size. The ternd; in Equation 4.1
is for inherent weight-sharing property of convolution layers.

Typically, each memristive operation is followed by vector linear, vector non-linear
and data movement operations [7]. Consequently, the number of MVMU operations
is proportional to the overall energy consumption and can be used as a metric of
computational cost on hardware. We calculate the total energy consumption in each
convolution and fully connected layer based on the number of crossbar operations
using the following equations. In our selected memristive crossbar accelerator, a 16-
bit (inputs and weights) crossbar operation (size 128128) consumes' 44nJ energy.
epx is the energy per matrix vector multiplication operation. The sum of energy
consumption for all the convolution and fully connected layers is then used to calculate
the total energy consumption of the memristive crossbar accelerator (Equation 4.3).

X X
tot_engt = (num_xbar_¢ + num _xbar f;) epx (4.3)

i i
In this experiment, we used Equations 4.1 through 4.3 to calculate the total

hardware energy consumption for each combination of HP.

29

Table 4.2.. Evaluated parameters for three di erent case studies for using PABO on
ANN with PUMA as underlying hardware. ANN's accuracy, and PUMA's energy
consumption were the two objectives we optimized in these case studies

Case study one

Case study two ||

Case study three

Dropout 0:4, 05 0.5 Dropout, Layer 1 03, 04
Learning Rate 0001 Q001, Q01 Learning Rate 001, 01
Momentum 185, 09, 095 - Learning Rate Decay ¢ 6,1 4
Optimizer Momentum Momentum, Adam || Weight Decay Q0005, 005
of FC Layers 2,3 2,3 Kernel Size, Layer 6 3,5
of Conv. Layers 4,5 3,4,5 Kernel Size, Layer 7 3,5
Kernel Size, Layer 1 5 7 3,57 Kernel Size, Layer 8 3,5
Kernel Size, Layer 2 3,5 3,5 Kernel Size, Layer 9 3,57
Kernel Size, Layer 3 3,5 # of Features, Layer 1 64, 128
Kernel Size, Layer 4 3 3,5 # of Features, Layer 2 128, 256
of Features, Layer 4 256, 512
Architecture AlexNet AlexNet VGG19
Neural Accelerator PUMA PUMA PUMA
Dataset Flower17 Flowerl17 CIFAR10
Search Space 192 288 3072

4.4 Experimental Setup and Results

We performed several case studies for di erent types of hyperparameters, including

the number of layers, kernel sizes, number of features to extract in each layer, and

also the values for learning rate, momentum, and dropout.

Table 4.2 shows a summary of the selected ranges for the hyperparameters (HPs)

for three di erent case studies. All these cases are studied with PUMA [7] as the

underlying hardware. Case study one is designed with a small search space of size

192 HPs. We begin with the small search space size in order to estimate the actual

Pareto frontier of the problem with a grid search technique and to compare the PABO

result with other state-of-the-art approaches. Case study two is included to capture

the e ects of di erent types of HPs in the analysis, and case study three is a more

realistic experiment with VGG19 as the chosen architecture on CIFAR10 dataset.

30

4.4.1 Single-Objective Optimization

Before presenting the joint optimization results, it is imperative to answer the
guestion: Why one cannot rely on single objective optimization to minimize the
hardware energy consumption with maximum neural network accuracy? Figure 4.2
demonstrates the limitations of using independent single objective HP optimization
techniques to separately design a neural network with optimum performance and a

hardware with minimum energy requirements.

Fig. 4.2.. PABO for ANN on PUMA for case study two, single-objective optimiza-
tion results for Table 4.2, obtained using SKOPT [89] python Bayesian optimization
package. a. Optimizing HPs for hardware energy consumption only. b. Optimizing
HPs for ANN's performance only.

Figure 4.2a shows that designing an energy e cient hardware without optimizing
the network accuracy leads to signi cant decrease in the network performance (large
error). The selected HP set is reported after 40 evaluations of hardware energy
consumption. For this HP, the minimum energy is 7.8mJ, while the DNN's error is

92%. Similarly, in Figure 4.2b the network performance, in terms of reducing error,
is optimized without considering the energy consumption of the underlying hardware.

The ine cient hardware design is evident as the reported minimum error region occurs

31

at high hardware energy consumption. Both of these results are undesirable, and are
the main reasons to seek a multi-objective approach to nd HPs that minimizes
DNN's error while designing an energy-e cient hardware. We used SKOPT [89]
python package to solve these single-objective Bayesian optimization for AlexNet on

Flowerl7 dataset with HPs given in Table 4.2, case study 2.

4.4.2 Multi-Objective Optimization (PABO)

We used the proposed PABO algorithm to nd the optimum ANN accuracy while
minimizing the underlying memristive crossbar accelerator energy consumption on
three case study. In case study 1, we used AlexNet network with the Flower17 dataset
with a small search space of 192 HPs. The range of HPs are provided in Table 1. In
this case, we intentionally selected a small search space, so that we can estimate the
actual Pareto frontier using the grid search method. Figure 4.3 shows the results for
case study 1. In this gure, PABO's result compared with grid search, random search,
and state-of-the-art NSGA-II (Non-Dominated Sorting Genetic Algorithm) [43]. Red
triangles, blue dots, black squares and gray crosses correspond to PABO, random
search, NSGA-II, and grid search, respectively. Each point in the gure corresponds
to one evaluation of the noted techniques.

With only 17 evaluations (out of 192 possible sets of HPs), PABO estimates the
Pareto frontier (red dash line in Figure 4.3) for the HPs within 1-2% percent of the
actual Pareto set (gray line in Figure 4.3) obtained using the grid search method.
Compared to the NSGA-II approach, PABO not only estimates Pareto frontier more
accurately, but is also 92 faster. A comparison between the execution time for
di erent techniques is shown in Figure 4.4,

In Table 4.3, to further illustrate the impact of HPs, we summarized them for the
points A, B, C and D that are shown in Figure 4.3. Point A belongs to the Pareto
frontier of the network at which we obtained the optimum DNN performance and

hardware energy requirement. Point B corresponds to an HP set with minimized

32

Fig. 4.3.: PABO for ANN on PUMA for case study one: AlexNet on Flowerl17 dataset
with 192 possible set of HPs. Comparison between grid search for all HP combinations
(grey cross), random search with evaluating 40 di erent sets of HPs (blue dots),
NSGA-II with population size of 10 and maximum generation of 50 (black squares),
and PABO (red triangles). The red dashed line, gray line and the black dashed line
are the Pareto frontiers obtained by PABO, grid search and NSGA-II approaches.

energy requirement for hardware, while producing a sub-optimal DNN design. At
point C, HPs result in minimum DNN error but with an ine cient hardware design,

and the corresponding HP at point D neither optimizes the DNN performance nor
hardware energy consumption. It is clear from Table 4.3, that using a joint optimiza-
tion approach is indispensable for optimal design of both the DNN and the hardware.
Moreover, in this case study, selecting HPs given in point A (from Table 4.3) results
in up to 40% decrease in energy requirements for the memristive crossbar accelera-
tor compared to the case where DNN is not optimized for the hardware architecture

design (point E shown in Figure 4.3).

