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ABSTRACT 

Commercial buildings not only have significant impacts on occupantsô well-being, but also 

contribute to more than 19% of the total energy consumption in the United States. Along with 

improvements in building equipment efficiency and utilization of renewable energy, there has been 

significant focus on the development of advanced heating, ventilation, and air conditioning 

(HVAC) system controllers that incorporate predictions (e.g., occupancy patterns, weather 

forecasts) and current state information to execute optimization-based strategies. For example, 

model predictive control (MPC) provides a systematic implementation option using a system 

model and an optimization algorithm to adjust the control setpoints dynamically. This approach 

automatically satisfies component and operation constraints related to building dynamics, HVAC 

equipment, etc. However, the wide adaptation of advanced controls still faces several practical 

challenges: such approaches involve significant engineering effort and require site-specific 

solutions for complex problems that need to consider uncertain weather forecast and engaging the 

building occupants. This thesis explores smart building operation strategies to resolve such issues 

from the following three aspects.  

First, the thesis explores a stochastic model predictive control (SMPC) method for the 

optimal utilization of solar energy in buildings with integrated solar systems. This approach 

considers the uncertainty in solar irradiance forecast over a prediction horizon, using a new 

probabilistic time series autoregressive model, calibrated on the sky-cover forecast from a weather 

service provider. In the optimal control formulation, we model the effect of solar irradiance as 

non-Gaussian stochastic disturbance affecting the cost and constraints, and the nonconvex cost 

function is an expectation over the stochastic process. To solve this optimization problem, we 

introduce a new approximate dynamic programming methodology that represents the optimal cost-

to-go functions using Gaussian process, and achieves good solution quality. We use an emulator 

to evaluate the closed-loop operation of a building-integrated system with a solar-assisted heat 

pump coupled with radiant floor heating. For the system and climate considered, the SMPC saves 

up to 44% of the electricity consumption for heating in a winter month, compared to a well-tuned 

rule-based controller, and it is robust, imposing less uncertainty on thermal comfort violation. 

Second, this thesis explores user-interactive thermal environment control systems that aim 

to increase energy efficiency and occupant satisfaction in office buildings. Towards this goal, we 
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present a new modeling approach of occupant interactions with a temperature control and energy 

use interface based on utility theory that reveals causal effects in the human decision-making 

process. The model is a utility function that quantifies occupantsô preference over temperature 

setpoints incorporating their comfort and energy use considerations. We demonstrate our approach 

by implementing the user-interactive system in actual office spaces with an energy efficient model 

predictive HVAC controller. The results show that with the developed interactive system 

occupants achieved the same level of overall satisfaction with selected setpoints that are closer to 

temperatures determined by the MPC strategy to reduce energy use. Also, occupants often accept 

the default MPC setpoints when a significant improvement in the thermal environment conditions 

is not needed to satisfy their preference. Our results show that the occupantsô overrides can 

contribute up to 55% of the HVAC energy consumption on average with MPC. The prototype 

user-interactive system recovered 36% of this additional energy consumption while achieving the 

same overall occupant satisfaction level. Based on these findings, we propose that the utility model 

can become a generalized approach to evaluate the design of similar user-interactive systems for 

different office layouts and building operation scenarios.  

Finally, this thesis presents an approach based on meta-reinforcement learning (Meta-RL) 

that enables autonomous optimal building controls with minimum engineering effort. In 

reinforcement learning (RL), the controller acts as an agent that executes control actions in 

response to the real-time building system status and exogenous disturbances according to a policy. 

The agent has the ability to update the policy towards improving the energy efficiency and 

occupant satisfaction based on the previously achieved control performance. In order to ensure 

satisfactory performance upon deployment to a target building, the agent is trained using the Meta-

RL algorithm beforehand with a model universe obtained from available building information, 

which is a probability measure over the possible building dynamical models. Starting from what 

is learned in the training process, the agent then fine-tunes the policy to adapt to the target building 

based on-site observations. The control performance and adaptability of the Meta-RL agent is 

evaluated using an emulator of a private office space over 3 summer months. For the system and 

climate under consideration, the Meta-RL agent can successfully maintain the indoor air 

temperature within the first week, and result in only 16% higher energy consumption in the 3rd 

month than MPC, which serves as the theoretical upper performance bound. It also significantly 

outperforms the agents trained with conventional RL approach.  
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 INTRODUCTION  

1.1 Background and motivation 

Commercial buildings have significant impacts on humans and the environment. Not only 

do they affect occupantsô comfort, health, and well-being, but they are also responsible for more 

than 19% of the total energy consumption in the US. Heating, Ventilation, and Air Conditioning 

(HVAC) systems account for 28% of energy consumption and 45% of peak electrical demand in 

commercial buildings and represent a substantial energy use reduction opportunity (EIA, 2019). 

Along with improvements in building equipment efficiency and utilization of renewable energy, 

deployment of sensors, actuators, and controllers, can achieve more than 30% aggregated annual 

energy savings (Fernandez et al., 2017), while 20% of commercial buildings peak load can be 

temporarily managed or curtailed to provide grid services (Kiliccote et al., 2016; Piette et al., 

2007). Due to the promising results, there has been significant focus on the development of 

advanced HVAC controllers that incorporate predictions (e.g., occupancy patterns, weather 

forecasts) and current state information to execute optimization-based strategies. Such control 

methods are capable of planning building system operation over extended periods (e.g., hours and 

days rather than minutes) and multiple spatial scales (e.g., occupant, zone, whole-building, campus) 

(Braun, 1990; Bengea et al., 2012; Ma et al., 2012; Dong and Lam, 2014; Afram and Janabi-Sharifi, 

2014; Tanner and Henze, 2014; Mirakhorli and Dong, 2016; Joe and Karava, 2019; Yang et al., 

2020). Model Predictive Control (MPC) provides a systematic implementation option using a 

system model and an optimization algorithm to adjust the control setpoints dynamically. This 

control approach automatically satisfies component and operation constraints related to building 

dynamics, HVAC equipment, etc. (Garcia et al., 1989; Mayne et al., 2000; Oldewurtel et al., 2012). 

However, the wide adaptation of such control methods still faces several practical challenges. 

The control objectives and constraints of MPC need to be customized for specific sites, 

considering the complex energy conversion schemes of the advanced building systems, which 

often leads to nonconvex optimal control problems that would impose challenges in finding high-

quality control solutions (e.g., Kelman & Borrelli, 2011; Corbin et al., 2013; Candanedo & 

Athienitis, 2011; Li et al., 2015; Quintana & Kummert, 2015). In addition to that, for buildings 

with renewable energy systems whose performance also depend on stochastic environment 
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disturbances such as solar irradiance, the optimal utilization of renewable energy also requires 

control algorithms that make robust decisions under uncertain weather forecast (Petersen & 

Bundgaard, 2014; Garifi et al., 2018). Stochastic model predictive control (SMPC) has shown 

great potentials to address the latter (Oldewurtel et al., 2012; Ma et al., 2014). However, the 

challenge remains to extend the SMPC approach to efficiently solve nonconvex problems in order 

to be generalizable for optimizing the operation of building-integrated solar systems. 

On the other hand, the success of many of these control strategies is heavily dependent on 

how occupants interact with the building (Schweiger et al., 2020). Occupant behaviors in high 

performance buildings may be affected by many factors including occupant comfort (or 

discomfort), social influences, or lack of knowledge surrounding building systems (Day et al., 

2020). In that sense, it is essential to understand and possibly influence the way occupants interact 

with environment control systems when energy-efficient strategies such as MPC are implemented 

If users are neglected from building control systems, then energy use may increase if systems are 

overridden, or occupants may be less satisfied with their environment due to decreased thermal 

comfort. Alternatively, if occupants understand the building and feel that they are involved in 

environment control systems, then they may contribute to lower building energy use and they may 

increase their overall satisfaction with the work environment (Janda, 2011). This two-way 

communication between the occupants and thermal environment control systems can be enabled 

by user-interactive systems that transform building occupants into service users who participate, 

decide, provide, and receive feedback. With such systems in place, occupant satisfaction could be 

improved (Day and Heschong, 2016) and their behavior could be potentially influenced by 

implementing appropriate intervention techniques (Peschiera et al., 2010; Delmas and Kaiser, 

2014; Xu et al., 2017; Li et al., 2019).  

Another issue that prevents MPC from being widely adopted in building industry is the 

extensive engineering time and effort required to develop the control-oriented models that 

represent the building system dynamics (Henze, 2013; Cígler et al., 2013; Killian and Kozek, 

2016; Li and Wen, 2014). For this reason, reinforcement learning (RL) has received attention due 

to its capacity to learn to improve control through interacting with the environment (by letting an 

agent execute control actions and receive feedback in terms of control performance and system 

states) without requiring a model (Vázquez-Canteli and Nagy, 2019; Wang and Hong, 2020). 

However, as conventional RL approach solely relies on learning from on-site data, and does not 
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takes advantage of physical knowledge of the building systems (e.g., construction and equipment 

specifications). As a result, the required time-consuming learning process can make the 

implementation of RL in buildings inefficient or even impractical (Liu and Henze, 2006a, Yang et 

al., 2015; Benedetti et al., 2016). Therefore, data-efficient RL algorithms that allow learning from 

existing building information need to be explored, while the recent theoretical advancements in 

the machine learning field towards this direction has made such options possible. 

1.2 Objectives 

The goal of this thesis is to explore intelligent operation schemes for smart buildings while 

addressing the following real-world adaptation challenges: 1) Uncertain weather forecast; 2) 

Engaging occupants to make informed decisions in their interactions with buildings; and 3) 

Achieving optimal controls without extensive engineering effort and cost. Towards this direction, 

the research is extended to the following specific objectives: 

1. Develop a stochastic model predictive control framework that is robust to forecast 

uncertainty for optimal operation of buildings with integrated solar systems. 

i. Develop a computationally inexpensive solar irradiance forecast model that utilizes 

external weather forecast information and quantifies the prediction uncertainty. 

ii.  Deploy the approximate dynamic programming (ADP) algorithm to effectively 

solve the optimal control problem at each prediction horizon, where the nonconvex 

cost function is an expectation over a stochastic process.  

iii.  Examine the stochastic model predictive controllerôs performance in an emulator 

that represents the actual building-integrated solar system.  

2. Develop a systematic approach to design interfaces of user-interactive systems that aim to 

increase energy efficiency and occupant satisfaction in office buildings. 

i. Understand and model the human decision-making process in their interactions 

with thermal environment control systems when energy efficiency strategies are 

implemented. 

ii.  Conduct field experiments with human-subjects to reveal the causal effect of the 

factors (e.g., displayed energy use information, expected comfort level) involved 

in this process. 
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iii.  Deploy a prototype user-interactive system with a novel web-interface in a building 

energy management system with a model-predictive controller and demonstrate its 

performance with regards to energy savings and occupant satisfaction.  

3. Develop a meta-reinforcement learning approach to enable automated generation of 

optimal HVAC controls with minimum engineering effort.  

i. Identify a model universe, i.e. a probability measure over the possible building 

dynamical models, based on available building information to train the agent. 

ii.  Evaluate the control performance and adaptability of the agent in a test-bed and 

compare the Meta-RL approach with conventional RL and MPC. 

1.3 Document overview 

Chapter 2 presents a state-of-the-art literature review on the building applications of model 

predictive control, reinforcement learning, and user-interactive systems. 

Chapter 3 presents the stochastic model predictive control algorithm for the optimal 

operation of buildings with integrated solar systems under forecast uncertainty. The ADP 

algorithm that is used to solve the nonconvex stochastic optimal control problem, as well as the 

forecast model that quantifies solar irradiance uncertainty are discussed in detail.  

Chapter 4 presents the prototype user-interactive system for private office thermal 

environment control. The field experiment to evaluate the impact of the energy use information on 

the occupantsô thermostat setting behavior and energy saving potential is described. The occupantsô 

decision-making model that reveals causal factors on the setpoint temperature selections 

considering their comfort and energy use is presented.  

Chapter 5 presents the meta-reinforcement learning algorithm that allows the automated 

generation of optimal control policy based on available building information, minimizing the 

engineering effort and cost. The control performance and adaptability of such approach is 

presented and compared with conventional reinforcement learning and model predictive control in 

a test-bed office by emulation. 

Chapter 6 includes potential extensions of this research and ideas for future work. 
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 LITERATURE REVIEW  

2.1 Model predictive control 

Various studies from building research literature suggested that model predictive control 

(MPC) has shown great potential in energy saving and maintaining indoor thermal comfort, 

outperforming conventional control approaches such as rule-based control and night setback for 

building heating ventilation and air-conditioning (HVAC) systems (Oldewurtel et al., 2012; ĠirokĨ 

et al., 2011; May-Ostendorp et al., 2011; Prívara et al., 2011; Hu and Karava, 2014). In MPC, an 

optimal control problem that minimizes an objective (e.g. energy consumption/cost, temperature 

bounds violation) over a prediction horizon is solved at the beginning of each control horizon given 

a building system dynamical model and updated future disturbance information. This results in a 

trajectory of optimal controls (e.g. heating/cooling rate) and states (e.g. temperatures) into the 

future satisfying the constraints on the equipment capacity, thermal comfort bounds, or any other 

given criteria (Oldewurtel et al., 2012).  

 

 

Figure 2.1. The ómoving horizonô approach of model predictive control (Wang, 2009). 

 

The optimal control problems in MPC must include the key features of the building system, 

while being sufficiently simple to be computationally tractable. In some studies, the optimal 

control problems were formulated with linear (Oldewurtel et al., 2012; Zhang et al., 2013; 

Sturzenegger et al., 2014) or quadratic (Prívara et al., 2011, and Ġiroky et al., 2011) cost functions, 

and linear models representing the building dynamics. In these cases, the problems could be solved 
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using linear or quadratic programming with guaranteed convergence to global minima. However, 

such simple problem formulations might not be applicable when the building energy systems 

include complex energy conversion schemes (Li et al. 2015; Kelman and Borrelli, 2011; 

Candanedo et al., 2013), or when other objectives or constraints are expressed by nonconvex 

functions (e.g. peak load, indoor comfort, uncertainty) (Corbin et al., 2013; Ma et al., 2012). For 

example, in the case of heat pumps, the coefficient of performance (COP) and capacity are 

multivariate polynomial functions of the source and load side temperatures (Verhelst et al., 2012; 

Gayeski et al., 2012), which can introduce nonconvexity in the cost and constraint functions.  

Nonlinear programming solvers (Ma et al., 2012) and global search algorithms such as 

particle swarm (Corbin et al., 2013), pattern search (Li et al. 2015) and genetic algorithm (Wang 

and Jin, 2000) have been employed to solve the nonconvex optimal control problems, but only 

local optimality can be guaranteed. It is important that an MPC can provide high quality control 

solutions as it directly impacts energy savings, as well as improvements in thermal comfort. 

Attempts have been made to improve the solution quality of global search algorithms for 

nonconvex problems, such as tuning the hyperparameters by factorial experiment (Jaramillo et al., 

2016), decision space discretization, seeding and taboo list (Corbin et al., 2013). However, these 

processes are time consuming and require system specific expertise that cannot be generalized for 

other applications. 

Typically, the control-oriented models that represent the building system dynamics are 

physics-informed (i.e. grey-box, Braun, 1990; Oldewurtel et al., 2012; Cai, 2015; Cai and Braun, 

2016; Joe and Karava, 2019; Andriamamonjy et al., 2019) or data-driven (i.e. black-box, Ferkl 

and ĠirokĨ, 2010; Privara et al., 2013) linear models. Such models are developed through system 

identification experiments involving on-site collection of data including system temperatures, heat 

gains, and ambient environment conditions, etc. In recent studies, machine learning (ML)-based 

building modelling techniques are applied in MPC and can achieve adequate level of prediction 

accuracy without requiring domain-specific knowledge. However, a large amount of data from 

target buildings are still needed, and due to the complex model form such as deep neural networks, 

the optimal control problems solved at each prediction horizon are nonconvex, and only local 

optimality can be guaranteed (Ferreira et al., 2012; Aswani et al., 2012; Huang et al., 2014; Jain 

et al., 2017; Afram et al., 2017;  Reynolds et al., 2018; Chen et al., 2018; Smarra et al., 2018; 

Bünning et al., 2020; Yang et al., 2020). ML-based MPC approaches also seek to improve the 
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controller adaptability by allowing continuous updates on the model with newly collected data 

(Yang et al., 2020; Rouchier et al., 2019). However, no study evaluated its adaptability yet. 

Uncertainty can be introduced to MPC applications in buildings in different ways, such as 

uncontrolled disturbances, i.e. forecasted weather and random occupantsô behavior, which can 

affect the cost and/or constraints; future states predicted by control-oriented models that are not 

perfectly accurate; and random sensing errors during real-time implementation. From the previous 

studies, we learnt that weather forecast (Henze et al., 2004) and occupantsô behavior (Ma et al., 

2012; Tanner, 2014; Oldewurtel et al., 2013) have significant impact on MPC performance. 

Therefore, uncertain disturbances forecast imposes challenges on MPC controller in predicting 

uncertain future states and selecting for the current time the optimal controls that minimize the 

cost and satisfy the constraints in the future. 

Stochastic model predictive control (SMPC) allows disturbances in forms of probabilistic 

distribution and predicts the control strategies that minimize the expected cost and satisfy the 

constraints with a predefined probability (i.e. chance constraints, Charnes and Cooper, 1959; 

Oldewurtel et al., 2012; Zhang et al., 2013; Ma et al., 2014; Tanner, 2014). When the uncertain 

disturbances are assumed to follow uniform distribution or Gaussian distribution, chance 

constraints can be transformed to deterministic inequality constraints (Oldewurtel et al., 2012). 

However, in reality the probability distributions of the disturbances are often non-Gaussian. In 

those cases, sample-based approaches are employed to interpret chance constraints as deterministic 

for all the samples taken from the distributions of the disturbances, among which a selected number 

of constraint violations were allowed to happen (Zhang et al., 2013; Tanner and Henze, 2014; Ma 

et al., 2014). 

2.1.1 Approximate dynamic programming 

Optimal control problems at each prediction horizon of MPC can be solved using dynamic 

programming (DP) (Bellman, 1954), which is robust to the presence of non-Gaussian stochastic 

disturbances in the cost and constraints, and achieves good solution quality. DP is implemented in 

a receding horizon fashion and starts by estimating the optimal cost at the final time step and then 

moves backwards using the Jacobi-Bellman operator (Dobbs & Hencey, 2014; Dong & Lam, 2014; 

Lee et al., 2018b; Putta et al., 2015). In practice, DP requires solving recursively a series of 

optimization problems yielding the optimal cost at each time step (e.g., via the value iteration 
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algorithm). Also, instead of finding point estimates for optimal inputs, a major improvement by 

DP is finding the optimal inputs as a sequence of functions of system states (policy functions) over 

a prediction horizon. Dynamic programming can be solved in distributed way, where several 

processors participate simultaneously in the computation while maintaining coordination by 

information exchange via communication links (Bertsekas, 1995; Zhang et al., 2016). This 

approach requires less computation time for solving optimal control problems with high-

dimensional state space, improving the efficiency, flexibility and scalability in the operation of 

large-scaled buildings or building clusters. 

The technical difficulty of implementing DP arises from the need to approximate the optimal 

cost-to-go/policy functions based on a finite number of pairs of states and potentially noisy cost-

to-go/optimal control observations. The optimal cost can be parameterized, e.g., using polynomials 

of a given degree, radial basis functions, neural networks (Bertsekas and Tsitkilis, 1995; Mnih et 

al., 2015). The choice of the approximating family is important as the limited expressivity of 

common function approximations may lead to suboptimal solutions. Previous research (Deisenroth 

et al., 2009; Scheidegger and Bilionis, 2019) employed approximation schemes for the optimal 

cost-to-go/control functions based on Gaussian process regression (GPR) (Rasmussen and 

Williams, 2006). GPR is a powerful Bayesian, non-parametric regression method robust to the 

presence of noise in the cost-to-go observations. In the proposed work, we employ approximate 

dynamic programming (ADP) to solve optimization problems, in which the nonconvex cost and 

constraint functions are subjected to stochastic disturbances, while using GPR to approximate the 

cost-to-go and policy functions. 

2.1.2 Statistical weather forecast for predictive control 

The operations of building energy systems are strongly impacted by the outdoor weather 

conditions. Therefore, especially for the case of predictive controls, a reliable weather forecast is 

essential for maintaining indoor thermal comfort and being energy efficient. Statistical forecast 

models have been widely used in building energy management applications. Typical weather 

forecast models predict the future weather based on simple historical patterns such as using the 

same data as the previous day, typical days of a month, etc. (Henze et al., 2004). However, such 

models do not capture nonlinear patterns such as the effect of cloud cover on solar irradiance 

(Lazos et al., 2014). On the contrary, machine learning models trained with historical weather data, 
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incorporate nonlinear patterns in weather variations and are better suited for predicting future 

weather (Dong and Lam, 2014; Lanza and Cosme, 2001).  

Extracting information from past profiles works well for weather parameters with relatively 

small variation from one hour to the next, such as temperature and relative humidity. However, 

observable past patterns have limited influence on highly stochastic parameters such as solar 

irradiance (Mathiesen and Kleissl, 2011). In these cases, weather forecast services such as those 

from the National Oceanic and Atmospheric Administration (NOAA) that measure various 

meteorological parameters to generate predictions, can serve as baselines for predictive models 

(Pedersen and Petersen, 2017).  

Previous studies developed weather forecast models that quantify the predictive uncertainty 

and take into account external weather forecast information or on-site measurements. Machine 

learning approaches such as Gaussian process regression (Zavala et al., 2009; Bilionis et al., 2014; 

Shann and Seuken, 2014), artificial neural networks (Chen et al., 2011; Yadav and Chandel, 2012) 

and support vector machines (Chakraborty et al., 2016) have shown promising results. However, 

implementation of such information in actual building controllers may require more 

straightforward approaches based on easily measurable and accessible data. Autoregressive 

models (Oldewurtel et al., 2012; Zhang et al., 2013) are computationally efficient and capture the 

physical nature of weather parameters (Lazos et al., 2015). In the proposed work, autoregressive 

process is utilized to model the cloud variability over time while the sky condition of clear, partly-

cloudy, and overcast is classified using a probabilistic model based on the hourly-updated weather 

forecast. 

2.2 User-interactive thermal environment control systems 

In the literature, user-interactive systems refer to computer systems that support the 

interactions between humans and the computer, which occurs via the systemsô user-interfaces 

(Preece et al., 1994). In recent years, such systems have been introduced to enable occupantsô 

participation in building automation. For example, smart thermostats in residential buildings allow 

room setpoint scheduling based on occupancy, usersô habit, or real-time utility rate, providing 

feedback on energy consumption/cost (Rau et al., 2016; Obinna et al., 2017). On the other hand, 

in commercial buildings, most of these systems are focused on receiving input from occupants 

(e.g., Daum et al., 2011; Erickson and Cerpa, 2012; Jazizadeh et al., 2014; Ghahramani et al., 
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2014; West et al., 2014; Brager and Arens, 2016; Lee et al., 2019) rather than providing 

information. An exception is the study by Zeiler et al. (2009) which deployed a prototype user-

interactive system with an indoor environment control interface that shares HVAC energy use 

information with occupants while collecting their feedback on thermal preferences. However, this 

study only focused on the development of hardware and software system architecture. Also, two 

pilot studies by Konstantakopoulos et al. (2015, 2019) implemented user-interactive systems with 

social games, in which occupants could vote for their desired lighting and HVAC setpoints, and 

get rewarded based on how energy efficient their voted strategies were. The real-time energy use 

data were accessible for the occupants from a web portal or mobile app. However, these studies 

focused on game formulation rather than the user-interface and energy feedback design.   

2.2.1 User-interface design  

Providing information (feedback) has long been regarded as a critical mechanism in 

motivating individual end-users to reduce their energy use voluntarily. While the vast majority of 

the studies focus on residential buildings (e.g., Siero et al., 1996; Emeakaroha et al., 2014; Vellei 

et al., 2016; Promann and Brunswicker, 2017), various disciplines, including human-computer 

interactions (HCI), ubiquitous computing (ubicomp), and environmental psychology, have 

contributed in-depth research on how feedback influences occupant interactions with commercial 

buildings regarding energy savings. From an environmental psychology perspective, a wide 

variety of behavioral intervention approaches have been used. These approaches range from 

education about energy use (Murtagh et al., 2013; Yun et al., 2013; Timm and Deal, 2016) to 

financial incentives (Konstantakopoulos et al., 2015), competitions (Ratliff et al., 2014; Gandhi 

and Brager, 2016), serious games (Orland et al., 2014), peer comparison (Peschiera et al., 2006; 

Zhang et al., 2013; Gulbinas et al., 2014; Gulbinas and Taylor, 2014), and engagement using social 

media (Lehrer et al., 2014). These studies primarily concentrated on the intervention's effect (e.g., 

the resulting energy savings) instead of the designed artifact. In contrast, the HCI/ubicomp studies 

focused on the design rather than conducting field studies of occupantsô behavior (Froehlich, 2009; 

Froehlich et al., 2010; Karlin et al., 2017). Initial multidisciplinary work by Sanguinetti et al. 

(2018) proposed a design-behavior framework to guide the feedback design, highlighting the 

information provided to occupants, the timing of when this information is presented, and how the 
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information is displayed to the user, as critical components to consider during the design of 

building interfaces. 

In this direction, drawing on insights from behavioral sciences and human-computer 

interface design, there has been an increasing emphasis on individual-level real-time (Gulbinas et 

al., 2014; Gulbinas and Taylor, 2014) and interactive (Zhuang and Wu, 2018) feedback tailored to 

specific behaviors. It is reported that occupantsô daily interaction with office building thermostats 

is usually habit-driven rather than deliberate (Tetlow et al., 2015). Therefore, thermostat setting 

behavior can potentially be influenced through nudging, which is an intervention approach often 

adopted in the field of HCI (Caraban et al., 2019). Nudging means altering human behavior in a 

predictable way by subtly modifying the context of decision-making without forbidding any option 

or significantly changing their economic incentive (Thaler and Sunstein, 2009; Kasperbauer, 2017; 

Schweiger et al., 2020). One example of nudging is  interactive feedback that provides the 

consequences of behavior (e.g., the potential increase of energy consumption) at the point of 

decision-making, that  has been reported to encourage a more deliberate thermostat setting 

(Zhuang and Wu, 2018).  

In summary, although the existing literature provides useful insights on the potential of 

energy use feedback, a systematic approach is needed to develop user-interactive systems that can 

be successfully deployed in smart building operation. Our goal in this paper is to fill this gap in 

knowledge by addressing the following objectives: i) identify the causal effect of the factors (e.g., 

displayed energy use information, expected comfort level) that describe the decision making 

process of occupant interactions with thermal environment control systems; ii) encode this 

knowledge in a human decision making model that can be used to design user-interactive systems 

that make energy-efficient behavior natural, easy, and intuitively understandable for the end-users 

resulting in HVAC energy savings and overall occupant satisfaction. 

For modeling human decision-making, a classical decision theory that reveals the rationale 

behind human behavior is often adopted (Berger, 2013). This theory assumes that the criteria for 

choices among competing alternatives are based on userôs (i.e., occupantôs) preferences on the 

outcomes. The numerical representations of preferences are enabled by a utility function, which 

maps each choice to a scalar that quantifies the userôs utility  on the outcome of the choice, and 

decision-making can be realized as the maximization of the expected utility (Von Neumann and 

Morgenstern, 2007; Fishburn, 1970). Such approaches have been gaining attention in the HCI 
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community for user modeling (Payne and Howes, 2013; Jameson et al., 2014), and can be 

leveraged to design user-interactive systems for smart thermal environment control. For causal 

effects to be encoded in the model, control experiments, with and without implementing a 

treatment (energy use information), are needed (Rubin, 1974; Holland, 1986; Pearl, 2009). 

2.3 Reinforcement learning 

Reinforcement learning (RL) has been gaining attention as a promising approach in various 

applications (Silver et al., 2018; Levine et al., 2018), due to its capacity to learn through interacting 

with the environment without requiring an explicit mathematical model. Typically, in the 

formulation of an RL problem for building control, the building temperatures, energy system status, 

and exogenous variables (outdoor weather conditions, etc.) are treated as the states of the 

environment, and an RL agent learns by interacting with the environment. Such interaction 

includes the agent executing control actions (e.g. changing HVAC system heating/cooling rate or 

setpoint), which causes the transition of environmental states; then rewards are assigned to the 

agent based on the energy efficiency and/or occupantsô satisfaction achieved by the control action. 

Based on the collected information on the past states, actions and rewards, the RL agent learns a 

policy that targets the maximization of the expected discounted sum of all future returns (Wang 

and Hong, 2020; Vázquez-Canteli and Nagy, 2019; Mason and Grijalva, 2019; Han et al., 2019).  

Recent research in RL indicated great potential of applicability in different levels of building 

systems, ranging from advanced energy systems (Yang et al., 2015; Lazic et al., 2018; Vázquez-

Canteli et al., 2019a) or zone-level controls (Wang et al., 2017; Jia et al., 2019; Chen et al., 2019) 

in commercial buildings, to residential heat pumps (Ruelens et al., 2015; Peirelinck et al., 2018), 

holistic building systems control (adjusting HVAC, operable windows, ventilation, etc.) based on 

feedback of multiple indoor environment metrics (Chen et al., 2018; Ding et al., 2019; Park et al., 

2019), and demand response in smart grid (Vázquez-Canteli et al., 2019b). Some important 

features in the mechanism of RL makes this approach appealing for use in building system controls: 

(i) Compared to MPC, it avoids the labor- and expertise-intensive process of developing (and 

customizing for each building) highly accurate control-oriented models, while achieving good 

control performance (Costanzo et al., 2016). (ii) The RL controllerôs adaptability to the 

environment could simplify the effort to maintain the controller once it is deployed in the buildings. 

Towards this direction, although more realistic scenarios need to be evaluated, the study by 
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Vázquez-Canteli et al. (2019a) initially demonstrated that RL controller is robust in terms of 

adapting to changes in electricity tariffs and building retrofits.  

However, there are still significant barriers that prevent the wide adoption of RL controllers 

in real buildings. In the early stages of implementation, due to the lack of RL algorithms that can 

efficiently utilize historical data, the agent training process can be time consuming (multiple years), 

making it impractical to implement online (Liu and Henze, 2006a; Liu and Henze, 2006b; 

Dalamagkidis et al., 2007). Although the emergence of deep learning algorithms (Mnih et al., 2015; 

Mnih et al., 2016; Lillicrap et al., 2016; Schulman et al., 2017) helped reduce the required training 

time to multiple months, the stability of the control cannot be guaranteed when the training is still 

premature during these months(Zhang and Lam, 2018). For example, the agentôs exploratory 

control actions might result in unnecessary energy waste or discomfort on occupants. To mitigate 

this issue, Liu and Henze (2006b) suggested to train the agent with an environment simulator 

before deploying it to actual buildings. Such approach has been adopted in majority of RL control 

studies in building applications, and different types of models such as grey-box (Lee et al., 2018a) 

and white-box (Wang et al., 2017; Jia et al., 2019) have been used as environment simulators. 

However, developing an environment simulator that can accurately predict the dynamical 

responses of the actual building would again require engineering effort and sufficient on-site 

measured operation data. On the other hand, although directly utilizing a standardized building 

model (e.g. generic grey-box model or reference buildings from EnergyPlus with empirically 

determined model parameters) for this purpose can eliminate such effort, the impact of the 

environment simulatorsô prediction quality on the agentôs control performance in the actual 

building remains unstudied. Therefore, it is still unknown whether the adaptability of the agent can 

overcome the biasness induced by potentially inaccurate environment simulator within a 

reasonable amount of time, without causing occupant discomfort and excessive energy waste. 

2.3.1 Meta-reinforcement learning 

With the recent development of meta-reinforcement learning (Meta-RL, Finn, et al. 2017; 

Duan et al., 2017; Nichol et al., 2018; Sæmundsson et al., 2018; Xu et al., 2018; Rakelly et al., 

2019; Kirsch et al., 2019), an RL agent is able to learn from a set of environments that share some 

common characteristics (sampled from the same prior probability distribution). Intuitively, if the 

agent can generalize well to such set of environments, it can be expected to perform well on another 
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environment that is sampled from the same prior probability distribution (Finn et al., 2017). So 

far, Meta-RL has been successfully demonstrated in the aforementioned studies to accelerate the 

learning and adaptation compared to conventional RL techniques by optimizing the initial 

parameters of the control policy executed by agent in gaming and robotics environments available 

at OpenAI gym (Brockman et al., 2016). In building control applications, although it is impractical 

to develop an environment simulator with high level of prediction quality, it would be feasible to 

identify the prior probability distribution of the environment (i.e., model universe) based on 

existing knowledge of the buildings available on-site (e.g., construction drawings, building 

information model, etc.) or from various public datasets (Deru et al., 2011; EIA, 2016; Miller and 

Meggers, 2017; Balaji et al., 2018; Miller et al., 2020). Therefore, with Meta-RL, learning over 

the model universe that describes similar building spaces can potentially improve the control 

quality, and achieve fast adaptation to a target building without developing an accurate simulator. 

2.4 Research gaps  

Based on the literature review from the previous sections, the following research gaps are 

identified and addressed by the work of this dissertation. First, in order to be generalizable for 

optimizing the building-integrated solar systemsô operation, SMPC needs to (i) adopt ADP 

algorithm to efficiently solve nonconvex optimal control problems introduced by the complex 

energy conversion schemes of energy systems; and (ii) include a computationally inexpensive 

solar irradiance forecast model for predictive controls that quantifies the prediction uncertainty. 

Second, user-interactive systems for commercial buildings need interface design that can (i) 

be intuitive for occupants to achieve energy saving; and (ii) incorporate behavior intervention 

approach that is easy to implement such as nudging. Also, a systematic approach supported by 

utility theory is needed to evaluate the interface design in terms of its predictable effect on occupant 

behavior and energy saving potential. To achieve that, the causal factors that affect occupantsô 

decision-making process using the interface must be understood.  

Third, Meta-RL algorithm needs to be evaluated due to its potential of enabling automated 

generation of optimal building control strategies with minimal engineering effort by learning from 

a model universe. To this end, identifying the model universe based on available building 

information such as building drawings also needs to be explored. 
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 MODEL PREDICTIVE CONTROL UNDER FORECAST 

UNCERTAINTY FOR OPTIMAL OPERATION OF BUILDINGS WITH 

INTEGRATED SOLA R SYSTEMS 

3.1 Overview 

In this Chapter, we present a SMPC algorithm for buildings with solar systems coupled with 

HVAC and thermal energy storage. The algorithm is implemented in an emulator to predict the 

closed-loop response of the integrated system to control inputs, and to demonstrate optimal 

decisions under uncertainty. Our approach is unique in the following aspects (i) It quantifies the 

prediction uncertainty in solar irradiance using a new probabilistic time-series autoregressive 

model that takes sky-cover values from an external weather forecast service provider as input; (ii) 

It extends approximate dynamic programming (ADP) to solve optimization problems, in which 

the nonconvex cost function is an expectation over a stochastic process, and provides good solution 

quality using Gaussian process regression to approximate the cost-to-go functions. 

We introduce the SMPC algorithm in Section 3.2, which includes the SMPC problem 

formulation, the solar irradiance forecast model and the ADP that solves the optimal control 

problem. In Section 3.3, we present the implementation of the SMPC for a building-integrated 

solar energy system. The performance evaluation of the SMPC and the uncertainty analysis are 

presented in Section 3.4. 

3.2 Methodology 

3.2.1 Stochastic model predictive control algorithm 

Model predictive control for building energy systems aims to minimize the total heating or 

cooling energy consumption over a prediction horizon, while satisfying the constraints on 

equipment capacity and room conditions affecting occupant thermal comfort.  

For each prediction horizon, the controller solves the following optimal control problem: 

ÍÉÎ
ȟ ȟȣȟ

ὐὀȟ ὀ ȟἿ ȟ 

(3-1) 
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subject to the dynamics: 

ὀ ἮὀȟἽȟἿ ȟ                                                   (3-2) 

and to the chance constraints: 

ὫȟὀȟἽȟἿ π ÆÏÒ ρ Ὥ ὲȟπ ὸ ὑ ρ.                        (3-3) 

The cost (equation (3-1)) is a function of the state variables (ὀ), which include the system 

temperatures at time ὸ; the control inputs (given as Ἵ  ὀ  at time ὸ) such as heating or 

cooling power; and the stochastic disturbances (uncertain variables, Ἷ ), e.g. random factors that 

affect the solar irradiance that is an important energy source of building-integrated solar systems. 

The optimal input functions are known as policy functions ( ). The building and energy system 

dynamics are also functions of these three types of variables (equation (3-2)). The prediction 

horizon (ὑ) over which optimal inputs are to be found via SMPC is selected based on the system 

properties. 

In the presence of stochastic disturbances, chance constraints are deployed for handling 

constraints violations on the state variables (equation (3-3)) with low probability. In the cases of 

building-integrated solar systems, such as solar-assisted heat pumps, the feasible set of inputs is 

also expressed with chance constraints, as equipment capacities are subjected to stochastic 

disturbances. Therefore, ὲ is the total number of chance constraints on the states or control inputs. 

Note that in equations (3-1) and (3-3), the expectations ẗ are over Ἷ . In our work, the stochastic 

disturbance, Ἷȟ  to the integrated energy system includes the solar heat gain to the building and a 

2-D Gaussian noise term from a solar irradiance forecast model, which is presented in the 

following section.   

3.2.2 Solar irradiance forecast model 

In this section, we present a model that predicts the global horizontal irradiance (Ὅȟ): 

Ὅȟ   Ὅ ȟ  Ὅ ȟ,                                                 (3-4) 

where Ὅ ȟ and Ὅ ȟ are direct and diffuse components of the horizontal irradiance, respectively. 

From previous studies (e.g. Bilionis et al., 2014), we know that the global horizontal irradiance is 

negatively correlated with the sky-cover, i.e., the fraction of the sky covered by clouds. Let the 

sky-cover at time ὸ be defined as ÓÃ . Hourly forecasted values of sky-cover are obtained from 

NOAA. Our model predicts the future global horizontal irradiance given a sky-cover forecast. It is 
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stochastic in the sense that it quantifies the predictive uncertainty in solar irradiance. This 

uncertainty may be due to miss-classification of the sky condition (clear, partly-cloudy or overcast) 

given the sky-cover, and due to the variability of the cloud formations.  

We assume that the sky-cover forecast values obtained from NOAA forecast are accurate 

for a 24-hour horizon. We model the cloud variability by a 2-D autoregressive process. Specifically, 

the first dimension of this autoregressive process models the atmospheric factors that block the 

direct part of the horizontal irradiance while the second-dimension models the atmospheric factors 

that block the diffuse part. In the autoregressive process, the future state is expressed as a linear 

function of the current state plus a Gaussian error term. Thus, the error can accumulate as the time 

step increases, and the autoregressive process captures the increase in solar irradiance uncertainty 

within a prediction horizon.  

 

 

Figure 3.1. Solar irradiance forecast model. 

 

The model we propose (Figure 3.1) has the following form: 

ὍȟἩȟὧ Ὅ ȟ ȟẗÓÉÇÍὥȟ ρ ȟ ὧ  Ὅ ȟ ȟẗÓÉÇÍὥȟ  ȟ        (3-5) 

where Ὅ ȟ ȟ   and Ὅ ȟ ȟ  are the clear-sky direct and diffuse horizontal irradiance, which are 

analytically known and depend on the location, time of the day, day of the year, etc. (Bird and 

Hulstrom, 1981); Ἡ ὥȟȟὥȟ  is a 2-D autoregressive process that modulates the clear-sky 

irradiances through the sigmoid function ÓÉÇÍẗ; ὧ is a discrete random process corresponding 

to the sky condition (clear (ὧ 1), partly-cloudy (ὧ 2), or overcast (ὧ 3)), ρ ẗ is the 

characteristic function of a set ὃ (ρ ὼ ρ if ὼɴ ὃ and 0 otherwise), and the indicator function 



 

 

29 

ἴẗ ὰẗȟὰẗ  is defined by ἴρ ρȟρȟἴ(2) = (0,0), and ἴσ ρȟπ. More specifically, 

when the sky condition is clear (ὧ ρ), the direct and diffuse horizontal solar irradiances are 

equal to clear-sky direct and diffuse horizontal solar irradiance, respectively. When the sky 

condition is partly-cloudy (ὧ ς), the direct and diffuse horizontal irradiances are only a fraction 

of the clear-sky direct and diffuse horizontal irradiance. When the sky condition is overcast (ὧ

σ), the direct horizontal irradiance (Ὅ ȟ) is 0. Thus, the global horizontal irradiance is only a 

fraction of the clear-sky diffuse horizontal irradiance. 

For a certain value of the sky-cover ÓÃ, any of the three conditions, ὧ ρȟςȟ or σ, are 

possible as the sky-cover value is a spatial average of the fraction of the sky covered by clouds. 

To model this uncertainty, we assume that the probability of the sky condition ὧ depends only on 

the sky-cover ÓÃ via a logistic regression expression: 

ὴὧ ὭȿÓÃ
Ὡ

Ὡ Ὡ Ὡ
 ȟ     Ὥ ρȟςȟσȢ 

(3-6) 

where the parameters ὶȟὶ and ὶ are to be inferred. The latent 2-D autoregressive process (Ἡ) is 

given by 

ὥȟ  ὥȟ „ᾀȟȟ                                                   (3-7) 

ὥȟ  ὥȟ „ᾀȟ ȟ                                                  (3-8) 

where ὂ ᾀȟȟᾀȟ  is a 2-D Gaussian noise, and the parameters ȟȟ„ and  „ are to be 

inferred. The initial probability distribution of the autoregressive process is:  

ὴὥȟ  ﬞ ὥȟȿ‘ȟ„ ȟ                                                (3-9) 

ὴὥȟ  ﬞ ὥȟȿ‘ȟ„ ȟ                                              (3-10) 

where ﬞ Ͻȿ‘ȟ„  is the probability distribution function (PDF) of a univariate Gaussian 

distribution with mean ‘ and standard deviation „;  ‘ and „ are two additional parameters, 

which also need to be inferred from the data.  

To train our model, we use sky-cover (ÓÃ, input) and global horizontal irradiance (Ὅȟ, 

output) measurements from the typical meteorological year (TMY3) dataset (Wilcox and Marion, 

2008) at the location of interest (West Lafayette, IN). The unknown parameters to be estimated are 

‘ȟ„ȟȟȟ„ȟ„ȟὶȟὶȟὶ . Our model is a non-linear and non-Gaussian state space model 

(SSM). The hidden state is Ἳ ὧȟὥȟȟὥȟ  and the observed state is Ὅȟ. One of the key 
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challenges in estimation of parameters of a nonlinear and non-Gaussian SSM is the intractability 

of estimating the system state. Sequential Monte Carlo (SMC) methods (Gordon et al., 1993; 

Kitagawa, 1996), known as particle filters, provide a robust solution to the nonlinear system 

identification problem (Schön et al., 2015). The key challenge that drives the problem of parameter 

estimation is how to deal with the difficulty that the states are unknown (hidden). To handle this 

problem, we make use of the data augmentation strategy, which treats the states as auxiliary 

variables that are estimated together with the parameters. The expectation maximization (EM) 

algorithm solves the maximum likelihood formulation in this way (Dempster et al., 1977). The 

maximum likelihood formulation amounts to finding a point estimate of the unknown parameters 

, for which the observed data is as likely as possible. This is done by maximizing the data 

likelihood function according to: 

ÁÒÇÍÁØ   ὴ Ὅȟȡ Ȣ                                          (3-11) 

We wish to find the unknown parameters values  based on a batch of Ὕ measurements. 

For more details on how to use the EM algorithm for parameter estimation in SMC models, we 

refer readers to the paper by Schön et al. (2015). After maximizing the likelihood (Dahlin et al., 

2015), we get point estimates of parameters  which best fits the observed data and are given as:  

= (0.2, 0.15, 0.1, 0.1, 0.6, 0.1, -7, 0, 7). 

We present the evaluation of our model predictions on a validation dataset for three days 

(March 13th -15th, 2015). The dataset is considered representative as it contains a full range of 

values (0-100%) for sky-cover, which is the sole input to our model. Therefore, we can observe 

the predictive distribution of global horizontal irradiances given different sky-cover conditions 

from the validation dataset. As for factors such as seasonal variation, location, etc., we consider 

them to be encoded in the clear sky irradiance model by Bird and Hulstrom (1981). Figure 3.2 (left) 

shows the sky-cover forecast values for the aforementioned days obtained at 6 am of each day, 

respectively; the x-axis index points represent hours with high sky-cover forecast values (i.e., high 

probability of being overcast) on March 13th, moderate sky-cover forecast values (i.e., high 

probability of being partly-cloudy) on March 14th and low sky-cover forecast values (i.e., high 

probability of being clear) on March 15th. Figure 3.2 (right) compares model predictions with 

global solar irradiance values measured on the roof of the Herrick Laboratory building at Purdue 

University campus with a pyranometer (LI-COR LI-200). In this figure, the solid (blue) line 

represents a random solar irradiance time series sample from the predictive distribution of our 
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model. The model quantifies the uncertainty associated with predictions, represented in the graph 

by the shaded (blue) area (5-95th sample percentile from 1000 samples). The uncertainty of our 

model prediction shown in Figure 3.2 (right) is (i) low when the sky-cover forecast indicates clear 

(low sky-cover values, close to 0) or overcast (high sky-cover values, close to 100%) conditions; 

and (ii) high for partly-cloudy conditions (moderate sky-cover values, 30-70% in Figure 3.2, left).  

 

 

Figure 3.2. Sky-cover forecast obtained at 6 am of each day (left) and global horizontal 

irradiance prediction samples (right) (March 13-15th, 2015). 

 

3.2.3 Approximate dynamic programming 

In this section, we present the approximate dynamic programming methodology for the 

solution of the optimal control problem described with equations (3-1) to (3-3).  

Consider a system with state space variables ὀɴ ἦṒᴙ  and dynamics given by equation 

(3-2), to which a set of feasible controls Ἵᶰלὀ is applied. This set of admissible controls לὀ 

is described by equation (3-3). Let us define ɩ as the set of all admissible policies, i.e., 

ɩ “ ȟ ȟỄȟ ȿ ȡἦᴼᴙ  ÓȢÔȢ  ὀᶰלὀȟᶅὀɴ ἦȢ            (3-12) 

For a “ᶰɩ, each element  of “ defines the control function (or decision function) at time 

ὸ. If the initial state is ὀ, then the expected additive cost over the time horizon corresponding to 

a policy “ᶰɩ is: 
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ὅ ὀ ὐὀȟ ὀ ȟἿ ȟ 

(3-13) 

where the expectation is over the disturbance Ἷ . A typical assumption for this disturbance, is that: 

ὴ ἿȿἿȡ ȟὀȡ ὴ Ἷȿὀ Ȣ                                       (3-14) 

This assumption is valid for the solar irradiance model presented in Section 3.2.1. The explicit 

dependence of this probability to time is due to the time-dependent NOAA sky-cover forecast, ÓÃ. 

The 2-D autoregressive process, Ἡ, can be thought as part of the system state ὀ, and the stochastic 

disturbance Ἷ  includes the solar heat gain to the building, and the independent Gaussian 

disturbances to Ἡ. 

We wish to minimize equation (3-13) over the policy set ɩ. The optimal cost function ὅᶻẗ 

is defined by: 

ὅᶻὀ ÍÉÎ
ᶰ
ὅ ὀ Ȣ                                                  (3-15) 

The optimal policy “ᶻ may depend on the initial state ὀ, but under very general conditions, when 

an optimal policy exists, it is independent of the first state (Bertsekas, 1995). We define the optimal 

cost-to-go function at time ὸ, ὅᶻὀ , as the cost incurred by the optimal policy from time ὸ till the 

end of the prediction horizon, i.e., 

ὅᶻὀ ÍÉÎ
ᶰ

ὐὀȟ ὀ ȟἿ Ȣ 

(3-16) 

It can be shown that ὅᶻὀ  must satisfies the Bellman equation: 

ὅᶻὀ ÍÉÎ
Ἵ ɴלὀ

 ὐὀȟἽȟἿ ὅᶻ ἮὀȟἽȟἿ Ȣ                     (3-17) 

This recursive relation suggests a powerful numerical scheme for solving dynamic 

programming problems. Specifically, one starts from the final cost-to-go, ὅᶻẗ π in our case, 

and follows the recursion defined by equation (3-17) backwards for ὸ ὑ ρȟȣȟπ, each time 

estimating the unknown function ὅᶻẗ from the known ὅᶻ ẗ. This is known as the value 

iteration algorithm and it can only be implemented in an approximate way. First, we choose the 

function class within which the optimal cost-to-go functions are to be approximated. Second, we 

choose a finite, but well distributed, set of ὓ collocation points using Latin hypercube sampling 

(LHS, Iman, 2008) in the state space, ἦ, on which we evaluate the right-hand side of equation (3-
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17). That is, we solve a separate non-linear constrained stochastic optimization problem on each 

one of these points. The expectation over Ἷ  is approximated using a sampling average. Third, 

using the collected data, we approximate the next optimal cost-to-go function within the selected 

class and proceed with the recursion. In Algorithm 3.1, we present these three steps while in 

Appendix A, we discuss the mathematical details.  

 

Algorithm 3.1: Value iteration algorithm  

Inputs:  Plan horizon (K),  

Number of discrete points in state space (M),  

Number of irradiation samples (N) 

Time series samples of uncertain parameters ἥ ȟἥ ȟỄȟἥ  

Outputs: Optimal value/cost-to-go functions (ὅᶻ ὅȟὅȟỄȟὅ ) 

Optimal policy functions (“ᶻ ȟ ȟỄȟ ) 

Generate ὓ discrete points in the state space ἦ using LHS (given as ἦ ). 

           ὸ ὑ ρ 

while ὸ π do: 

        for each ὀ in ἦ : 

              Solve optimization problem over control variable Ἵ (Details in Appendix A) 

        end for  

Learn cost-to-go function ╒ȟ and policy function   from the optimized control  variables 

at points in ἦ  using Gaussian process regression (Details in Appendix A) 

         ὸ ὸ ρ 

 

3.3 Application to building -integrated solar system control 

3.3.1 Building-integrated solar energy system 

The building-integrated solar energy system is shown in Figure 3.3. It includes a building-

integrated photovoltaic (BIPV/T) system with a corrugated unglazed transpired solar collector 

(UTC) that enables on-site generation of solar power and heat. The load side of an air-to-water 

heat pump (Swegon Maroon 2 MT29) is connected to a thermal energy storage (TES) tank, 
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providing hot water to a radiant floor heating (RHF) system that is used to condition an open-plan 

office space in Herrick Laboratories building at Purdue campus. The outlet air from the UTC serves 

as the source side for the heat pump. These three components (BIPV/T, TES tank, RFH) are the 

integrated solar system within the context of this paper. The thermal output of the BIPV/T system 

increases the COP of the heat pump and reduces the ventilation energy use. Assuming constant 

ventilation rate and supply air temperature, the benefits from the BIPV/T system are fixed, hence 

only the increase of the heat pump COP is considered in the optional control formulation. A model 

for the integrated energy system is developed in TRNSYS (Klein et al., 2011) and Table B.1 in 

Appendix B provides information for the basic settings and details are presented in Li et al. (2015).  

 

    

Figure 3.3. The building-integrated solar energy system. 

 

The building is modeled with TRNSYS type 56. Settings for the ventilation, shading control, 

air and floor surface temperatures are provided in Table B.1 (Appendix B). The building envelope 

properties are extracted from drawings. The RFH system is modeled using component type 653 

(mode 2) with a water flow rate of 400 kg/hr, coupled with a 10 Í  TES tank (TRNSYS type 60) 

based on the recommendations provided by Li et al. (2015), which examined the interactions 

between design and control parameters. The BIPV/T system covers the top section of the south 

building façade (plenum area) to facilitate potential placement of the ducts, heat pump, and TES 

tank on the roof. The available area for the BIPV/T system is 65 Í . The photovoltaic (PV) panels 

have a nominal power of 0.108 kW/Í  (Day4 Energy Inc., model: DAY418MC). For the UTC 

configuration with PV panels, the PV panel coverage ratio is 90%, based on optimal design 
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recommendations by Li and Karava (2014), which provides 58.5 Í  available PV area with 6.32 

kWp (kilowatt-peak) capacity. The electricity generated by the BIPV/T system is used to cover the 

energy needs of the building or be sold back to the grid. The BIPV/T system is incorporated into 

TRNSYS as a user-defined component, using the energy models presented in Li et al. (2014).  

3.3.2 Optimal control problem formulation  

Based on the system details presented in the previous section, we formulate the system 

specific stochastic model predictive control problem. The control variable (ό) is the total heating 

power provided by the air-to-water heat pump and the backup heater (when needed). The objective 

function is the expected value of the accumulated electric energy consumption over the prediction 

horizon, which is the sum of the electricity consumption from the air-to-water heat pump and the 

backup heater. The backup heater has a maximum capacity (ὖ ) of 5000 watts and efficiency of 

90% (–). It is installed in the TES tank in case of insufficient heating from the heat pump. Thus, 

the cost at a given time step in equation (3-1) is: 

                                                                 ὐὀȟ όȟὍȟ

ȟὀȟἾȟȟ

ὀȟἾȟȟ

ȟὀȟἾȟȟ
ȟÉÆ (# ȟὀȟἾȟὍȟ ό ό ȟὀȟἾȟὍȟ

ὀȟἾȟȟ
ȟÉÆ π ό (# ȟὀȟἾȟὍȟȢ

        

(3-18) 

The COP and maximum heating capacity ((#  of the heat pump are functions of the 

solar irradiance (Ὅȟ) and outdoor dry bulb temperature (through the outlet air temperature of the 

BIPV/T collector, Ὕ ), and the tank temperature (Ὕ ȟ), which is one of the system states. A 

BIPV/T collector model (Li et al., 2014) incorporated in the controller receives information on the 

predicted solar irradiance from the forecast model (Section 3.2.1), along with the outdoor dry bulb 

temperature forecast, and calculates Ὕ  Ὕ ȟ ήἾȟὍȟ  during the prediction horizon. 

Therefore, the COP and (#  are both functions of the system states, exogenous inputs (Ἶ), and 

disturbances: 

#/0ὀȟἾȟὍȟ φȢςυπτπȢρσσψὝ ȟ πȢπωψφὝ ȟ πȢππυψφτὝ ȟ 

πȢπππτὝ ȟ πȢππρυὝ ȟὝ ȟ, 

                                                                          (3-19)                      
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(# ȟὀȟἾȟὍȟ ςυȢσυσχπȢχσσχὝ ȟ πȢπφςσὝ ȟ πȢππυφὝ ȟ 

πȢπππρὝ ȟ πȢππτρὝ ȟὝ ȟ , 

                                                                              (3-20)                      

ό ȟὀȟἾȟὍȟ (# ȟὀȟἾȟὍȟ ὖ Ȣ                               (3-21)          

Equations (3-19) and (3-20) show that the efficiency and capacity of the heat pump increase 

as Ὕ  increases. The low-order system model used in the controller is shown in Appendix B 

(Figure B.1) while additional details are provided in Li et al. (2015). The system dynamics is given 

by: 

ὀ ὪὀȟόȟἿ ═ὀ ║ό ║Ἶ ║ Ἷ ,                          (3-22)  

where Ἶ

Ὕȟ
Ὕ
Ὕ

)'ὸ

Ȣ Ὕ is the outdoor dry bulb temperature from the NOAA weather forecast. We 

do not consider the forecast uncertainty on Ὕ as it is typically small and would have negligible 

impact on this heavy thermal mass system. )'ὸ is the internal heat gain, which is considered 

known based on the building operation schedule (Appendix B, Table B.1). The variables Ὕ  and 

Ὕ  represent the ambient temperature of the TES tank and air temperature of the adjacent zone, 

respectively, and are assumed to be constant. ═ᶰᴙ ȟ║ ᶰᴙ ȟ║ ᶰᴙ  and ║ ᶰᴙ  

are time invariant matrices. The state vector of our system is, 

ὀ

ụ
Ụ
Ụ
Ụ
Ụ
ợ
Ὕ ȟ

Ὕ ȟ 

Ὕ ȟ 

Ὕ ȟ 

ὥȟ
ὥȟ Ứ

ủ
ủ
ủ
ủ
Ủ

ȟ 

where Ἡ ὥȟȟὥȟ  is the state of the solar irradiance model (Section 3.2.1), Ὕ  is the 

average envelope temperature of the room, Ὕ  is the room air temperature, Ὕ  is the average 

floor slab temperature, Ὕ  is the average tank temperature. As discussed in Section 3.2.1, the 

stochastic disturbance Ἷ  corresponds to the 2-D Gaussian noise, say ὂ, perturbing Ἡ as well as 

to the random sky condition ὧ. Therefore, we have 
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Ἷ

ụ
Ụ
Ụ
Ụ
ợὬ ὍȟἩȟὧ

Ὤ ὍȟἩȟὧ

ᾀȟ
ᾀȟ Ứ

ủ
ủ
ủ
Ủ

, 

where the function ὍȟἩȟὧ  is the global horizontal irradiance (see Section 3.2.1), while 

ἰὍȟ
Ὤ Ὅȟ

Ὤ Ὅȟ

ή ȟ

ή ȟ
 gives the solar heat gain on the floor ή ȟ  as well as other 

building interior surfaces ή ȟ  (Klein et al., 2011).  

We use seven chance constraints (ὲ χ on the temperature states and feasible sets of 

control inputs. To determine their proper form, we examine the distributions of these variables 

under 1000 uncertain solar irradiance samples. For the temperature states, even in the most 

uncertain case when ÓÃπȢυ, most of the samples are concentrated around the expected value 

(Figure 3.4). Therefore, the following constraints impose minimum bounds on the expected room, 

floor and tank temperatures, 

ὼȟ Ὕ ȟȟ πȟ                                            (3-23) 

yielding, with the notation of equation (3-3), 

ὫȟὀȟόȟἿ ὪȟὀȟόȟἿ Ὕ ȟȟ ȟ                             (3-24) 

for Ὥ ρȟȣȟσ. Similarly, the constraints below impose maximum bounds on the expected building 

temperatures, 

Ὕ ȟȟ ὼȟ πȟ                                           (3-25) 

yielding 

Ὣ ȟὀȟόȟἿ Ὕ ȟȟ ὪȟὀȟόȟἿ ȟ                            (3-26) 

where ╣ȟ  and ╣ȟ  are known based on the values and schedules given in Appendix B Table 

B.1. Finally, we enforce with high probability the control bounds with the following constraint: 

ᴖπ ό ό ȟ ὀȟἾȟὍȟἩȟὧ ρ ȟ                        (3-27) 

where  is a small number corresponding to our tolerance for violating this constraint. As an 

expectation, this probability can be expressed by: 

ρ
ȟ ȟὀȟἾȟȟ╪ȟ

ό ρ  πȟ                           (3-28) 

where ρ ẗ is the characteristic function of a set ὃ. In the notation of equation (3-3), this 

constraint can be expressed as: 
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ὫȟὀȟόȟἿ ρ
ȟ ȟὀȟἾȟȟ╪ȟ

ό ρ Ȣ                    (3-29) 

In the most uncertain scenario when ÓÃπȢυ, the distribution of the heating capacity value 

range is from 26 kW to 31 kW with most of the samples on the two ends (Figure 3.4). Therefore, 

in equation (3-29), a small value of =1% is used to ensure that, with 99% of the probability, the 

control input ό does not exceed the equipment capacity. 

 

 

Figure 3.4. Histograms of global horizontal irradiance, room temperature, heat pump capacity 

and COP under 1000 irradiance samples (ÓÃ = 0.5, ό = 15 kW, Ὕ = 15ᴈ, Ὕ ȟ=21ᴈ). 

 

Figure 3.5 shows the flow chart of the control algorithm. At the beginning of each simulation 

time step of 1 hour, the algorithm reads the initial temperature states from TRNSYS and it also 

receives weather forecast information (sky-cover, outdoor dry bulb temperature, etc.) for the future 

ὑ 24 hours of the prediction horizon. Optimal control decisions are made every 1 hour (control 

horizon) between 6:00 a.m. to 20:00 p.m.  
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Figure 3.5. Optimal control algorithm. 

 

3.3.3 Optimal control problem solution 

This section presents the implementation of the value iteration algorithm for solving the 

optimal control problem detailed in the previous section. Each run yields policy functions that 

predict the optimal control for each time step in the prediction horizon.  

Following the procedure outlined in Algorithm 3.1 (Section 3.2.2), the state-space has been 

discretized for computing point estimates of optimal ócost-to-goô and policy functions. The first 

four variables in the state space (tank, room, floor and envelope temperatures) are used for 

calculating the cost at each time step, while the dependence of the cost-to-go functions on other 

variables is negligible, and thereby not considered. 

To obtain the collocation points in 4-dimensional state space, Ὕ  and Ὕ  are sampled 

using Latin hypercube sampling (LHS) as a two-dimensional vector varying between their 

temperature bounds (Appendix B Table B.1). As shown in Figure 3.6, samples are uniform for 

Ὕ  and Ὕ . Ὕ  is generally higher than Ὕ  while Ὕ  is usually lower. Therefore, the 

state variables representing Ὕ  and Ὕ  are sampled from exponential distributions with 

location parameters (1 for the floor temperature; -1 for the envelope temperature) and scale 

parameters (1 for both) chosen to keep deviations around 1-3ºC from Ὕ . A sample size of 500 
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was deemed sufficient to represent the state space for these simulations. Ὕ  and Ὕ  have the 

most significant impact on the energy consumption, and are thus used for visualizing the value 

iteration algorithm. 

 

 

Figure 3.6. Distribution of 500 collocation points in 4-dimensional temperature space for 

implementation of value iteration algorithm at a time step. 

 

The solar irradiance model presented in Section 3.2.1 generates N =100 irradiation samples 

at each time step of 1 hour for a prediction horizon of ὑ = 24 hours. At each time step ὸ in a 

prediction horizon, we evaluate the right-hand side of the Bellman equation (3-17) at each 

collocation point using all ὔ irradiance samples at the time step (see Appendix A equation (A-3)). 

Each evaluation requires solving a stochastic optimization problem (details in Section 3.3.2) with 

respect to the optimal control at that time step. We parallelize the ὓ=500 optimization problems 

to solve at time step using MPI4Py (Dalcín et al., 2008); while employ a gradient based ópyOptô 

solver (Perez et al, 2012) to achieve further efficiency by providing the analytical derivatives of 

objective function and constraints. After evaluating all the points at a time step, we collect those 

collocation points as inputs and the corresponding optimal cost-to-go values and optimal controls 

as outputs to approximate the next optimal cost-to-go and policy functions, respectively. This is 

carried out via GPR in GPy module (Hensman et al., 2012). We use squared exponential 

covariance functions in the GPR and we maximize the marginal likelihood to find the optimal 

hyperparameters following the method described in Chapter 5 of (Rasmussen and Williams, 2006). 

More details regarding GPR and the evaluation of right-hand side of the Bellman equation are 

presented in Appendix A. After completing the approximation of cost-to-go and policy functions 

at time ὸ, we move to time step ὸ ρ and repeat the evaluation and approximation procedures with 

updated disturbances (see Algorithm 3.1). In this way, the ADP algorithm is implemented in 
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receding horizon fashion to obtain sets of policy functions, while the effect of future predictions 

is captured in the approximated value and policy functions. The policy function at the first time 

step of the prediction horizon is used for generating the optimal control for the building system. 

The algorithm deals with non-controllable scenarios via min-max controls, which means if 

no feasible control input can keep the temperature states within constraints for the next time step, 

we apply the minimum (for over-heating) or maximum (for under-heating) feasible input. To 

visualize the cost-to-go functions, we only show results for Ὕ  and Ὕ  as the function values 

are found to vary primarily in these dimensions.   

Figure 3.7 details the evolution of the cost-to-go functions across the prediction horizon. We 

observe that the use of min-max type control inputs reduces as the simulation moves to lower time 

steps. This elicits the effect of longer time horizon in reducing the energy consumption in the 

system. The cost increases as the number of time step decreases because it includes energy costs 

incurred by the system at future points of time when it receives optimal control inputs. At lower 

time steps, the estimated cost increases as room and tank temperatures decrease.  

 

 

Figure 3.7. Contour plots demonstrating evolution of cost-to-go function at time step 1, 8, 16, 24 

as computed using value iteration algorithm (irradiation samples at 0:00 of 18 January 2017, 

Ὕ =20ᴈ, Ὕ =20ᴈ).  

 

The expensive part of policy function computation at each step is the optimization at each 

collocation point, which requires several evaluations of the right-hand side of Bellmanôs function. 

The optimization problems at the 500 collocation points are parallelized to reduce the computation 

time. A single evaluation of the right-hand side of the Bellman equation for one collocation point 

can take about 0.4 minutes with our current Python implementation. After parallelizing the 500 

collocation points to 100 nodes of the Rice supercomputing cluster at Purdue University, the 
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computation time of ócost-to-goô evaluation at a time step takes about 2 to 3 minutes. Therefore, a 

complete ADP solution for a 24-hour prediction horizon takes about 30-40 minutes in average 

considering the system operation schedule from 6 a.m. to 20 p.m. All the processes can be sped up 

by implementing in a lower level language and augmenting the parallelization ability. For this 

control approach to be implementable in real-time building operation, access to cloud computation 

services is required. The source code for the ADP we implemented in this study can be found in 

Paritosh et al. (2017). 

3.4 Performance analysis 

In this section, we present the emulation process that we use to evaluate the SMPC based on 

two aspects: (i) Comparing its performance, in terms of energy savings and comfort maintenance; 

and (ii) Analyzing the uncertainty on the energy consumption and thermal comfort violation 

associated with the stochastic disturbance.  

3.4.1 Emulator  

We deploy the emulation framework shown in Figure 3.8 to evaluate the performance of the 

SMPC for the integrated solar system. Physical models for the building, BIPV/T system, RFH, 

and TES tank are built using TRNSYS. The data-driven heat pump model is developed in 

MATLAB. The predictive controller is developed in Python and it is coupled with TRNSYS Type 

155 using MATLAB as the mid-ware. Real time actual weather data are used as inputs to the 

physical models in TRNSYS. At every control horizon between 6:00 a.m. to 20:00 p.m., the 

controller predicts the optimal heating system operation by running a 24-hour-horizon ADP 

solution and sends the control signal to the heat pump and the backup heater. Every 1-hour 

emulation time-step in TRNSYS, it takes about 31 to 42 minutes to complete. This includes about 

1 to 2 minutes for the communication between MATLAB and Python, and 30 to 40 minutes 

required for an ADP solution. Therefore, considering 1 hour of control horizon, our solution can 

be implemented to an actual controller for the integrated solar system. 
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Figure 3.8. System emulation diagram. 

 

3.4.2 Control performance 

In this section, we present the performance evaluation results. The SMPC uses the solar 

forecast model to quantify the uncertainty in solar irradiance while the physical models in 

TRNSYS receive measured weather data. A benchmark control strategy is the theoretical 

performance bound (PB), in which we assume that the actual weather condition is perfectly known 

in advance. Therefore, both the controller and TRNSYS receive measured weather data. The ADP 

algorithm is implemented to obtain optimal control solutions.  However, PB is a theoretical 

concept rather than an actual controller. A well-tuned rule-based control (RBC) with control 

decisions based on the outdoor dry bulb temperature and sky-cover forecast values is also used as 

baseline. It follows the solar energy availability so that the energy system achieves high efficiency 

(Candanedo, 2011). The details of the RBC are presented in Appendix C. A 24-hour prediction 

horizon is implemented for the SMPC and PB. The same initial temperature states are used for all 

cases. To eliminate the effect of initial states, we use a pre-simulation period of five days. 

The temperature exceedance (in ᴈ-hr) according to ASHRAE Standard 55 (ASHRAE & 

ANSI, 2017) and electricity consumption (in kWh), are used as performance metrics. In this study, 

both the total temperature exceedance (including occupied and unoccupied hours) and the 

temperature exceedance at occupied hours are considered:  
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ЎὝ В Ὕ Ὕ Ўὸ,                                              (3-30) 

where Ὕ  is the operative temperature in ᴈ; Ὕ  is the setpoint temperature in ᴈ; Ўὸ is the time 

step in hour. The occupied hours we considered in this study are from 8:00 a.m. to 18:30 p.m. 

We consider a three-day emulation, based on the weather data shown in Figure 3.9. During 

this period (Feb. 1st ï Feb. 3rd, 2017), the outdoor dry bulb temperature varies from -10ᴈ to 4.5ᴈȠ 

the first day is relatively warm and partly-cloudy with high uncertainty on the solar irradiance 

predictions (for details see Section 3.2.1) and the following two days are relatively cold and sunny 

(high probability of sky condition being clear).  

 

 

Figure 3.9. Outdoor dry bulb air temperature and incident solar irradiance on the south façade 

during the three-day emulation (Feb. 1st ï Feb. 3rd, 2017). 

 

The emulation results for the SMPC (Figure 3.10, top) show that the heat pump operation 

starts at 6 a.m. on Feb. 1st with nearly maximum system capacity due to the anticipated increase in 

the set-point temperature during the occupied hours and, therefore, the tank is charged in advance. 

Along with a slight tank charge in the afternoon, the stored energy is sufficient to maintain the 

temperature for the rest of the day. Another reason for the intense charge at 6 a.m. of Feb. 1st is 

that, the uncertainty on the solar irradiance forecast is high on the upcoming hours based on the 

sky-cover forecast (range from 40% to 80%) received at 6 a.m. In order to meet the lower setpoint 

bound on the temperature states under uncertain disturbances, the SMPC controller follows a more 

conservative operation schedule. In contrast, for PB (Figure 3.10, middle), the heat pump operates 

with less power at 6 a.m. on Feb. 1st. Based on the perfectly accurate weather information, the cost 

is reduced when the heat pump operation is postponed till the afternoon when sufficient energy 

can be stored even for the following day. 
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Due to the different pump operation on the previous day, the starting tank temperature on 

Feb. 2nd at 6 a.m. in SMPC is lower than that in PB. Therefore, for SMPC, the 6 a.m. charge is 

repeated on Feb 2nd with less intensity, and the heat pump is also ON during the sunny hours in 

anticipation of the outdoor temperature decrease in the evening. While in PB, the heat pump 

operation on Feb. 2nd is not required as the TES tank has been charged already during the previous 

day. 

On Feb. 3rd, the starting tank temperatures at 6 a.m. are similar in both SMPC and PB. The 

sky-cover forecast indicates partly-cloudy condition (high uncertainty in irradiance) in the morning 

and high probability of being sunny in the afternoon (low uncertainty in irradiance). Therefore, the 

heat pump operates mostly in the afternoon sunny hours for both cases to store energy at increased 

efficiency for discharge at night. The higher heat pump power in SMPC in the morning can be 

explained by the high solar irradiance uncertainty at the time.  

In RBC (Figure 3.10, bottom), the operations are designed to follow the solar availability to 

take advantage of the increased system COP, while also considering the outdoor dry bulb 

temperature (details in Appendix C). Therefore, the heat pump is continuously ON from 6 a.m. to 

20 p.m. every day at the power rate ranging from 3 to 6 kW. 
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Figure 3.10. Temperatures, heating and electrical power for the three-day emulation of SMPC, 

PB and RBC (Feb. 1st ï Feb. 3rd, 2017). 

 

Emulations were also performed for a winter month (Jan. 16th to Feb. 16th, 2017) for the 

three cases discussed above and the results are shown in Table 3.1. During this period, the outdoor 

dry bulb temperature varies from -15ᴈ to 18ᴈ. Overall, SMPC results in slightly less temperature 

exceedance (3.22ᴈ-hr in occupied hours) but higher electricity consumption (57.28 kWh, 34.7%) 

over a month compared to PB.  

 

 


































































































































































