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ORIGINAL ARTICLE

OPEN

Risk Prediction Models to Predict Emergency Hospital
Admission in Community-dwelling Adults

A Systematic Review

Emma Wallace, MB, BAO, BcH* Ellen Stuart MB, BAO, BcH* Niall Vaughan, {
Kathleen Bennett, PhD,f Tom Fahey, MD,* and Susan M. Smith, MD*

Background: Risk prediction models have been developed to
identify those at increased risk for emergency admissions, which
could facilitate targeted interventions in primary care to prevent
these events.

Objective: Systematic review of validated risk prediction models
for predicting emergency hospital admissions in community-
dwelling adults.

Methods: A systematic literature review and narrative analysis was
conducted. Inclusion criteria were as follows; Population: community-
dwelling adults (aged 18 years and above); Risk: risk prediction
models, not contingent on an index hospital admission, with a deriva-
tion and > 1 validation cohort; Primary outcome: emergency hospital
admission (defined as unplanned overnight stay in hospital); Study
design: retrospective or prospective cohort studies.

Results: Of 18,983 records reviewed, 27 unique risk prediction
models met the inclusion criteria. Eleven were developed in the
United States, 11 in the United Kingdom, 3 in Italy, 1 in Spain, and
1 in Canada. Nine models were derived using self-report data, and
the remainder (n=18) used routine administrative or clinical record
data. Total study sample sizes ranged from 96 to 4.7 million par-
ticipants. Predictor variables most frequently included in models
were: (1) named medical diagnoses (n=23); (2) age (n=23); (3)
prior emergency admission (n=22); and (4) sex (n=18). Eleven
models included nonmedical factors, such as functional status and
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social supports. Regarding predictive accuracy, models developed
using administrative or clinical record data tended to perform better
than those developed using self-report data (c statistics 0.63—0.83
vs. 0.61-0.74, respectively). Six models reported c statistics of >0.8,
indicating good performance. All 6 included variables for prior
health care utilization, multimorbidity or polypharmacy, and named
medical diagnoses or prescribed medications. Three predicted ad-
missions regarded as being ambulatory care sensitive.

Conclusions: This study suggests that risk models developed using
administrative or clinical record data tend to perform better. In ap-
plying a risk prediction model to a new population, careful consid-
eration needs to be given to the purpose of its use and local factors.

Key Words: risk prediction model, emergency hospital admission,
community-dwelling adults

(Med Care 2014;52: 751-765)

In the United States, rehospitalizations alone are estimated
to cost €12 billion each year.! Emergency or unplanned
admissions account for approximately 35% of all hospital-
izations in the United Kingdom (UK) costing an average of
£11 billion annually.> As a result of this escalating ex-
penditure, reducing emergency admissions is a priority for
health care policy-makers.> For patients, unplanned hospi-
talizations may be distressing, and older people in particular
are at risk of related adverse events such as hospital-acquired
infections, loss of functional independence, and falls.?

One way of reducing emergency admissions is to
identify people at higher risk who can then be prioritized for
an intervention, such as case management.’ Risk prediction
models developed for this purpose and not contingent on
recent hospitalization have the advantage of broader
applicability and can include a wider range of predictor
variables. It has also been argued that focusing on specific
high-risk groups, such as those discharged from a hospital,
may not be the best approach to take in targeting emergency
admissions. This is due, in part, to the concept of “regression
to the mean,” which means that patients with a history of
multiple admissions will on average have fewer admissions
in the future than they had in the past.®’

Three main types of data sources are utilized to derive
risk models for predicting emergency admission.® The first is
self-report data collected through patient questionnaire or
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interview with the advantage of being able to include non-
medical variables such as functional status and social sup-
ports. The second is routine data collected for the purposes of
administrative databases or population registries. The third
incorporates data collated from the clinical record or other
primary data sources with the advantage of being able to test
larger number of variables and without the response biases
associated with self-report.

The aim of this study is to perform a systematic review
of validated risk prediction models for predicting emergency
hospital admission in community-dwelling adults. Specific
objectives were: (1) To examine the variables included in
risk prediction models; (2) to summarize the performance of
risk prediction models in derivation and validation cohorts;
and (3) to compare the predictive accuracy of risk models
externally validated in the same setting.

METHODS

The protocol for this systematic review has been pub-
lished on PROSPERO (PROSPERO2013:CRD42013004390)
and is available at http://www.crd.york.ac.uk/PROSPERO/
display_record.asp?ID = CRD42013004390.

The PRISMA guidelines for the conduct and reporting
of systematic reviews were utilized in undertaking this sys-
tematic review.®

Search Strategy

A systematic literature search was carried out in Sep-
tember 2013 and updated in February 2014 of the following
search engines: PubMed, EMBASE, CINAHL, the Cochrane
Library, and Google scholar. Additional databases were also
searched: the US Agency for Healthcare Research and
Quality (AHRQ), the John Hopkins Adjusted Clinical
Groupings (ACG) publications, the UK Nuffield Trust, and
the King’s fund. The search was supplemented by hand
searching references of relevant articles and contacting study
authors when necessary. No restrictions were placed on
language or year of publication.

A combination of MeSH terms and keywords were
used to capture studies of interest (Appendix 1, Supple-
mental Digital Content 1, http://links.lww.com/MLR/A747).

Study Selection
Studies were included if they met the following cri-
teria:

(1) Population: Community-dwelling adults (aged > 18y).

(2) Risk: Risk prediction models, which were not contingent
on an index hospital admission, with a derivation and at
least 1 validation (either internal or external) cohort.
Models were subdivided according to the data used to
develop the model as follows: (i) Self-report; (ii)
Administrative or clinical record data.

(3) Outcome: Primary outcome of emergency hospital
admission (defined as unplanned overnight stay in
hospital). Studies that had emergency admission as part
of their outcome of interest (e.g. combined endpoints)
were also included.

(4) Study design: Retrospective or prospective cohort
studies.
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The following studies were excluded:

Primary population of interest focused on pediatrics,
obstetrics, surgery, mental illness, or patients enrolled in
managed care programs; readmission risk prediction models
(models contingent on an index hospital admission); models
in which the primary outcome of interest was elective hos-
pital admissions, models developed for use in emergency
rooms (ERs), for specific diagnoses, for example, congestive
heart failure, for a different primary outcome, e.g., mortality
and risk adjustment models (models to compare provider
performance with inform pay and health care financing).
Studies that reported risk factors only and did not develop a
model were also excluded.

Data Extraction

Two reviewers (E.W., E.S.) read the titles and/or ab-
stracts of the identified records in duplicate and eliminated
irrelevant studies. Studies that were considered eligible for
inclusion were read fully in duplicate and their suitability for
inclusion determined. Disagreements were managed by
consensus and if consensus could not be reached then by
third review (S.M.S.). Additional data were sought from
authors when necessary. Data were extracted using a
standardized data extraction form.

Statistical Analysis

Meta-analysis was not possible because of risk pre-
diction model heterogeneity, so we narratively summarized
each unique risk prediction model under the following
headings:

e The model’s derivation cohort study setting, participants
and population studied.

e Type of validation cohort, that is, internal or external.

e Type of data used to derive the model.

e Model discrimination was assessed using the c statistic
with 95% confidence intervals when available. A ¢
statistic of 0.5 indicates that the model performs no better
than chance, a score of 0.7-0.8 indicates acceptable
discrimination, whereas a score of >0.8 indicates good
discrimination.’ In cases in which the c statistic was not
presented, we present positive predictive values, sensi-
tivity, and specificity.

e Variables evaluated and considered for inclusion.

e Variables included in the final model.

Methodological Quality Assessment

Methodological quality assessment of included studies
was independently performed in duplicate (E.S., N.V.) using
the McGinn checklist for the methodological assessment of
clinical prediction rule studies'® (Appendix 2, Supplemental
Digital Content 2, http://links.lww.com/MLR/A748). The
McGinn criteria include a total of 8 criteria to assess the
internal and external validity of derivation articles. For val-
idation studies, a total of 5 criteria were used. Detailed
guidance notes were also developed in-house to accompany
the derivation and validation methodological criteria. Dis-
agreements were solved by consensus or by adjudicating
third review (E.W.).

© 2014 Lippincott Williams & Wilkins
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RESULTS

Study Identification

A flow diagram of the search strategy is presented
in Figure 1. The electronic databases search strategy yielded
20,666 papers. A further 20 articles were retrieved from
searches of other resources. After removal of duplicates, a
total of 18,983 articles were screened by title and abstract, of
which 163 studies were reviewed in full text; 27 unique risk
prediction models met all inclusion criteria.

Description of Included Risk Prediction Models

Of the 27 unique models included, 11 were developed
in the UK, 11 in the US, 3 in Italy, 1 in Spain, and 1 in
Canada. Nine models were developed using self-report data
or a combination of self-report and administrative or routine
data (Table 1) and the remainder (n=18) utilized routine or
primary data alone (Table 2). A total of 13 models were
developed specifically for use in older people (60y and
above). Total sample sizes ranged from 96 to 4.7 million
participants. The majority of models (18 of 27) were
developed to predict emergency hospital admission at
12-month follow-up (range, 90 d—4y). Of these, 3 models
focused on emergency admissions for chronic disease or
conditions amenable to primary care management as a pri-
mary outcome measure.”’*13% Two models predicted any
hospitalization and 2 predicted occupied bed days over
specific time periods.!7-*6238 A further 3 models used the
endpoint of emergency admission or ER visit and 2 used
combined hospitalization/death.!!-19-21:33.37

Data Sources Used to Develop Risk Prediction
Models

The 9 models developed with self-report data included
literature reviews; medical record review and questionnaire
pilot in the development of their models (Table 1). Of the 18
models developed using routine or clinical record data, 10
were developed using a combination of administrative and
clinical record data.?>2426-3035.39 A further 8 were devel-
oped using administrative data alone.!”-2%-32-3436-38 Eleven
models included general practice (GP)/family practice clin-
ical record data in their final model.??~2426-30,35.39

Risk Prediction Model Variables

Each of the variables considered and included in each
of the 27 models are presented in Table 3. Seven studies
presented their final risk model only and not all variables
considered for inclusion, and 1 study uses locally available
data to create a risk prediction model specifically for a
named population so variables considered for inclusion
vary,2323:2728.31.3437 The most frequently included predictor
variables in final risk models were: (1) named medical di-
agnoses (23 models); (2) age (23 models); (3) prior emer-
gency admission (22 models); and (4) sex (18 models). Other
health care utilization variables commonly included were
prior ER and outpatient department (OPD) visits (14 and 13
models, respectively). Twelve models included measures of
multimorbidity (the presence of 2 or more chronic medical
conditions in an individual), most commonly the Charlson

© 2014 Lippincott Williams & Wilkins

index and simple disease counts.!%-23-24.29-33.36-39 One model

considered multimorbidity for inclusion and then excluded it
after evaluation.!” Polypharmacy was considered as a pre-
dictor variable in 14 models and included in 11 final mod-
els.11-18,19.21,23,24,28-30.37.39 Eive models included a specific
measure of socioeconomic group (SEG) and a further 3 used
either employment history or income as proxy measures for
SEG.!7:21-23,25,28,29.31

Overall, a smaller number of models (n=11) included
nonmedical factors,!1-13715:17,20-222431.37 Thege  variables
were largely included in self-report data models (Table 1).
Of those that included functional status as a predictor vari-
able, most considered either activities of daily living, mo-
bility, and/or a history of falls.!1-13:17:20-22.24.31" gy
questionnaires included measures of self-rated health and 1
included health-related quality of life.!3"1317-18 Two ques-
tionnaires included the social support measure of caregiver
availability.!>?! Three models developed using admin-
istrative or clinical record data included nonmedical varia-
bles; these included a history of falls as a predictor variable,
social supports and living arrangements, and a disability
rating variable respectively.?23137

Predictive Accuracy of Risk Prediction Models

Eighteen models presented c statistics for the outcome
of emergency admission ranging from 0.61 to 0.83. Six
models reported ¢ statistics of >0.8, indicating good model
discrimination.?’283133:33  Some similarities were noted
among these models; all included prior health care utilization
variables, multimorbidity or polypharmacy measures, and
named medical diagnoses or named prescribed medications
variables. Three of these 6 models utilized emergency
admissions for chronic disease or conditions amenable to
primary care management as a primary outcome mea-
sure.?73138 A further 7 risk prediction models reported ¢
statistics of between 0.7 and 0.8 representing acceptable
model performance.'$22-243537.39 Of 9 models developed
using self-report data primarily, 8 were designed for use in
older people. In contrast, only 5 of the 18 models developed
using administrative or clinical record data were derived
specifically for use in older people. The remainder were
developed for use in general populations aged over 18 years.
Overall, models developed primarily using administrative or
clinical record data performed better than those developed
using self-report data, with reported c statistics ranging from
0.68 to 0.83 versus 0.61 to 0.74, respectively.

Comparison of Performance of Risk Prediction
Models Within and Across Populations

Three studies developed several prediction models in 1
population, using different datasets and then compared their
performance. Billings et al?®* developed 4 models in the
United Kingdom using: (1) inpatient data alone; (2) com-
bined inpatient and ER data; (3) combined inpatient, ER, and
OPD data; and (4) combined inpatient/ER/OPD/GP/family
practice data. This was undertaken to determine whether the
addition of GP/family practice data improved overall model
performance. In the test sample of >1.8 million people, the
OPD/ER/GP/inpatient model performed best (¢ statistic 0.78
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Total records identified: n=20,666
PubMed 12,472

Embase 5,129

Cinahl 2,988

Cochrane 57

Other resources n=20

}

Duplicates removed: n=1,683 |

Records screened:

n=18,983

A 4

Full text studies assessed for

|—>| Records excluded based on title/abstract n= 18,820

eligibility: n=163

A 4

Risk models included in narrative
synthesis
n=27

Records excluded (with reasons) n=136
Readmission risk prediction tool: 21
Emergency room risk prediction tool: 28

Risk adjustment model: 20

Study population not relevant: 9

Derived only: 2

Different study outcome: 13

No risk model (risk factors only): 43

FIGURE 1. PRISMA flow diagram of included risk prediction models.

vs. 0.73 for inpatient model).?> Similarly, Lemke and col-
leagues in the United States examined various models using
the ACG classification and compared these with models
using prior hospitalization only using a data source of 4.7
million medical insurance claims. The model using ACG
groupings plus prior health care utilization performed best
overall (c statistic 0.8 vs. 0.75).33 Reuben and colleagues
compared models developed using prior admission only,
self-report data only, and a model using a combination of
self-report variables and laboratory values. The model with
greatest predictive accuracy used a combination of self-re-
port and laboratory variables (c statistic 0.69).!7

Two studies directly compared different validated
models in the same population. The UK Combined Pre-
dictive Model (CPM) was developed to be nationally rep-
resentative.3? It was compared with 2 other UK risk models,
the Wales predictive model and the Devon predictive mod-
el.?4? In primary care the Wales model was found to have
superior predictive ability when compared with the CPM in
correctly identifying those who were subsequently admitted.
The Devon predictive model included many of the same
variables as the CPM but also local data variables and was
found to have greater predictive accuracy when compared
with the CPM. The authors argued that the addition of local
factors, for example, the participant’s duration of family
practitioner registration as a proxy for continuity of care, was
integral to improved performance.

Methodological Quality Assessment of Included
Studies

Overall, the methodological quality of included studies
was good. For derivation, the majority of studies reported all

754 | www.lww-medicalcare.com

checklist items with the exception of items pertaining to
blinding of outcome assessors, blinding of those assessing
the presence of predictors, and reporting of the proportion of
the population with important predictors. For validation the
majority of studies reported all checklist items with under-
reporting of blinding of those assessing the outcome event
(Figs. 2A, B).

DISCUSSION

Summary of Findings

This systematic review identified 27 unique risk
models for predicting hospital admission. Less than half
were developed specifically for older people, with the rest
designed for use in an adult population. Overall, models
developed using administrative or clinical record data and
developed on large datasets tended to have greater predictive
ability than self-report questionnaires. Risk prediction mod-
els that examined the added benefit of GP/family practice
clinical record data in increasing predictive accuracy re-
ported improved performance when this data source was
included.

Variables Included in Risk Prediction Models
Overall, almost all risk models in this review included
age, prior hospitalization, and specified medical diagnoses,
and the majority included sex. However, less than half
considered a specific measurement of multimorbidity, which
is surprising considering the impact the presence of multiple
conditions has been shown to have on health care uti-
lization.***! Similarly, less than half of models considered
polypharmacy and only 8 included a measure for SEG in

© 2014 Lippincott Williams & Wilkins
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primary care, pharmacy, and

hospital database data.

TABLE 3. Predictor Variables in Risk Prediction Models
(n=26%*) for Predicting Emergency Hospital Admissions

Predictor Variable

Included in Final Model

(m)

Excluded After
Evaluation (n)"

Medical history

Specific medical 9313-15,17-20,22-26,29-39 0
diagnoses
Multimorbidity 1219,23,24,29-33,36-39 17
Ambulatory care 22333 118
sensitive (ACS)
conditions
Mental illness 1222,23,25,26,20-34,37,38 513,14,17-19
Cognitive impairment 711,13,23,2532.35.37 315,17,29
Alcohol or substance 772-25,30,32.33 21720

misuse

Clinical and laboratory findings

Clinical examination 3182332 617:22,24,30,38
findings
Laboratory findings 717.18,22-24,30,32 329,36,38
Medications
Prescribed specific 922-25,28-30,32,38 0
medications
Polypharmacy 1111,18,19.21,23,24,08-30,37,39 313,20,38
Potentially inappropriate 138 0
prescription
Health care utilization
Prior emergency 97 13-15,17,19,21-26,28-37,39 411,18,20,38
admission
Prior elective admission 323.29.39 0
Prior ACS admission 224,30 114
Prior ER visits 1418,19,22-25,29-34,37,39 71120
Prior OPD visits 1314,15,23-26,29-34,39 418.20,36,38
Prior GP visits §14,15,23,31-33,36,39 229.38
Duration of GP 323-25 0
registration
No. previous bed days 514,25,28,32,35 115
Demographics
Age 2311,13-15,18,21-26,28-39 317,19,20
Sex 1811,13-15,17,21-24,26,28-33,37,39  518,19,35,36,38
Race/ethnicity 92237 515,18,19,35,36
Marital status 614,31,32,35-37 417-19.29
Socioeconomic group 817,21-23,25,28,29,31 315,18,38
(SEG) or proxy
measure
Health insurance 21431 21836
Functional status
Activities of daily living 417.20.21.31 313,15,19
Mobility 511,13,17,20,21 914,32
History of falls or hip 02224 511,13,15,20,35
fracture
Self-rated health 4131517 318-20
Health-related quality of 118 0
life
Social supports
Lives alone 311.21,37 713-15,17-20
Caregiver availability 21521 213,18
Community nurse visits 421,2333.39 115
Use of other social 221,37 117
supports
Other
Recent stressful life 0 213,20
event

'If ¢ statistics are not presented then positive predictive values (PPVs), sensitivity, and specificity (when available) are recorded.

*Qutcome is emergency hospital admission unless otherwise stated.
y

*Author correspondence.

*One risk model (The Sussex Key Events Predictor tool) creates customized
models using a combination of inpatient, outpatient, ER, and community data relevant
to the population of interest.

"Seven models presented the final model only and did not present all variables
considered for inclusion.
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their development. In this review the 6 risk prediction
models that demonstrated greatest predictive accuracy (based
on reported c statistics) included similar variables, namely,
prior health care utilization, multimorbidity or polypharmacy
measures, and named medical diagnoses or named pre-
scribed medications predictor variables. Three of the 6 fo-
cused on ambulatory care sensitive conditions (ACSCs)
admissions.

Overall, nonmedical factors such as functional status,
social supports, and self-rated health were included in ap-
proximately one third of risk models. These factors have
been highlighted as potentially contributing to emergency
hospitalization. One US study of qualitative interviews with
patients identified by a risk prediction model as high risk
found that the majority had poor self-rated health, precarious
housing status, lived alone, and reported high levels of social
isolation.*?

All outcome events clearly defined
All predictors clearly defined
Predictors in significant % population

All important predictors included

Performance of Risk Prediction Models in New
Settings

In 2 studies a nationally developed risk prediction model
was applied to new populations in the same country and its
performance compared with adapted models, which included
local factors.?*? In both studies the locally adapted models
performed better at predicting future emergency hospital-
ization. One UK risk score developer designs customized risk
models for a specified population using locally available data
to ensure that the model created is fit for purpose.?’ This ap-
proach seems sensible as local factors may well differ within
countries and differences in population demographics may
mean that a risk model should be applied differently.

Comparison With Previous Research
To our knowledge this is the first systematic review
of risk prediction models for emergency admission in

H Yes
Clinically sensible m No
Unreported
Adequate sample size P
Predictor assessors blinded to outcome
Outcome assessors blinded to predictors |
0 5 10 15 20 25 30
® |
Patients represent a wide spectrum of “
disease
Patients selected in an unbiased fashion _
M Yes
80% follow up of those enrolled _
| H No
Predictors assessors blinded to the _ Unreported
outcome event
Outcome assessors blinded to predictors H
| | |

0 5

10 15 20 25 30

FIGURE 2. Methodological quality assessment of included risk prediction models (n=26, n=1, model customized depending on
the population it is intended for). A, Derivation studies. B, Validation studies. Colour code: Blue: item done and reported; Red:

item not done and reported; Green: item unreported.
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community-dwelling adults. Previous systematic reviews
have focused on readmission risk models and risk factors for
emergency admission. Kansagara et al* found that of 26
retrieved readmission risk models only 6 reported a ¢ statistic
>0.7. They concluded that most readmission models perform
poorly and suggested that the additional variables available
through the medical record or patient self-report may im-
prove performance. Our review supports this suggestion with
models developed using clinical record data demonstrating
improved predictive accuracy overall.

Garcia-Pérez et al** reported that the risk factors of
chronic disease status and functional disability were the most
important predictors, followed by prior health care uti-
lization. Whereas medical diagnoses and prior health care
utilization were included in almost all risk prediction models
in this review, far fewer included functional status. This may
be related to the type of data available in the development
phase, especially those that utilize administrative or clinical
record data only. Functional status variables have tended to
be included in self-report questionnaires, which may be more
prone to response bias for the reporting of other important
predictors such as medical diagnoses and previous health
care utilization. Future research needs to consider how best
to capture nonmedical factors to determine whether their
inclusion into predictive models improves performance.

Clinical and Research Implications

In 2011, a US-based heritage provider group offered a
$3 million prize to any group that could develop a risk
prediction model to identify people at higher risk for ad-
mission so that resources could be directed at reducing their
risk.*> However, to date, the evidence for case management
for higher-risk community-dwelling people is mixed and has
not reduced emergency admissions.*® For instance, the
Guided Care model aims to provide primary care that in-
cludes comprehensive geriatric assessment, case manage-
ment, self-management support, and caregiver support
provided by a team that includes a specially trained nurse
who acts as care coordinator. Patients were targeted using
age and multimorbidity as risk stratification criteria. In a 32-
center randomized control trial, this intervention was found
to improve participants’ chronic care and reduce caregiver
strain and resulted in high levels of health care professional
satisfaction.*’” However, apart from 1 subgroup, compared
with usual care, participants utilized similar levels of health
care at 20-month follow-up, with the exception of home
health care, which was significantly reduced.*®

Overall, it is difficult to know whether case management
has not achieved anticipated reductions in emergency admis-
sions because of the intervention used or the case finding
mechanism utilized. Studies to date have chosen relatively
blunt measures of risk stratification to target patients for their
respective interventions.*®* Perhaps intensifying efforts in the
choice of model for risk stratification may provide dividends
for future studies. Further, focusing case management on in-
terventions that prioritize components relating to multi-
morbidity and polypharmacy may have a role to play.>”

Another consideration relates to the choice of outcome
measure. Most risk models in this review used emergency

© 2014 Lippincott Williams & Wilkins

admission for any cause as their primary outcome. Only 3
chose emergency admissions due to ACSCs as an endpoint.
A further 3 models considered ACSCs in their development
process. This is interesting as a proportion of all emergency
admissions will not be preventable even with intensified
care.’! ACSCs are chronic conditions for which it is possible
to prevent acute exacerbations, therefore reducing the need
for hospital admission through management in primary
care.’>> In the United Kingdom, it is estimated that
approximately 16% of all emergency admissions for all age
groups occur as a result of these conditions and up to 30%
of admissions for those aged over 75 years.>?> Community-
based interventions should target conditions for which
upscaling primary care management can really impact on
preventing subsequent admissions. In the United States, risk
prediction model developers are testing models that aim to
focus resources not necessarily on patients at highest risk
for emergency admission, but those with conditions or
characteristics (such as prior treatment adherence) most
likely to benefit from increased preventative care.>* In this
way resources can be focused where impact is more likely to
be realized.

Strengths and Limitations

This review is timely considering the increased interest
in risk stratification to identify community-dwelling people
at higher risk for future admission. However, there are some
limitations. Risk prediction models developed in one pop-
ulation or health care setting may not be transferable to an-
other and care must be taken in comparing models. Further,
risk prediction models need frequent updating to remain
relevant, and some of the older models described in this
review are now obsolete. Seven of the included models
presented their final risk model only and not all variables
considered for inclusion, so the data presented in Table 3 is
limited by this.

CONCLUSIONS

Choosing a robust method of risk stratification is an
essential first step in attempting to reduce emergency hos-
pital admissions. This review identified 27 validated risk
prediction models developed for use in the community.
Local factors and choice of outcome are important consid-
erations in choosing a model. Capturing nonmedical factors
may have a role in improving predictive accuracy.
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