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ABSTRACT

Commercial buildingsot only havesignificantimpacs o n 0 ¢ ¢ ubpiagbutasd we |

contribute tomore than 19% of the total energy consumption in théed States Along with
improvements in building equipment efficiency and utilization of renewable erbeyg has been
significant focus on the delopment of advancetieating, ventilation and air conditioning
(HVAC) system controllers that incorporate predictions (e.g., occupancy patterns, weather
forecasts)and current state informatioto execute optimizatiofased strategie§or example,
model predictive control (MPC) provides a systematic implementation option using a system
model and A optimization algorithm to adjust the control setpoints dynamicahlis approach
automatically satigéscomponent and operation constraints related to Imgjldynamics, HVAC
equipment, etcHowever, the wide adaptation atlvanced controlstill facesseveral practical
challenges such approaches involve significant engineering effort and requirepstgfic
solutions for complex problems that need to adeisuncertain weather forecast and engaging the
building occupants. This thesis explosesartbuilding operation strategies to resolve such issues
from the following three aspects.

First, the thesis explores stochastic model predictive control (SMP@gthodfor the
optimal utilization of solar energy in buildings with integrated solar systdims. approach
considersthe uncertainty in solar irradiance forecast over a prediction horizon, using a new
probabilistic time series autoregressive model, catida on the skgover forecast from a weather

service provider. In the optimal control formiiten, we model the effect of solar irradiance as

nonGaussian stochastic disturbance affecting the cost and constraints, and the nonconvex cost

function is an exgctation over the stochastic process. To solve this optimization problem, we

introduce a newproximate dynamic programming methodology that represents the optimal cost

to-go functions using Gaussian process, and achieves good solution quality. Wesosdadar

to evaluate the closddop operation of a buildirghtegrated system with a solassisted heat

pump coupled with radiant floor heating. For the system and clicoatgderedthe SMPC saves

up to 44% of the electricity consumption for heating winter month, compared to a walhed

rule-based controller, and it is robust, imposingslencertainty on thermal comfort violation.
Secondthis thesisexploresuserinteractive thermal environment control systems that aim

to increase energy effiaiey and occupant satisfaction in office buildings. Towards this goal, we

10



present a new modelirapproach of occupant interactions with a temperature control and energy
use interface based on utility theory that reveals causal effects in the human duaisiog
process. The model I's a utility funedatuen t hat
setpoints incorporating their comfort and energy use considerations. We demonstrate our approach
by implementing the usenteractive system in actualfafe spaces with an energy efficianodel
predictive HVAC controller. The results show thatthwthe developed interactive system
occupants achieved the same level of overall satisfaction with selected setpoints that are closer to
temperatures determinég theMPC strategy to reduce energy use. Also, occupants often accept
the default MPC setpdis when a significant improvement in the thermal environment conditions
is not needed to satisfy their preferen@ar results show thagheoccupant séan overr |
contribute up to 55% of the HVAC energy consumption on average with. MIR& prototype
use-interactive system recovered 36% of this additional energy consumption while achieving the
same overall occupant satisfaction level. Based on these findingsppase that the utility model
can become a generalized approach to evaluate the desigmilaf sisefinteractive systems for
different office layouts and building operation scenarios.

Finally, this thesis presenss approach based on metnforcemat learning (MeteRL)
that enables autmmous optimal building controls with  minimum engineering effortln
reinforcement learning (RL), the controller acts asagentthat executes control actions in
respons¢o the reatime building system status andbgenous disturbancescording ta policy.
The agent has the abilityy update the policy towards improving the energy efficiency and
occupant satisfaction based on the previously achieved control perfornracder toensure
satisfactory performanagoon deployment to a target builditige agents trainedusingthe Meta-
RL algorithmbeforehandwvith a model universe obtained from available building information,
which is a probability measure over the possible building dynamical m&tatiing fromwhat
is learnedn the training process, the agémen finetunes the policy to adapt to the target building
basedon-site observationsThe control performance and adaptability of MetaRL agentis
evaluatedusingan emulator of a private office spaoger 3 summemonths For the system and
climate under consideration, the Md&& agent can successfully maintain the indoor air
temperature within the first week, and result in only 16% higher energy consurimpttu 3°
monththan MPGC which serves athe theoreticaupper performance bouni.also significantly

outperformgheagents trained with conventiorfalL approach

11



1. INTRODUCTION

1.1 Background and motivation

Commercial buildings havsignificant impacts on humans and the environment. Not only
dothey affectoca pant s 6 ¢ o mf o r-ldeing bt they lare also respandibleviaaote |
than 19% of the total energy consumption in the US. Heating, Ventilati@hAir Conditioning
(HVAC) systems account for8% of energy consumption and 45% ohkeelectrical @mand in
commercial buildings and represent a substantial energy use reduction opp¢ELAItR019)
Along with improvements in building equipment efficierenyd utilization of renewable energy
deployment ofensors, actuators, and canikers, can achieve more than 30% aggregated annual
energy saving¢Fernandezt al, 2017),while 20% of commercial buildings peak load can be
temporarily managed or curtailed to provigied servicegKiliccote et al, 2016;Pietteet al,
2007) Due tothe promising results there has been significant focus on the development of
advanced HVAC controllershat incorporate predictions (e.g., occupancy patterns, weather
forecasts)and current state informatioto execute optimizatiofvased strategiesSuchcontrol
methods are capable of planning building system operatierextendederiods (e.g., hours and
days rather than minutes) and multiple spatial scales (e.g., occupant, zondyuidatg, campus)
(Braun, 1990Bengeeet al, 2012; Meaet al., 2012 Dong and Lam2014; Afram and Janai8harifi,
2014;Tanner and Henze, 201Ktirakhorli and Dong, 201,6Joe and Karava, 2019; Yaegal,
2020. Model Predictive Control (MPC) provides a systematic implementation option using a
system model and amptimization algorithm to adjust the control setpoints dynamicdlhjs
control approactautomatically satigés component and operation constraints related to building
dynamics, HVAC equipment, efgarciaet al., 1989;Mayneet al, 200Q Oldewurtelet al., 2012).
However, the wide adaptation of such control methods still faces several practical challenges.

The control objectives and constraintsMPC need tobe customized fospecific sites
considering the complex energpnversion schemes tlie advancedouilding systems, which
oftenleadsto nonconvex optimal control problertisat would impose challenges in finding high
quality control solutions€(g., Kelman & Borrelli, 2011; Corbiret al, 2013; Candanedo &
Athienitis, 2011; Liet al, 2015; Quintana &Kummert, 201%. In addition to thatfor buildings

with renewable energy systems whose performaaise depend on stochastienvironment

12



disturbances such as solar irradigribe optimal utilization of renewable energlgo requires
control algaithms tha make robustdecisionsunder uncertain weather forecqftetersen &
Bundgaard, 2014Garifi et al, 201§. Stochastic model predictive control (SMPC) Isa®wn
great potentials taddress the lattelO{dewurtelet al, 2012 Ma et al, 204). However, the
challenge remains textend the SMPC approach to efficiergbivenonconvex problemis order
to be generalizable for optimizing the operation of buildimggrated solar systems

On the other hand, the success of many of these contitdges is healy dependent on
how occupants interact with the building (Schweigeal, 2020). Occupant behaviors in high
performance buildings may be affected by many factors including occupant comfort (or
discomfort), social influences, or lack ofidwledge surronding building systems (Dagt al.,

2020). In that sense, it is essential to understand and possibly influence the way occupants interact
with environment control systems when eneefficient strategies such as MPC are implemented

If usersare neglectedrdm building control systems, then energy use may increase if systems are
overridden, or occupants may be less satisfied with their environment due to decreased thermal
comfort. Alternatively, if occupants understand the building and feglttrey are inglved in
environment control systems, then they may contribute to lower building energy use and they may
increase their overall satisfaction with the work environment (Janda, 2011). Thiwakwo
communication between the occupants and thieemaronment ontrol systemgan beenabled

by userinteractive systems that transform building occupants into service users who participate,
decide, provide, and receive feedback. With such systems in place, occupant satisfaction could be
improved (Day ad Heschong, 26) and their behavior could be potentially influenced by
implementing appropriatentervention techniques (Peschiehal, 2010; Delmas and Kaiser,

2014; Xuet al, 2017; Liet al, 2019).

Another issue that prevents MPC from being widatlopted in biding industry is the
extensive engineering time and effort required to develop the camieoited modelghat
represent the building system dynamikkerize, 2013Cigler et al, 2013; Killian and Kozek,

2016; Li and Wen, 20)4For this reasonreinforcement learningRL) has received attentiaiue

to its capacity to learto improve controthrough interacting with thenvironmen{by letting an
agent execute control actions and receive feedback in terms of control performangstemd s
states)without requiring a mode(VazquezCanteli and Nagy, 2019Vang and Hong, 2020).
However,asconventional RLapproachsolely relies on learning from esite data, andoes not

13



takes advantage of phyalkknowledge of the building systerfesg, construction anéquipment
specifications As a result,the required time-consuming learning process can make the
implementation of RLn buildingsinefficient or even impracticalL{u and Henze, 20G6 Yanget
al., 2015 Benedettiet al, 201§. ThereforedataefficientRL algorithns that allow learning from
existing building information need to be exploredile the recenttheoreticaladvancements in

themachine learning field towards this direction has made such options possible.

1.2 Objectives

The goal of thighesisis to exploreintelligentoperation schemes for smart buildinvgsile
addressing thdollowing realworld adaptationchallenges 1) Uncertain weather forecas?)
Engaging occupantsto make informed decisisnin their interactions wth buildings and 3)
Achieving optimal contra$ without extensive engineering effort and cosbwards this direction
the research is extended to the following specific objectives:

1. Develop a stochastic model predictive control framework that is robust to forecast
uncertainty fo optimal operation of buildings with integrated solar systems.
i. Develop a computationally inexpensive solar irradiance forecast model that utilizes
externalweather forecast information and quantifies the prediction uncertainty
ii. Deploy the approximate dgamic programmingADP) algorithmto effectively
solve the optimal control problem at each prediction horizon, where the nonconvex
cost function is an exped¢ian over a stochastic process.
iii. Examinethe stochastic model predictive controfleperformancen an emulator
that represents the actual buildimjegrated solar system
2. Develop asystematic approach tiesign interfacesf userinteractive systesthat aim to
increase energy efficiency and occupant satisfaction in office buildings
i. Understad and model the human decisioraking process in their interactions
with thermal environment control systems when energy efficiency strategies are
implemented
ii. Conductfield experimerg with humansubjects taeveal thecausal effect of the
factors (e.g.displayed energy use informatiosxpected comfort leveinvolved

in this process

14



iii. Deploy aprototypeuserinteractive system with a nowskb-interfacein a building
energy management system with a mgatedictive controller and demonstrate its
performance with regards to energy savings and occupant satisfaction

3. Develop a metareinforcement learningpproachto enableautomagd generabn of
optimalHVAC controk with minimum engineering effort.

i. ldentify a model universe, i.ea probability mesure ovethe possible building
dynamical modelsbased omvailable building informatioto train the agent

ii. Evaluate he control perfanance and adaptability of the agemta testbedand

compae theMetaRL approactwith conventionaRL andMPC.

1.3 Document overview

Chapter 2 presentsstateof-the-art literature review orthe building applications ahodel
predictive contrh reinforcement learninggnduserinteractive systes

Chapter 3 presentthe stochastic model predictive control algorithior the optimal
operation of buildings with integrated solar systems under forecast uncertairgyADP
algorithm that is used to s® the nonconvex stochastic optimal control problem, as well as the
forecasimodelthat quantifiesolar irradiance uncertay arediscussed in detail

Chapter 4 presentshe prototype userinteractive systemfor private office thermal
environment contll. Thefield experiment to evaluatee impact otheenergy use informatioon
theo ¢ ¢ u ptleermbssadsettingehavior ad energy saving potentialdescribped.ife occupant
decisionmaking model that reveals causal factoo:m the setpointtemperatureselections
considering their comfort and energy uspresented

Chapter 5 presents thmetareinforcement learninglgaithm that allows the automated
generation of optimal control policgaed onavailable building informationminimizing the
engineering effort and costThe control performance and adaptabilitf such approach is
presented andomparedvith conventionateinforcement learning and model predictive control in
a testbedoffice by emulation

Chapter6 includes potential extensions of this reseanstiideas for future work
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2. LITERATURE REVIEW

2.1 Model predictive control

Various studies from building researctefdture suggested that model predictive control

(MPC) has shown great potential in energy saving and maintaining indoor thermal comfort,

outperforming conventional control approaches such asbhaded control andight setback for

building heating ventildon and airconditioning (HVAC) systems (Oldewurteial , 201 2 ;
et al, 2011; MayOstendoret al, 2011; Privar&t al, 2011; Hu and Karava, 2014 MPC, an

optimal control problem that minimizes ahjective (e.g. energy consumption/costnperature

bounds violation) over a prediction horizon is solved at the beginning of each control horizon given

a building system dynamical model aogdated future disturbance information. This results in a

trajecory of optimal controls (e.g. heating/cog rate) and states (e.g. temperatures) into the

future satisfying the constraints tme equipment capacity, thermal comfort bounds, or any other

given criteria (Oldewurtedt al, 2012).

PAST FUTURE

A >

A

I— ‘ Prediction Horizon

Reference Trajectory
Predicted Output
Measured Output
Predicted Control Input
Past Control Input

! | 1 I I

k k+1 k+2

«—
Sample Time

Figure21. Theo movi ng hori zono

The optimal control problems in MPC must include the key features of the building system,

k+p

approach of. model

while being sufficiently simple to be comgationally tractable. In some studies, the optimal

cortrol problems were formulated with linear (Oldewurtdl al, 2012; Zhanget al, 2013;

Sturzeneggeet al, 2014) or quadratic (Privaeaal, 2011,

a n d et@li 201d kcyst functions,

and lineamodels representing the building dynamics. In thaseg, the problems could be solved
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using linear or quadratic programming with guaranteed convergence to global minima. However,
such simple problem formulations might not be applicable when the buidhargy systems
include complex energy conversion secles (Li et al 2015; Kelman and Borrelli, 2011,
Candanedeet al, 2013), or when other objectives or constraints are expressed by nonconvex
functions (e.g. peak load, indoor comfort, uncertainty) (Coebial., 2013; Maet al, 2012). For
example, in thecase of heat pumps, the coefficient of performance (COP) gratita are
multivariate polynomial functions of the source and load side temperatures (Vettatls2012;
Gayeskiet al, 2012), which can introduce nonconvexity in the cost and condinaittons.

Nonlinear programming solvers (Mat al, 2012) andglobal search algorithms such as
particle swarm (Corbiet al, 2013), pattern search (let al. 2015) and genetic algorithm (Wang
and Jin, 2000) have been employed to solve the nonconverabmontrol problems, but only
local optimality can be guaram®. It is important that an MPC can provide high quality control
solutions as it directly impagtenergy savings, as well as improvements in thermal comfort.
Attempts have been made to improtree solution quality of global search algorithms for
nonconvexproblems, such as tuning the hyperparameters by factorial experiment (Jagaalillo
2016), decision space discretization, seeding and taboo list (Garain2013). However, these
proceses are time consuming and require system specific expegtsmatinot be generalized for
other applications.

Typically, the contrelriented models that represent the building system dynamics are
physicsinformed (i.e. greybox, Braun, 1990; Oldewurtedt al,, 2012; Cai, 2015; Cai and Braun,
2016; Joe and Karavap29; Andriamamonjyet al, 2019 or datadriven (i.e. blackbox, Ferkl
andGi r,@&0; Privarat al, 2013 linear modelsSuch modelsare developed through system
identification experimentsivolving onsite collection of data including system temperes, heat
gains, and ambient environment conditions, ktegecent studies, machine learning (Migsed
building modelling techniques are applied in MPC and can achieve adequate levelaifopred
accuracy without requiring domaspecific knowledge. Heever, a large amount of data from
target buildings are still needed, and due to the complex model form such as deep neural networks,
the optimal control problems solved at each predictionzbariare nonconvex, and only local
optimality can be guarante¢Berreiraet al, 2012;Aswaniet al, 2012; Huangpt al, 2014;Jain
et al, 2017; Afram et al, 2017; Reynoldset al, 2018; Cheret al, 2018; Smarrat al, 2018;
Blnninget al, 2020;Yang et al, 2020. ML-based MPC approaches also seekrprove the
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controller adaptability by allowing continuous updates on the model with newly collected data
(Yanget al, 2020; Rouchieet al, 2019. However, no study evaluated its adaptability yet.

Uncertainty can be introduced to MPC applications indmgs in different ways, such as
uncontrolled disturbances, . e. forecasted we
affect the cost and/or constraints; future states predicted by contimied models that are not
perfectly accurate; and rarmcsensing errors during retiine implementation. From the previous
studies, we learnt that weather forecast (Heztza. , 2004) and occeughbant so
2012; Tanner, 2014; Oldewurtet al, 2013) have significant impact on MPC performance.
Therefore, uncertain disturbances forecast imposes challenges on MPC controller in predicting
uncertain future states and selecting for the current time the optimal controls that minimize the
cost and d#sfy the constraints in the future.

Stochastic modgpredictive control (SMPC) allows disturbances in forms of probabilistic
distribution and predicts the control strategies that minimize the expected cost and satisfy the
constraints with a predefined fability (i.e. chance constraint€harnes and Coopet959;
Oldewurtelet al, 2012; Zhanget al, 2013; Maet al, 20M4; Tanner, 2014 When the uncertain
disturbances are assumed to follow uniform distribution or Gaussian distribution, chance
constrains can be transformed to deterministic inequality constraints (Oldevetrétl 2012).
However, in reality the probability distributie of the disturbances are often f®aussian. In
those cases, sampbased approaches are employed to interpret chansg&raints as deterministic
for all the samples taken from the distributions of the disturbances, among which a selected number
of condraint violations were allowed to happen (Zha@l, 2013; Tanneand Henzg2014; Ma
et al, 2014).

2.1.1 Approximate dynamic programming

Optimal control problems at each prediction horizon of MPC can be solved using dynamic
programming (DP) (Bellman, 1954)hich is robust to the presence of ABaussian stochastic
disturbances in the cost and constraints, and achieves gotidrs quality. DP is implemented in
a receding horizon fashion and starts by estimating the optimal cost at the final time skegmand t
moves backwards using the JaeBleillman operatofDobbs & Hencey, 2014; Dong & Lam, 2014;

Lee et al, 201®; Puttaet al.,, 2015) In practice, DP requires solving recursively a series of

optimization problems yielding the optimal cost at each timp &ey., via the value iteration

18



algorithm). Also, instead of finding point estimates for optimal inputs, a major impeveby

DP is finding the optimal inputs as a sequence of functions of system states (policy functions) over
a prediction horizon. Dymaic programming can be solved in distributed way, where several
processors participate simultaneously in the computatibite maintaining coordination by
information exchange via communication links (Bertseka®51Zhanget al, 2016). This
approach regjres less computation time for solving optimal control problems with-high
dimensional state space, improving the efficig flexibility and scalability in the operation of
largescaled buildings or building clusters.

The technical difficulty of implememtg DP arises from the need to approximate the optimal
costto-go/policy functions based on a finite number of pairstates and potentially noisy cest
to-go/optimal control observations. The optimal cost can be parameterized, e.g., using polynomials
of a given degree, radial basis functions, neural networks (Bertsekas and TsitkilisMb#98t
al., 2015. The choice othe approximating family is important as the limited expressivity of
common function approximations may lead to suboptimal solutions. Previous research (Deisenroth
et al, 2009; Scheidegger and Bilionis, Z)Employed approximation schem#or the optimha
costto-go/control functions based on Gaussian process regression (GPR) (Rasmussen and
Williams, 2006). GPR is a powerful Bayesian, fgarametric regression method robust to the
presence of noise in the cdetgo observations. In the gwosed work, wemploy approximate
dynamic programming (ADP) to solve optimization problems, in which the nonconvex cost and
constraint functions are subjected to stochastic disturbances, while using GPR to approximate the

costto-go and policy functions.

2.1.2 Statistical weaher forecast for predictive control

The operations of building energy systems are strongly impacted by the outdoor weather
conditions. Therefore, especially for the case of predictive controls, a reliable weather forecast is
essential for raintaining indoo thermal comfort and being energy efficient. Statistical forecast
models have been widely used in building energy management applications. Typical weather
forecast models predict the future weather based on simple historical patterias sisohg the
sane data as the previous day, typical days of a month, etc. (lé€@aze2004). However, such
models do not capture nonlinear patterns such as the effect of cloud cover on solar irradiance

(Lazoset al, 2014). On the contrary, machine l@ag models traied with historical weather data,
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incorporate nonlinear patterns in weather variations and are better suited for predicting future
weather (Dong and Lam, 2014; Lanza and Cosme, 2001).

Extracting information from past profiles works welt feeather paranters with relatively
small variation from one hour to the next, such as temperature and relative humidity. However,
observable past patterns have limited influence on highly stochastic parameters such as solar
irradiance (Mathiesen and Késil, 2011). Inhiese cases, weather forecast services such as those
from the National Oceanic and Atmospheric Administration (NOAA) that measure various
meteorological parameters to generate predictions, can serve as baselines for predictive models
(Pedersn and Petersef017).

Previous studies developed weather forecast models that quantify the predictive uncertainty
and take into account external weather forecast information -sit®@measurements. Machine
learning approaches such as Gaussian proegssssion (Zavalet al, 2009; Bilioniset al, 2014,

Shann and Seuken, 2014), artificial neural networks (€hah 2011; Yadav and Chandel, 2012)

and support vector machines (Chakrabettgl, 2016) have shown promising results. However,
implementdon of such inbrmation in actual building controllers may require more
straightforward approaches based on easily measurable and accessible data. Autoregressive
models (Oldewurtett al., 2012; Zhangt al, 2013) are computationally efficient and capttire

physical mture of weather parameters (Lambsl, 2015). In the proposed work, autoregressive
process is utilized to model the cloud variability over time while the sky condition of clear; partly
cloudy, and overcast is classified using a prolslmiimodel bas# on the hourlyupdated weather

forecast.

2.2 User-interactive thermal environment control systens

In the literature, useanteractive systems refer to computer systems that support the
interactions between humans and the computer, which ovzuthe systents uirstesfaces
(Preeceet al 1994) . I n recent year s, such systems
participation in building automation. For example, smart thermostats in residential buildings allow
room setpoint scheduling $&d on occupangy us er s 6 -time htility rate, providinge a |
feedback on energy consumption/cost (Raal, 2016; Obinnat al, 2017). On the other hand,
in commercial buildings, most of these systems are focused on receiving input from accupant
(e.g., Daumet al., 2011; Erickson and Cerpa, 2012; Jazizaekehl, 2014; Ghahramarat al,

20



2014; Westet al, 2014; Brager and Arens, 2016; Lee al, 2019) rather than providing
information. An exception is the study by Zeitdral. (2009)which deployed a protgpe user
interactive system with an indoor environment control interface that shares HVAC energy use
information with occupants while collecting their feedback on thermal preferences. However, this
study only focused on the developmef hardware and sefre system architecture. Also, two

pilot studies by Konstantakopoulesal (2015, 2019) implemented useteractive systems with

social games, in which occupants could vote for their desired lighting and HVAC setpoints, and
get ewarded based on howergy efficient their voted strategies were. The-temaé energy use

data were accessible for the occupants from a web portal or mobile app. However, these studies

focused on game formulation rather than the-urgerface and energygedback design.

2.2.1 Usea-interface design

Providing information feedback has long been regarded ascrtical mechanism in
motivating individualend-usersto reduce their energy use voluntarMhile the vast majority of
thestudies focus on residential buildin@sg.,Sier et al, 1996;Emeakarohat al, 2014;Vellei
et al, 2016;Promann and BrunswickeR017, various disciplinesincluding humarcomputer
interactions (HCI), ubiquitous computing (ubicomp) and environmatal psychology,have
contributed indepth researcbn how feedback influences occupanteractions withcommercial
buildings regarding energy savingg&rom an environmental psychology perspective, a wide
variety of behavioral intervention approaches have been used. These approachdsomange
education bout energy uséMurtaghet al, 2013 Yun et al, 2013 Timm and Deal, 2016to
financial incentivegKonstantakopoulost al, 2015) competitiongRatliff et al, 2014;Gandhi
andBrager 2016) serious gamefrlandet al, 2014) peer comparison (Pdseraet al, 2006;
Zhanget al, 2013; Gulbinast al, 2014; Gulbinas and Taylor, 201dndengagenent usingsocial
media(Lehreret al, 2014) These studies primarilyoncentratedn theintervention's effect (e.qg.,
the resulting energy savings) inatieof thedesigned artifactn contrast, the HCl/ubicomp studies
focused on the design rathkean conductindeld studieofo ¢ ¢ u pbahaviogF@oehlich 2009;
Froehlichet al, 2010;Karlin et al, 2017). Initialmultidisciplinary work by Sanguinetet al
(2018) proposd a designbehaviorframework to guide the feedbaclesign, higlighting the

information provided to occupants, the timing of when this in&drom is presented, and how the
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information is displayed to the usexs critical componers to conside during the design of
building interfaces.

In this direction drawing on insightd§rom behavioral sciences and humr@omputer
interface desigrthere has been an increasing emphasisdisiduatlevel reattime (Gulbinaset
al., 2014;Gulbinas and Taylor, 204andinteractive(Zhuang and Wu, 20)}8edbackailored to
specific behavirs. It is reportedthato ¢ ¢ u pdaily interéction withoffice building thermostats
is usually habidriven rather than deliberate (Tetl@t al, 2015). Ther®re, thermostat setting
behavior can potentially be influenced through nudging, which istarvention approach often
adopted in the field of HCIGarabaret al, 2019). Nudging means alterihgmanbehaviorin a
predictable waypy subtlymodifying thecontext ofdecisionmakingwithoutforbidding any option
or significantlychanging their ecammic incentivgThaler and Sunstein, 200Rasperbauer2017;
Schweigeret al, 2020). One example of nudging is interactieedback thaprovides the
consequeres of behaviole.g., the potential increase of energy consumptairthe point of
decisionmaking that has been reported émcouragea moredeliberate thermostat setting
(Zhuang and Wu, 20)8

In summary, although the existing literature providedulsasights on the potential of
energy use feedback, a systematic approach is needed kopdeserinteractive systems that can
be successfully deployed in smart building operation. Our goal in this paper is to fill this gap in
knowledge by addressingd following objectives: i) identify the causal effect of the factors (e.qg.,
displayed energyse informationgexpected comfort levelthat describe the decision making
process of occupant interactiomsth thermal environment control systemg encode his
knowledge in a human decision making model that can be used to dsskgmteractive systems
thatmakeenergyefficientbehavior natural, easgnd intuitively understandable for the emskers
resulting in HVAC energy savings angeralloccupant sadfaction

For modelinghumandecisionmaking, a classical decisitimeorythat reveals the rationale
behind human behavids often adoptedBerger 2013. This theoryassumethatthe criteria for
choices among competing alternatives areelths on (us er. 6 s occupant 6s) pr
outcomes. The numerical representationpreferences are enabled by a utility function, which
maps each choice tosgalart h at g u a nt iutility ensthe butceme wfsthe chdise, and
decisionmaking can be ealized as the maximization of tegpectedutility (Von Neumann and
Morgenstern, 2007; Fishburn, 1970). Such approaches lbeen gaining attention ithe HCI
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community for user modeling (Payne and Howes, 2013; Jameisah, 2014), and care
leveragedo designuserinteractive systems fagmartthermal environment controkor causal
effects to be encoded in the modetntrol experiments, with and without implementing a
treatment (energy use information), are neetwin, 1974Holland, 1986 Pearl,2009)

2.3 Reinforcement learning

Reinforcement learning (RL) has been gaining attention as a promising approach in various
applications (Silveet al, 2018; Levineet al,, 2018), due to its capacity to learn through interacting
with the environment withoutrequiring an explicit mathematical model. Typically, in the
formulation of an RL problem for building control, the building temperatures, energy system status,
and exogenous variables (outdoor weather conditions, etc.) are treathd smtes of the
environment, and an RL agent learns by interacting with the environment. Such interaction
includes the agent executing control actions (e.g. changing HVAC system heating/cooling rate or
setpoint), which causes the transition of environlestiates; then rewds are assigned to the
agent based on the energy efficiency and/ or o0«
Based on the collected information on the past states, actions and rewards, the RL agent learns a
policy that tagets the maximizatio of the expected discounted sum of all future returns (Wang
and Hong, 2020; Vazquezanteli and Nagy, 2019; Mason a@djalva, 2019; Haret al, 2019).
Recent research in RL indicated great potential of applicability in differgatslef building
sysems, ranging from advanced energy systems (éaad, 2015; Lazicet al, 2018; Vazquez
Canteliet al,, 2019a) or zorevel controls (Wangt al, 2017; Jiaet al, 2019; Cheret al., 2019)
in commercial buildings, to residentialdtgoumps (Ruelenstal., 2015; Peirelinclet al., 2018),
holistic building systems control (adjusting HVAC, operable windows, ventilation, etc.) based on
feedback of multiple indoor environment metrics (Cheal, 2018; Dinget al, 2019; Parlet al,
2019), and demand respse in smart grid{fazquezCanteli et al, 201%). Some important
features in the mechanism of RL makes this approach appealing for use in building system controls:
(i) Compared to MPC, it avoids the lab@nd expertiséntensive proess of developing a
customizing for each building) highly accurate controénted models, while achieving good
control performance (Costanzet al |, 2016) . (i 1) The RL contro
environment could simplify the effort to maintaine controller oncé is deployed in the buildings.

Towards this direction, although more realistic scenarios need to be evaluated, the study by
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VazquezCanteliet al (2019a) initially demonstrated that RL controller is robust in terms of
adapting to canges in electricityariffs and building retrofits.

However, there are still significant barriers that prevent the wide adoption of RL controllers
in real buildings. In the early stages of implementation, due to the lack of RL algorithms that can
efficiently utilize histori@l data, the agent training process can be time consuming (multiple years),
making it impractical to implement online (Liu and Henze, 2008e; and Henze, 2006b;
Dalamagkidist al, 2007). Although the emergence of désgning algorithms\inih et al, 2015;

Mnih et al, 2016;Lillicrap et al, 2016; Schulmaat al, 2017) helped reduce the required training

time to multiple months, the stability of the control cannot be guaranteed when the training is still
premature ding these months(Zhang and Lan 2 8 ) . For exampl e, t he
control actions might result in unnecessary energy waste or discomfort on occupants. To mitigate
this issue, Liu and Henze (2006b) suggested to train the agent with an envireirmdator

before deploying it tactual buildings. Such approach has been adopted in majority of RL control
studies in building applications, and different types of models such abgxgy.eeet al, 201&)

and whitebox (Wanget al, 2017; Jieet al, 2019) have been used as environtremulators.
However, developing an environment simulator that can accurately predict the dynamical
responses of the actual buildimgould againrequire engineering efforand sufficient orsite
measured operation datan the other hand, although dirsctitilizing a standardized building

model (e.g. generic grdyox modelor reference buildings from EnergyPlus with empirically
determined model parameters) for this purpose can eliminate such effort, the impact of the
enviir onment simul atloirtsyd opmr etdh &€t agantgusa contr ol
building remains unstudied. Therefore, it is still unknown whether the adaptability of the agent can
overcome the biasness induced by potentially inaccurate environsimaaotator within a

reasonable ammt of time, without causing occupant discomfort and excessive energy waste.

2.3.1 Meta-reinforcement learning

With the recent development of metinforcement learning (Met8L, Finn, et al. 2017,
Duanet al, 2017; Nicholetal., 2018; Seemundssa@t al, 2018 Xu et al, 2018; Rakellyet al,
2019; Kirschet al, 2019), an RL agent is able to learn from a set of environments that share some
common characteristics (sampled from the same prior probability distribution). lelyitifvthe

agent can generalizealtto such set of environments, it can be expected to perform well on another
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environment that is sampled from the same prior probability distribution @tiah, 2017). So

far, MetaRL has been successfully demonsulatethe aforementioned studiesaoccelerate the
learning and adaptation compared to conventional RL techniques by optimizing the initial
parameters of the control policy executed by agent in gaming and robotics environments available
at OpenAl gym (Brocknanet al, 2016). In building catmol applications, although it is impractical

to develop an environment simulator with high level of prediction quality, it would be feasible to
identify the prior probability distribution of the environment (i.eodel wiverse) based on
existing knowlede of the buildings available esite (e.g. construction drawings, building
information model, etc.) or from various public datasets ([2€al, 2011; EIA, 2016; Miller and
Meggers, 2017; Balagt al, 2018; Milleret al, 2020). Therefore, with Met8L, learning over

the model universe that describes similar building spaces can potentially improve the control
quality, and achieve fast adaptation to a target building without developing an accuuddéosim

2.4 Research gaps

Based on the literature revidwom the previous sections, th@lowing research gapare
identified and addressed by the work of this dissertatkirst, in order to be generalizable for
optimizing the buildingntegrated solar sfem$ operation SMPC needs to (i) adopt ADP
algorithm to efficiently solve nonconverptimal controlproblemsintroduced by the complex
energy conversion schemes of energy systems; and (ii) include a computationally inexpensive
solar irradiance forecastodel for predictive controls that quantifies thedicgon uncertainty.

Seconduyserinteractive systesifor commercial buildingneedinterface design that can (i)
be intuitive for occupants to achieve energy saving; and (ii) incorporate behavioreintierv
approach that igasy to implemerguch as nuging. Also, asystenatic approactsupported by
utility theoryis neededo evaluateheinterface desigm terms of its predictable effect oscupant
behavior and energy saving potentith achieve th t the causal factors
decisior-making process using the interface must be understood

Third, MetaRL algorithm needs to bevaluateddue toits potential of enabling automated
generation of optimal building control strategragh minimal engineering effort by learning from
a model miverse To this end, identifying the model universe based on availabikling

informationsuch as buildingrawings alsameed to be explored
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3. MODEL PREDICTIVE CONTROL UNDER FORECAST
UNCERTAINTY FOR OPTIMAL OPERATION OF BUILDINGS WITH
INTEGRATED SOLA R SYSTEMS

3.1 Overview

In thisChapter we present a SMPC algorithm for buildings with solar systems cowgled
HVAC and thermal energy storage. The algorithm is implemented in an emulator to predict the
closedloop response of the integrated system to obntrputs, and to demonstrate optimal
decisions under uncertainty. Our approach is unique in the foljpaspects (i) It quantifies the
prediction uncertainty in solar irradiance using a new probabilistic-dgnies autoregressive
model that takesky-cover values from an external weather forecast service provider as input; (ii)
It extends approximate dyn&rprogramming (ADP) to solve optimization problems, in which
the nonconvex cost function is an expectation over a stochastic process, and proddetugion
guality using Gaussian process regression to approximate th®-gmsfunctions.

We introdue the SMPC algorithm in Sectia®i2, which includes the SMPC problem
formulation, the solar irradiance forecast model and the ADP that solves thelopbintrol
problem. In Sectior8.3, we present the implementation of the SMPC for a builditegrated
solar energy system. The performance evaluation of the SMPC and the uncertainty analysis are

presented in Sectich4.

3.2 Methodology

3.2.1 Stochastic model predttive control algorithm

Model predictive control for building energy systems aims to minimize theheging or
cooling energy consumption over a prediction horizon, while satisfying the constraints on
equipment capacity and room conditions affectingupant thermal comfort.

Foreach prediction horizon, the controller solves the following optimal dgmtoblem:

[ ETM Oboh o Rl h
h Bh

(3-1)
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subject to the dynamics:
) "Ho HI AT h (3-2)
and to the chance constraints:
MGy o Rl AT EPOQ ¢hm 6 0 p. (3-3)

The cost équation(3-1)) is a function of thetate variablego ), which include the system
temperatures at tim& the control inputs(given asl 0 at time0) such as heating or
cooling power; and thstochastic disturbancesincertain variables| ), e.g. random factors that
affect the solar irradiance that is an important energy source of buifdagrated solar systems.

The optimal input functions are known gslicy functiony ). The building and energy system
dynamics are also functions tifese three types of variables (equatio+2)j3 The prediction
horizon () over which optimal inputs are to be found via SMBGelected based on the system
properties.

In the presence of stochastic disturbances, chance constraints are deployed for handling
constraints violations on the state variabkgu@tion (33)) with low probability. Inthe cases of
building-integrated skar systems, such as sekssisted heat pumpthe feasible set of inputs is
also expressed with chance constraints, as equipment capacities are subjected to stochastic
disturbances. Thereforg, is the total number of chance constraints on the statamtrol inputs.

Note that irequationg3-1) and 8-3), the expectationé t are overl .In our work, the stochastic
disturbance]l hto the integrated energy system includesgolar heat gain to the building and a
2-D Gaussian noise term from a solar irradiance forecast model, which is presented in the

following section.

3.2.2 Solar irradiance forecast model

In this section, we preseatmodel that predicts the global horizonteddiance Q;):

G Or O, (3-4)
whereO ; andO j are direct and diffuse components of the horizontal irradiance, respectively.
From previous studies (e.Bilionis etal., 2014) we know that the global horizontal irradiance is
negatively correlated with the skypver, i.e., the fraction of the sky coedrby clouds. Let the
sky-cover at tim@be defined a® A Hourly forecasted values of skpver are obtaineffom

NOAA. Our model predicts the future global horizontal irradiance given-askgr forecast. It is
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stochastic in the sense that it quizes the predictive uncertainty in solar irradiance. This
uncertainty may be due to miskssification of the skcondition (clear, parthgloudy or overcast)
given the skycover, and due to the variability of the cloud formations.

We assume that the yskcover forecast values obtained from NOAA forecast are accurate
for a 24hour horizon. We model the cloud varilitgiby a 2D autoregressive process. Specifically,
the first dimension of this autoregressive process models the atmospheric factorscth#teblo
direct part of the horizontal irradiance while the seedimdension models the atmospheric factors
that blak the diffuse part. In the autoregressive process, the future state is expressed as a linear
function of the current state plus a Gaussiaorgéerm. Thus, the error can accumulate as the time
step increases, and the autoregressive process captures¢ase in solar irradiance uncertainty

within a prediction horizon.

ag = (ay0,24) r=(1,73,73)
a; = (ay,1,a21) o = (a3, a;)

ag = (ay azx) O = (01,02)

Figure3.1. Solarirradiance forecast model

The model we propose (Figusel) has the following form:
@ Hhw Oy it OFE @iy PR @ O st OE Qi h (35)
whereO; 5 andOj j are the cleasky direct and diffuse horizontal irradiance, which are
analtically known and depend on the location, time of the day, day of the year, etc. (Bird and
Hulstrom, 1981)H Wi is a 2D autoregressive procedsat modulates the cleaky
irradiances through the sigmoid functiorE ¢ @ is a discrete random process corresponding

to the sky condition (clearc{ 1), partlycloudy @ 2), or overcastd 3)),p t is the

characteristic function of aset(p w pif @™ 0 and 0 otherwise), and the indicator ftion
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it a t i t is defined byi p plp hi(2) =(0,0), and 0 pht . More specifically,
when the sky condition is cleagd( p), the direct and diffuse horizontal solar irradiances are
equal toclearsky direct and diffuse haontal solar irradiance, respectiveNthen the sky
condition is partlycloudy @ ), the direct and diffuse horizontal irradiances are only a fraction
of the clearsky direct and diffuse horizontatadiance. When the sky condition is overcast (
0), the direct horizontal irradiancé&)(};) is 0. Thus, the global horizontal irradiance is only a
fraction of the cleasky diffuse horizontal irradiance.

For a certain value of the skypverO A any of the three condition§) plthor o, are
possible as the skyover value is a spatial averagithe fraction of the sky covered by clouds
To model this uncertainty, we assume that the probability of the sky conditimpends only on

the skycoverO Avia a logistic regre$sn expression:

neo DA 9 3 9 h Q phhos
(3-6)
where the parametersi andi are to be inferred. The latenfRautoregressive procesd)is
given by
O AT (37)
®r | ®f . arh (3-8)

whered G phx; is a 2D Gaussian noise, and the parametefs h, and, are to be
inferred. The initial probability distribution of the autoregressive process is:
ner  Grs h h (3-9)
nor ~ ©zs h h (3-10)
where® & h, is the probability distribution function (PDF) of a univariate Gaussian

distribution with mean and standard deviatign; and, are two additional parameters,
which also need to be inferred from the data.

To train our model, we use skpver (O A input) and global horizontal irradiandgQ;
output) measurements from the typical meteorological year (IMidtaset\Wilcox andMarion,
2008 at the location of interest (West Lafayette, [)e unknown prameters to be estimated are

“h h A h h A A A .Ourmodelis ancfinear and norGaussian statgpace model

(SSM). Thehidden state i8l @R, and the observed state'@,. One of the key
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challenges in égnation of parameters of a nonlinear and @&ewussian SSM is the intractability
of estimating the system statSequential Monte Carlo (SMC) methods (Goreoral., 1993;
Kitagawa, 1996), known as particle filters, provide a robust solution to the ramBgstem
identification problem (Schoet al, 2015).The key challenge that drives the problem of parameter
estimation is how to deal with the difficulty that the states ar@amk (hidden). To handle this
problem, we make use of the data augmentaticategyy, which treats the states as auxiliary
variables that are estimated together with the parameters.Xpbetation maximization (EM)
algorithm solves the maximum likelihood formulation in this way (Dempstte., 1977). The
maximum likelihood formlation amounts to finding a point estimate of the unknown parameters

, for which the observed data is aselik as possible. This is done by maximizing the data
likelihood function according to:

AJCAD 1 Qg 8 (3-11)

We wish to find the unknown parameters values based on &atch of ' Ymeasurements
For more details on how to use the EM algorithm for parameter estimation in SMC models, we
refer readers to the paper by Schlbal. (2015). After maximizing the likelihood (Dahlet al.,
2015), we get point estimates of paraeng which best fits the observed data and are given as:
=(0.2,0.15,0.1,0.1,6,01,-7,0, 7).

We present the evaluation of our mogetdictions on a validation dataset for three days
(March 13" -15" 2015). The dataset is considered repradime as it contains a full range of
values (8100%) for skycover, which is the sole input to our model. Therefore, we can observe
the predictve distribution of global horizontal irradiances given different-efiyer conditions
from the validation dat&s. As for factors such as seasonal variation, location, etc., we consider
them to be encoded in the clear sky irradiance model by Bird anddtal&i981). Figur8.2 (left)
shows the skyover forecast values for the aforementioned days obtained atof @ach day,
respectively; thesaxis index points represent hours with high-skyer forecast values (i.e., high
probability of being overcast)n March 18, moderate skgover forecast values (i.e., high
probability of being parthcloudy) on March 14 and low skycover forecast values (i.e., high
probability of being clear) on March #5Figure 3.2 (right) compares model predictions with
global solar irradiance values measured on the roof of the Herrick Laboratory building at Purdue
University campuswith a pyranometer (LCOR LI-200). In this figure, the solid (blue) line

represents a random solar irradiance time series sample from thetipeedistribution of our
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model. The model quantifies the uncertainty associated with predictions, reprase¢hedraph

by the shaded (blue) area95" sample percentile from 1000 samples). The uncertainty of our
model prediction shown in FiguBe2 (right) is (i) low when the skgover forecast indicates clear
(low sky-cover values, close to 0) or overcdsgh skycover values, close to 100%) conditions;
and (ii) high for partlycloudy conditions (moderate skyver values, 300% in Figure3.2, |€ft).
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Figure3.2. Sky-cover forecast obtained at 6 am of edaly (left) and global horizontal
irradiance prediction samples (right) (March 13", 2015).

3.2.3 Approximate dynamic programming

In this section, we present the approximate dynamic programming methodology for the
solution of the optimal control problem dabed withequationg3-1) to (3-3).
Consider a system with state space variables) O s and dynamics given bgquation
(3-2), to which a set of feasible contréls' > ¢ is applied. This set of admissible contrdlso
is described bgquaion (3-3). Let us define as the set of all admissible policies, i.e.,
L h Eh s q°ca & ovH oHovns8 (3-12)
Fora“ N L, each element of“ defines the control function (or deicis function) at time
o. If the initial state i® , then the expected additive cost over the time horizon corresponding to

a policy” N is:
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(3-13)
where the expectation iser the disturbancé . A typical assumption for this disturbance, is that:
n1sly Mg o8 (3-14)

This assumption is valid for theolar irradiance model presentedSection3.2.1. The explicit
dependence of this probability to time is due to the-tilmeendent NOAA skgover forecast) A
The 2D autoregressive proceds, can be thought as part of the system stgtand the stochastic
disturbane "I includes the solar heat gain to the building, and the independent Gaussian
disturbances ti .
We wish to minimizeequation(3-13) over the policy set. The optimal cost functiod” t

is defined by:

6° 6 | Ed o 8 (3-15)
The optimal policy* © may depend on the initial stade, but under very general conditions, when
an optimal policy exists, it is independent of the first state (Bertse85). We dine theoptimal
costto-go function at time, 6 0 , as the cost incurred by the optimal policy from tiridl the

end of the prediction horizon, i.e.,

0° 0 I ET MO0 oh o hl 8
(3-16)
It can be shown tha@t® 6 must satisfies the Bellman equation:
6" 0 "|I"JE’T M0 6 RIAT 6° "HoRIhl 8 (3-17)
N [0}

This recursive relation suggests a powerful numerical scheme for solving dynamic
programming problems. Specifically, one starts from the finattoego,6° t  in our case,
and follows the recursion defined lpguation(3-17) backwards fod 0 phB8 ht, each time
estimating the unknown functiol’ t from the knownd® t . This is known as thealue
iteration algorithm and it can only be implemented in an approximate way. First, we choose the
function class within which the optimal cestgo functiors are to be approximated. Second, we
choose a finite, but well distributed, setlofcollocation points using Latin hypercube sampling

(LHS, Iman, 2008) in the state spageon which we evaluate the rightind side oéquation(3-
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17). Thatis, we solve a separate nbimear constrained stochastic optimization problem on each
one of these points. The expectation oVeiis approximated using a sampling average. Third,
using he collected data, we approximate the next optimattcegd function within the selected

class and proceed with the recursion. In AlgoritBrh, we present these three steps while in

Appendix A, we discuss the mathematical details.

Algorithm 3.1: Value iteration algorithm

Inputs: Plan horizonK),
Number of décrete points in state spadé)(
Number of irradiation sampleBl)
Time series samples of uncertain parametgrdTj

Outputs: Optimal value/costo-go functiong6®> 6 M E R )
Optimal policy functions*(* h FEh )

Generata) discrete points in the state spacasingLHS (given asy ).
O U p
while 0 1t do:
for eacho in i
Solve optimization problem over control varialll¢Details in Appendix A)

end for
Learn costo-go function g hand policy function  from the optimized contiovariables

at points im  using Gaussian process regression (Details in Appendix A)

0O 0 p

3.3 Application to building -integrated solar system control

3.3.1 Building-integrated solar energy system

The buildingintegrated solar energy system iswhdn Figure 33. It includes a building
integrated photovoltaic (BIPV/T) system withcorrugated unglazed transpired solar collector
(UTC) that enables oBite generation of solar power and heat. The load side of -4oraater
heat pump(Swegon Maroor2 MT29) is connected to a thermal energy storage (TES) tank,
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providing hot water to a radiant floor heating (RHF) system that is used to condition golapen
office space in Herrick Laboratories building at Purdue campus. The outlet air from the Ug<€ serv

as he source side for the heat pump. These three components (BIPV/T, TES tank, RFH) are the
integrated solar system within the context of this pafiee.thermal output of the BIPV/T system
increases the COP of the heat pump and reduces the ventdagagyuse. Assuming constant
ventilation rate and supply air temperature, the benefits from the BIPV/T system are fixed, hence
only the increase of the heat pump COP is considered in the optional control formAatodel

for the integrated energy sgs isdeveloped in TRNSYS (Kleiet al, 2011) and Table BL in
Appendix B provides information for the basic settings and details are preselited &h (2015)
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——= N

Thermal Radiant floor Heating load
B heating [

== Electricity energy flows
= Thermal flow
— Environmental disturbances

—

Occupancy Weather

Figure3.3. Thebuilding-integratedsolarenergy system

The building is modeled with TRNSYS type 56. Settings for the ventilation, shading control,
air and floor surface temperatures are provided in TaldléA&ppendix B).The building envelope
properties are extracted from drawingise RFH sysem is modeled using component type 653
(mode 2) with a water flow rate of 400 kg/hr, coupled with & 10’ES tank (TRNSYS type 60)
based on the recommendations provided bytLal (2015), which examined the interactions
between design and cook parameters. The BIPV/T system covers the top section of the south
building facade (plenum area) to facilitate potential placement of the ducts, heat pump, and TES
tank on the roof. The available area for the BIPV/T systemiis 69 he photovoltai¢PV) paels
have a nominal power of 0.108 kiN/ (Day4 Energy Inc., model: DAY418MC). For the UTC

configuration with PV panels, the PV panel coverage ratio is 90%, based on optimal design

34



recommendations by Li and Karava (2014), which providesi58.available PVarea with 6.32

kWp (kilowattpeak) capacity. The electricity generated by the BIPV/T system is used to cover the
energy needs of the building or be sold back to the grid. The BIPV/T system is incorporated into
TRNSYS as a usatefined compond, using theenergy models presented indtial. (2014).

3.3.2 Optimal control problem formulation

Based on the system details presented in the previous section, we formulate the system
specific stochastic model predictive control problem. The control var{@bl is the total heating
power provided by the ato-water heat pump and the backup heater (when needed). The objective
function is the expected value of the accumulated electric energy consumption over the prediction
horizon, which is the sum of thedectricity consumption from the ato-water heat pump and the
backup heater. The backup heater has a maximum capacity 6f 5000 watts and efficiency of
90% ¢ ). Itis installed in the TES tank in case of insufficient heating from the leap.prhus,
the cos at a given time steip equation(3-1) is:
0 6 ho RQ;
R oflh R R oflh g
o fAlh g

= (Mt o h1A

¢
S
Q
o
o
¢
o -
=4
=
Q

=
SR WE#E 6 (# [ O0hlIRQ 8
(3-18)
The COP and maximum heating capacity/{  of the heat pump are functions of the
solar irradianceQ;) and outdoor dry bulb temperature (through the outlet air temperature of the
BIPV/T collector,”Y ), and the tank temperatufe’ ), which is one of the system states. A

BIPVIT colledor model (Liet al, 2014)incorporated in the controller receives information on the
predicted solar irradiance from the forecast model (Se8tibf), along with the outdoor dry bulb
temperature forecast, and calculat®¥s “Y | 1 "TRQ, during the prediction horizon.
Therefore, the COP ar{d#  are both functions of the system states, exogenous inptarid
disturbances:
#/ 00RNIHG, @unupodW ; mWrogy ; mITL Y T
TMImityt  ™®rnpyw Y §,
(3-19)
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MInip p Mty 'Y i,
(3-20)
6 rohlRg (# poOoRAQ 0 8 (3-21)
Equationg3-19) and (320) show that the efficiency and capacity of the heat pump increase
as’Y increases. fie loworder system model used in the controller is shown in Appendix B
(Figure B1) while additional details are provided indtial.(2015). The system dynamiasgiven

by:

0 oAl = |6 T |7, (3-22)
"y
where’l ¥ 8Y is the outdoor dry bulb temperature from the NOAA weather forecast. We
) 'O

do not considethe forecast uncertainty 6l as it is typically smaland would have negligible
impact on this heavy thermal mass systgmo is the internal heat gain, which isnsidered
known based on the building operation schedule (Appendix B, Tabje Bhe variableSY and

“Y represent the ambient tempemre of the TES tank and air temperature of the adjacent zone,
respectively, and are assumed to be constanta  h| ~s  h| na and| v A

are time invariant matrice¥he state vector of our system is,

o
)
: [
o w
Y g
WROTS
uwp U

Y §-

where'H Wihd is the state of the solar irradiance model (Sec8¢hl),”Y is the
average envelope temperature of the roofn, is the room air tengrature,’Y  is the average
floor slab temperaturéy is the average tank temperatubes. discussed in &tion3.2.1, the
stochastic disturbance corresponds to theR Gaussian noise, sdy, perturbingH as well as

to therandom sky conditio®. Therefore, we have
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where the function®;, ‘HF is the global horizontal irradiance (see Sect®®.1), while
’Q uq r]

building interior surfacesr)  (Klein et al, 2011).

5¢

gives the solar heat gain on the flogr  as well as other

e

>5¢

We use seven chance constmsi X on the temperature states and feasible sets of
control inputs. To determine their proper form, we examine the distributions of these variables
under 1000 uncertain solar irradiance samples. For the temperature states, even in the most
uncertin case whe® A 1@, most of the samples are concentrated around the expected value
(Figure3.4). Therefore, the following constraints impose minimum bounds on the expected room,
floor and tank temperatures,

Moor Y mh (3-23)

¢
5¢

yielding, with the notation aéquation(3-3),

"Qr 0 Al "Q 6 hl "Y i h (3-24)
for Q pMB fo. Similarly, the constraints l®v impose maximum bounds on the expedtteitding
temperatures,

Yom Mo mh (3-25)
yielding
QRoBR Y g QOMF R (3-26)
whered andd ;  are knowrbased on the values and schedglesn in Appendix B Table
B.1. Finally, we enforce with high probability the control bounds with the following constraint:
~mt 6 6  ohlRg HRD p | h (3-27)
wherel is a small number corresponding to our tolerance for violating this constraint. As an

expectation, this probability can be expressed by:

VP& omRgtr O P [T (3-28)
wherep t is the characteristic function of a st In the notation ofequation(3-3), this

constraint can be expressed as:
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O 0AL P gp.er O P I8 (3-29)

In the most uncertain scenario wh@h 1@, the distribution of the heating capacity value
range is from 26 kW to 31 kW with most of the sampleshe two ends (Figurg4). Therefore
in equation(3-29), a small value 0f=1% isused to ensure that, with 99% of the probability, the

control inputd does not exceed the equipment capacity.
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Figure3.4. Histogramsof global horizontal irradiance, room temperature, heat pump capacity
and COP under 1000 irradiance samplegx(0.5,6 = 15 kW, Y=18 ,"Y ;=213 ).

Figure3.5 shows the flow chart of the control algorithm. At the beginoirgach simulation
time step of 1 hour, the algorithm reads the initial temperature states from TRNSYS and it also
receives weather forecast information (skywer, outdoor dry bulb temperature, etc.) for the future
0 24 hours of the prediction horizoBptimal controldecisions are made every 1 hour (control
horizon) between 6:0Qra. to 20:00 pm.
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Figure3.5. Optimal control algorithm.

3.3.3 Optimal control problem solution

This section presents the implensitn of the value iteration algorithm for solving the
optimal control problem detailed in the previous section. Each run yields policy functions that
predict the optimal control for each time step in the prediction dworiz

Following the procedure outkd in Algorithm3.1 (Sectior3.2.2), the statspace has been
di scretized for computiniQgepdi anhdepoli mayebunonct
four variables in the state space (tank, room, floor andl@pwetemperatures) are used for
calculating the cost at each time step, while the dependence of th®-gostunctions on other
variables is negligible, and thereby not considered.

To obtain the collocation points irdimensional state spac&;, and”Y are sampled
using Latin hypercube sampling (LHS) as a {awmmensional vector varying between their
temperature bounds (Appendix B TablelB As shown in Figur@.6, samples are uniform for
Y and’Y .Y is geneally higher thaiY  while”Y is usually lower. Therefore, the
state variables representiy and”Y are sampled from exponential distributions with
location parameters (1 for the floor temperatude;for the envelope tempduae) and scale

parameters (1 fdboth) chosen to keep deviations arour®?@ from”™Y . A sample size of 500
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was deemed sufficient to represent the state space for these simulationand™Y  have the
most significant impact on the ergy consumption, and are thus used feualizing the value

iteration algorithm.
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Figure3.6. Distributionof 500 collocation points in-dimensional temperature space for
implementation of value iteraticagorithm at a time step.

The solar irradiance model presented in Se@i@rl generatell =100 irradiation samples
at each time step of 1 hour for a paitin horizon ofd = 24 hours. At each time stépn a
prediction horizon, we evaluate the rigtand side of the Bellman equatio8X7) at each
collocation point using alb irradiance samples at the time step (see Appehdiguation(A-3)).
Each ewaluation requiresolving a stochastic optimization problem (details in Se@i8rR) with
respect to the optimal control at that time step. We parallelize t#00 optimization problems
to solve at time step using MPI4Py (Daleinal.,2008); while erploy agradientla s ed o6 py Opt
solver (Perezt al, 2012) to achieve further efficiency by providing the analytical derivatives of
objective function and constrainifter evaluating all the points at a time step, we collect those
collocation points as injis and the corsponding optimal cogb-go values and optimal controls
as outputs to approximate the next optimal togjo and policy functions, respectively. This is
carried out via GPR in GPy modulglensmanet al, 2012) We use squareéxponential
covariance functins in the GPRand we maximize the marginal likelihood to find the optimal
hyperparameters following the method describedhapfer5 of (Rasmussen and Williams, 2006).
More details regarding GPR and the evaluation of #ighd side of the Bellman equati are
presented in Appendix A. After completing the approximation of-tmlegb and policy functions
at timeo, we move to time step p and repeat the evaluation and approximation procedures with
updated disturbances (sedgérithm 3.1). In this way, the ADP algorithm is implemented in
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receding horizon fashion to obtain sets of policy functions, while theteffduture predictions
is captured in the approximated value and policy functions. The policy function at tharfast
step of the prediction horizon is used for generating the optimal control for the building system.

The algorithm deals with necontwllable scenarios via mimax controls, which means if
no feasible control input can keep the temperature stateis wihstraints for the next time step,
we apply the minimum (for ovdreating) or maximum (for undéreating) feasible input. To
visualizethe costto-go functions, we only show results fof and”Y  as the function values
are found to vary primdyi in these dimensions.

Figure3.7 details the evolution of the cetstgo functions across the prediction horizon. We
observe thathe use of mirmax type control inputs reduces as the simulation moves to lower time
steps. This elicits the effect of Igar time horizon in reducing the energy consumption in the
system. The cost increases as the number of time step decreases bauzlugdestenergy costs
incurred by the system at future points of time when it receives optimal control inputs. At lower

time steps, the estimated cost increases as room and tank temperatures decrease.
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Figure3.7. Contour plotsilemonstrating evolution of cest-go function at time step 1, 8, 16, 24
as computed using value iteration algorithm (irradiation samples at 0:00 of 18 January 2017,
Y =208 ,°Y =20).

The expensive part of policy fumah computation at each stepthe optimization at each
collocation point, which requires several evaluations of the-tigatn d si de of Bel | ma
The optimization problems at the 500 collocation points are parallelized to reduce the computation
time. A single evaluation dhe righthand side of the Bellman equation for one collocation point
can take about 0.4 minutes with our current Python implementation. After parallelizing the 500

collocation points to 100 nodes of the Rice supercomputingferlat Purdue Universityhe
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comput ati ontod o dnee wd | wWatoisdn at a time step take

complete ADP solution for a 2dour prediction horizon takes about-80 minutes in average
considering the system operati®echedule from 6.m. to 20 pm. All the processes can be sped up
by implementing in a lower level language and augmenting the parallelization ability. For this
control approach to be implementable in +&ale building operation, access to cloud computatio
services is required. Theource code for the ADP we implemented in this study can be found in
Paritoshet al (2017).

3.4 Performance analysis

In this section, we present the emulation process that we use to evaluate the SMPC based on
two aspects: (i) Compiag its performance, in ters of energy savings and comfort maintenance;
and (ii) Analyzing the uncertainty on the energy consumption and thermal comfort violation

associated with the stochastic disturbance.

3.4.1 Emulator

We deploy the emulation framework stroin Figure3.8 toevaluate the performance of the
SMPC for the integrated solar system. Physical models for the building, BIPV/T system, RFH,
and TES tank are built using TRNSYS. The ddtaen heat pump model is developed in
MATLAB. The predictive conbller is developeth Python and it is coupled with TRNSYS Type
155 using MATLAB as the migdvare. Real time actual weather data are used as inputs to the
physical models in TRNSYS. At every control horizon between 6:00 ta 20:00 pm., the
controller pedicts the optimaheating system operation by running ahtrhorizon ADP
solution and sends the control signal to the heat pump and the backup heater.-Every 1
emulation timestep in TRNSYS, it takes about 31 to 42 minutes to complete. This @scilmbut
1 to 2 mindes for the communication between MATLAB and Python, and 30 to 40 minutes
required for an ADP solution. Therefore, considering 1 hour of control horizon, our solution can

be implemented to an actual controller for the integrated sgdters.
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Figure3.8. Systememulation diagram.

3.4.2 Control performance

In this section, we present the performance evaluation results. The SMPC uses the solar
forecast model to quantify the uncertainty in sol@adiance while thephysical models in
TRNSYS receive measured weather data. A benchmark control strategy is the theoretical
performance bound (PB), in which we assume that the actual weather condition is perfectly known
in advance. Therefore, both the totler and TRNSY Seceive measured weather data. The ADP
algorithm is implemented to obtain optimal control solutions. HoweverjsP&8 theoretical
concept rather than an actual controller. A vietled rulebased control (RBC) with control
decisions basd on the outdoor dibulb temperature and skypver forecast values is also used as
baseline. It follows the solar energy availability so that the energy system achieves high efficiency
(Candanedo, 2011). The details of the RBC are presented in AppendiR4hour predicton
horizon is implemented for the SMPC and PB. The same initial temperature states are used for all
cases. To eliminate the effect of initial states, we use-aipnglation period of five days.

The temperature exceedan(@e 3 -hr) accading to ASHRAE Standard 55ASHRAE &

ANSI, 2017) and electricity consumption (in kWh), are used as performance metrics. In this study,
both the total temperature exceedance (including occupied and unoccupied hours) and the
temperature exceedance at ocedghoursare considered:
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YY B Y Y Yo, (3-30)
where"Y is the operative temperaturedrn; Y is the setpoint temperaturean; Yois the time
step in hour. The occupied hours we consideredignstiidy are from 8:00.m. to 18:30 pm.

We consider a thregay emulation, based on the weather data shown in F3gur®uring
this period Feb. £i Feb. 3, 2017) the outdoor drpulb temperature varies from03 to 4.5 N
the first day is relatidg warm and partlycloudy with high uncertainty on the solar irradiance
predictions (for details see Secti®d.1) and the following two days are relatively cold and sunny

(high probabiliy of sky condition being clear).

1500 15
T.
1250 I, 10
Ngmoo - A !ﬁ\\ 5
O (I [\ [G]
S 750 o <
% [ | ‘» /) iy
|\ / P
= 500 |\ e (‘\‘,—5
250 | IS B "
B ANEE I

RERIERENR

O O ® ® ® O P
QQ'.Q ,\r);9 QQ'.Q ,\r);.Q 03'9 \q,'.Q 00'9
2N oA 0N N N
Time

Figure3.9. Outdoor dy bulb air temperature and incident solar irradiance on the south fagade
during the threelayemulation (Feb.Sti Feb. 3, 2017).

The emulation reults for the SMPC (Figurg.10, top) show that the heat pump operat
starts at 6.an. on Feb. $with nearly maximum system capacity due to the anticipated increase in
the setpoint temperature during the occupied hours and, therefore, the tank is charged in advance.
Along with a slight tank charge in the afternoore 8tored energy is sufficient toaintain the
temperature for the rest of the day. Another reason for the intense chargenavbFReb. 'is
that, the uncertainty on the solar irradiance forecast is high on the upcoming hours based on the
sky-cover faecast (range from 40% to 80%)ceived at 6.a. In order to meet the lower setpoint
bound on the temperature states under uncertain disturbances, the SMPC controller follows a more
conservative operation schedule. In contrast, for PB (F@ufs middlg, the heat pump operates
with less power at 6.1@. on Feb. 1. Based on the perfectly accurate weather information, the cost
is reduced when the heat pump operation is postponed till the afternoon when sufficient energy

can be stored even for the followi day.
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Due to the different pumoperation on the previous day, the starting tank temperature on
Feb. 29at 6 am. in SMPC is lower than that in PB. Therefore, for SMPC, thar6 eharge is
repeated on Fel'@with less intensity, and the heat pump Is0aON during the sunny hours in
anticipation of the outdoor temperature decrease in the evening. While in PB, the heat pump
operation on Feb."is not required as the TES tank has been chatgsatig during the previous
day.

On Feb. 3, the startingank temperatures at 6va are $milar in both SMPC and PB. The
sky-cover forecast indicates parityjoudy condition (high uncertainty in irradiance) in the morning
and high probability of being sunny in the afternoon (low uncertainty in irradiance) fditectbe
heat pump operates nilysin the afternoon sunny hours for both cases to store energy at increased
efficiency for discharge at night. The higher heat pump power in SMPC in the morning can be
explained by the high solar irradiance uncertainthatime.

In RBC (Figure3.10, ottom), the operations are designed to follow the solar availability to
take advantage of the increased system COP, while also considering the outdoor dry bulb
temperature (details in Appendix C). Therefore, the heat pusgnisiuously ON from 6.an. to
20 pm. every day at the power rate ranging from 3 to 6 kW.
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Figure3.10. Temperaturegsheating and electrical powfar the threeday emulation of SMPC,
PB and RBQFeb. i Feb. ¥, 2017).

Emulations were also performed for a winter month (Jafi.ta6eb. 18, 2017) for the
three cases discussed above and the results are shown i8.Tablgring this period, the outdoor
dry bulb temperature varies froib53 to 18 . Owerall, SMPC resultms slightly less temperature
exceedance (3.22-hr in occupied hours) but higher electricity consumption (57.28 kWh, 34.7%)
over a month compared to PB.
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