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Table S1. List of symbols used in the main text.
Symbol Definition
A cyclist’s projected area
a relative acceleration between two cyclists
α road slope
CD cyclist’s drag coefficient
∆s center-to-center distance between neighboring cyclists

∆s mean distance between neighboring wave-affected cyclists
∆v relative longitudinal speed between two cyclists
E elastic modulus
E∗ analogous elastic modulus in cycling pelotons
g gravitational acceleration
k empirical parameter relating characteristic velocity scales
Lb bike length
m cyclist’s mass
N number of cyclists affected by wave
ψ characteristic angle associated with wave propagation

P (θ) probability distribution of θ
ρ material density
ρ∗ analogous density in cycling pelotons
ρair air density
σ Poisson’s ratio
T ∗ analogous tension in cycling pelotons
t time
tf time to finish
tr human simple visual reaction time
tw wave propagation time
θ angle between neighboring cyclists

θwave angle between each sequential set of neighbors affected by a propagating wave
Vc characteristic wave speed
Vmax peak explosive speed of a cyclist
Vp mean peloton velocity
Vφ wave speed
VφL longitudinal wave speed
V ∗
φL

normalized longitudinal wave speed
VφT transverse wave speed
V ∗
φT

normalized transverse wave speed
Vtrans relative transverse speed between two cyclists
wb cyclist width
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1 Global formations of cycling pelotons4

Figure S1 shows different prevailing shapes that the peloton takes on in the Tour de France5

(TdF) professional cycling stage race.6

Figure S1. Different persistent formations in Tour de France pelotons are described by the
boundary head shape at the front: a, arrow, b, double arrow, c, echelon, d, double echelon, e,
flat, f, line, g, line into arrow, h, line into echelon, i, double line into echelon, j, line into flat.
Image credits: A.S.O. Eurosport, with permissions.

2 Image Processing7

Cyclist position data are resolved from video sequences using a series of image processing8

algorithms shown in Figure S2. Video sequences are first parsed into individual images and9

bounding boxes for each rider are defined by a user for the first frame in an image sequence. A10

tracking routine built on the track-learn-detect (TLD) algorithm [1] then tracks each initialized11

rider through the sequence. All data are manually post-processed to fix any errant tracks or12
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missed riders, and then the position of each cyclist is computed in pixel coordinates as the13

centroid of the bounding box. In order to make measurements of relative positions or angles,14

the coordinates need to be transformed into a metric reference frame. We accomplish this by15

generating homographies [2] between the raw images and reference geometry, which herein16

is established using known lengths and distances of lane markings on the road (Figure S2(c)).17

These homographies can then be used to transform pixel coordinates in the image reference18

frame to physical coordinates in a metric (world) reference frame as xc = Hxpix, where H is19

a 3×3 homography matrix, and xc and xpix are cyclist centroid coordinates in the world and20

image reference frames, respectively. Following the transformation, the y axis is aligned with21

the longitudinal road direction and the x axis is aligned transverse to the road direction.22

To measure the angle between neighboring riders, a Delauney triangulation is performed23

on all transormed cyclist coordinates (xc) to form a connected network between all cyclists24

and their neighbors (Figure S2(d)). Angles are defined with respect to the y axis (forward25

road direction) and are reported as absolute values such that θ ∈ [0◦, 180◦]. Angles between26

90◦ < θ ≤ 180◦ correspond to riders outside a cyclist’s field of vision and thus we only plot27

0◦ ≤ θ ≤ 90◦ in figures 4 & 5 of the main text and figures S3, S4, S5 & S6. The angles are28

only computed for connected riders that are within 2Lb of one another so as to exclude extreme29

angles that can occur between boundary nodes in the connected network (Figure S2(d)). These30

measurements are made for video sequences at several different points in the race with different31

realizations of the global peloton formation. For each sequence, angle measurements are made32

forNcyclists number of cyclists andNt number of time instances, with spacing between instances33

of 1
30

sec. From these data, the probability distribution function P (θ) is computed by fitting a34

smoothing spline to the discrete cumulative distribution function CDF , and then taking the35

derivative to get a best fit estimate of P (θ). The values of P (θ) for all cases studied herein are36

plotted in figures S3, S4 & S6 and the values of Ncyclists and Nt are reported in the caption for37
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Figure S2. Image processing algorithms were used to track the cyclists in each frame and trans-
form tracked coordinates to a metric reference frame. a, An original image from the helicoptor
video clip. b, Sample results of the tracking algorithm used to detect cyclists’ locations through
time in a given video sequence. The left most image corresponds to (a), and the image sequence
is the same as shown in figure 2(a) in the main text. Initial tracks were automatically determined
with an algorithm built on that of Kalal et al. [1], with corrections made manually thereafter.
A bounding box (shown in cyan) is drawn around each cyclist with the centroid of the bound-
ing box taken as the rider’s coordinates. c, Images from the overhead view are projected into
a metric reference frame using the geometry of road lane markings as reference geometry. d,
Delauney triangulation is used to determine the connectivity of neighbors in the peloton. The
angles between each cyclist and their connected neighbors are computed and used to determine
P (θ), CDF (θwave) and P (θwave). Note that the angles are only computed for connected rid-
ers that are within 2Lb of one another so as to exclude extreme angles that can occur between
boundary nodes in the connected network. Image credits: A.S.O. Eurosport, with permissions.
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each case. Figure 4(b) in the main text plots the mean of all P (θ) curves for all non-end of race38

(non-EOR) echelon/arrow head cases shown in figure S3. The uncertainty bounds reported in39

figure 4(b) are computed by propagating uncertainty as40

utotal = ±

√√√√√ M∑
j=1

u2Pj
+ (tM−1,95%SPc (θ))2 (1)

where uPj
= tν,95%Syx, with Syx the standard error of the spline fit of P (θ) to the discrete41

probability distributions for each case and tν,95% is the value from the student’s t-distribution42

table for ν degrees of freedom and 95% confidence; here ν = N − (m + 1), where N is the43

number of discrete points and m is the order of the spline fit. In the second uncertainty term in44

Eq.1, SPc (θ) is the standard deviation of P (θ) for each case from the mean value computed for45

all cases and M is the number of cases. Figure 5(c) in the main text plots the mean of all P (θ)46

curves for all EOR cases shown in figure S6 with the uncertainty bounds computed in the same47

way.48

3 Wave propagation49

Supplementary Video 1 shows a transverse wave that is initiated at the boundary of the peloton50

and propagates through the group. This video corresponds to the case shown in figure 2(a) of51

the main text and figure S2(b). Video credit: A.S.O. Eurosport, with permissions.52

Supplementary Video 2 shows several longitudinal waves propagating within the peloton. The53

waves are initiated by motions of cyclists avoiding a backward moving rider. The video plays54

again at half speed and highlights two longitudinal waves. This video corresponds to the case55

shown in figure 2(c) of the main text. Video credit: A.S.O. Eurosport, with permissions.56

Supplementary Video 3 shows a view from a rear-facing GoPro camera mounted to a rider’s57
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Figure S3. Probability distributions of angular location of neighbors P (θ) for cases shown
in figure 4(b) of the main text. These cases were used to compute the mean and uncertainty
on P (θ) shown in figure 4(b); each case has measurements for number of cyclists Ncyclists

and number of time instances Nt, with spacing between instances of 1
30

sec. The horizontal
black line in each plot denotes the mean value of P (θ) over all θ. The black arrows denote the
front peloton boundary angles with respect to the forward direction for echelons (1 arrow) or
arrow head (2 arrows). Head shape, number of cyclists and number of time steps for each case
are: a, echelon, Ncyclists = 31, Nt = 179; b, echelon, Ncyclists = 45, Nt = 343; c, arrow,
Ncyclists = 63, Nt = 189; d, echelon, Ncyclists = 118, Nt = 183; e, echelon, Ncyclists = 106,
Nt = 125; f, echelon, Ncyclists = 45, Nt = 147. All overhead images have been projected into
a metric reference frame. Image credits: A.S.O. Eurosport, with permissions.
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Figure S4. Probability distribution of angular location of neighbors P (θ) for 4 uphill-riding
peloton cases. The horizontal black lines and black arrows denote the same things as in figure
S3; the boundary angle for the flat head case is not marked. Head shape, road slope, number
of cyclists and number of time steps for each case are: a, arrow, α = 7.5◦, Ncyclists = 30,
Nt = 218; b, flat, α = 9.5◦, Ncyclists = 18, Nt = 298; c, line into arrow, α = 5.5◦,
Ncyclists = 27, Nt = 152; d, line into arrow, α = 6.5◦, Ncyclists = 18, Nt = 194. All overhead
images have been projected into a metric reference frame. Image credits: A.S.O. Eurosport,
with permissions.
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Figure S5. Cumulative distribution functions CDF and histograms of relative angular orienta-
tion of wave-affected riders. The angle between successive neighbors affected by a propagating
wave is denoted by θwave, which is defined with respect to the forward road direction. a, CDF
of θwave for transverse waves in non end of race (non-EOR) and EOR conditions; curves are
spline fits to the discrete CDF s and circle data markers show the last data point from the dis-
crete CDF s. Discrete histograms showing relative frequency of occurrence of θwave are given
for b non-EOR and c EOR conditions. The range of most likely angles narrows significantly
in EOR conditions. The same plots are shown in d,e,f for angular orientation of riders affected
by longitudinal waves. The trends between EOR and non-EOR are the same, but the effect
not as pronounced as shown by the transverse waves. The number of wave-affected cyclists
for each case analyzed are: b, transverse non-EOR, Ncyclists = [7, 7, 5, 10, 4, 3, 4, 4, 3] corre-
sponding to 9 cases analyzed; c, transverse EOR, Ncyclists = [7, 5, 3, 5, 3, 4, 3]; e, longitudinal,
Ncyclists = [7, 5, 3, 6, 5, 6]; f, longitudinal EOR, Ncyclists = [7, 4, 3].
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Figure S6. Probability distribution of angular location of neighbors P (θ) for EOR cases shown
in figure 5(c) of the main text. These cases were used to compute the mean and uncertainty
on P (θ) shown in figure 5(c). The horizontal black lines and black arrows denote the same
things as in figure S3. Head shape, number of cyclists and number of time steps for each case
are: a, echelon, Ncyclists = 44, Nt = 250; b, echelon, Ncyclists = 73, Nt = 101; c, arrow,
Ncyclists = 20, Nt = 166; d, echelon, Ncyclists = 50, Nt = 157; e, echelon, Ncyclists = 32,
Nt = 193; f, line into arrow, Ncyclists = 21, Nt = 239; g, echelon, Ncyclists = 38, Nt = 150.
All overhead images have been projected into a metric reference frame. Image credits: A.S.O.
Eurosport, with permissions.
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bicycle shows the basic diamond structure. In this clip, cyclists brake hard in response to a58

stimulus up the road. The diamond configuration helps avoid a catastrophic crash. Video credit:59

GoPro World.60

Supplementary Video 4 shows a view from a forward-facing GoPro camera mounted to a61

rider’s handlebars shows the diamond pattern and accommodation of a transverse motion. The62

cyclist to the left front flank moves to the right, prompting a transverse motion of the cyclist63

carrying the GoPro. Video credit: GoPro World.64

3.1 Measuring wave properties65

Longitudinal and transverse waves are identified visually from image sequences of helicopter66

TdF footage. Wave-affected cyclists are first identified on images projected into a metric refer-67

ence frame (figure S7(a)). Then, the position of each rider relative to the instantaneous centroid68

of all riders is plotted for each frame in the sequence, as shown in figure S7(b). These data com-69

bined with visual inspection are used to determine the frame at which each affected rider first70

moves in response to the wave. The displacement of the wave front relative to the instantaneous71

location of the first wave-affected rider is plotted against time and fit with a line to determine72

the wave speed, as shown in figure S7(c). In addition to measuring the wave speed, the center-73

to-center distance between successive wave-affected cyclists ∆s is measured on the frame on74

which the wave is initiated. The mean value of ∆s between successive cyclists affected by the75

wave is computed on this frame and reported as ∆s in figure 3 of the main text.76

Finally, θwave is computed as the angle between a wave-affected cyclist and his nearest77

wave-affected neighbor to the front. Different instances of observed wave events are grouped78

into transverse non-EOR, transverse EOR, longitudinal non-EOR and longitudinal EOR. Figure79
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S5 plots smoothing spline fits to the discrete CDF of θwave, as well as the discrete probability80

distributions, showing that the range of angles between wave-affected riders narrows in EOR81

conditions.82

3.2 Defining characteristic wave propagation velocities83

We aim to derive characteristic scales of longitudinal and transverse velocity that rationalize84

the difference between these wave speeds shown in figure 3(a) of the main text. Consider two85

cyclists within a pack traveling with mean group velocity Vp. A velocity difference ∆v in the86

longitudinal direction exists between the cyclists. Each cyclist has length and width Lb and wb,87

respectively. A scale for the velocity difference ∆v can be derived from the relative acceleration88

a of the faster cyclist, as follows.89

∆v = atp (2)

with90

tp =
Lb
∆v

(3)

Because Lb is used for the length scale in Eq.3, the time scale tp may be interpreted as the time91

required for the faster cyclist to draw even with the slower one. We now have92

∆v =
√
aLb (4)

such that ∆v is the velocity scale characteristic of longitudinal wave-like motions within the93

pack. This is not the only choice of longitudinal velocity scale; two other obvious ones being94

VcL = Vp and VcL = a(Lb/Vp). However, these alternative scales include the peloton velocity95

Vp, which would be expected to characterize the response of a cyclist to a stimulus in the world96

frame rather than the moving peloton frame.97

Physical arguments can be used to obtain candidates for the characteristic acceleration used98

in Eq.4. A maximal braking deceleration ab = 0.56g was calculated by Wilson et al. [3] for a99
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Figure S7. Processing routine used to measure wave propagation time and wave speed. a,
Wave-affected cyclists are identified through visual inspection of a video sequence. All over-
head images have been projected into a metric reference frame (image credits: A.S.O. Eu-
rosport, with permissions). b, The position of each cyclist x relative to the centroid of the group
x̄ is plotted for each frame in the sequence and is used to help identify the location of the wave
front. c, The distance of the wave front relative to the instantaneous location of the first affected
cyclist is plotted against time and fit with a line to determine the wave speed.
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nominal cyclist, where g is gravitational acceleration. A maximal non-braking deceleration ad100

can be determined from the forces acting to slow the cyclist,101

ad =
Fdrag + Fgravity

m
=

1
2
ρairV

2
p CDA+mg sinα

m
(5)

where m, CD and A are the cyclist’s mass, drag coefficient, and characteristic area. The local102

fluid density and road slope are given by ρair and α, respectively. Herein, the product CDA =103

0.32, as reported by Wilson et al. [3] for an individual cyclist. The total decelerating force104

Fd = Fdrag + Fgravity also determines a maximal forward acceleration105

af =
Ẇmax − FdVp

mVp
(6)

where Ẇmax is the maximum power output of the cyclist, estimable on a per-mass basis [3].106

Each candidate acceleration has a different relationship to the velocity Vp107

dab
dVp

= 0,

dad
dVp

> 0,

daf
dVp

< 0 (7)

The longitudinal motions of the cyclists studied in this work were deemed to be best character-108

ized by ad. This is interesting, because for typical racing speeds ab > 2ad, meaning that the109

wave speeds displayed by the cyclists in the longitudinal direction are not dictated by braking110

deceleration, which gives the largest velocity scale. Rather, the characteristic scale is consistent111

with energy preservation.112

A geometric argument can be used to characterize the transverse motion. Consider the113

characteristic passing motion shown in figure 3(b) of the main text. For two cyclists to pass114

without penetration, a transverse motion equal to or greater than their widthwb is required. Over115

the time ∆t, the “pass” is characterized by a transverse motion of the trailing rider of wb, and a116
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longitudinal motion of kLb, in the pack-fixed frame, where k is a parameter to be determined.117

The transverse velocity associated with this motion is Vtrans = wb/∆t and the longitudinal118

velocity is ∆v = kLb/∆t. Eliminating ∆t, these velocity scales can thus be related as119

Vtrans =
wb
kLb

∆v (8)

This indicates a linear relationship between the transverse and longitudinal velocity scales. The120

value of the constant k that provides the best data collapse in figure 3(b) was empirically found121

to be k = 0.41. A characteristic angle can be computed from the ratio of characteristic wave122

velocities, ψ = arctan (Vtrans/∆v) = arctan (wb/kLb), which, when inserting k = 0.41, gives123

ψ = 30.3◦; this value is consistent with the bounds found in network structure measurements.124

The speed of these transverse and longitudinal motions that are found to characterize wave125

propagation are considerably slower than an estimate of the physical limit on velocities would126

indicate. For longitudinal motions, the physical limit would be set by braking deceleration,127

which, as noted above, was not found to characterize the observed wave propagation. In the128

trasverse direction, one might expect velocities to be limited by stability in turning. Performing129

an extrapolation of the stability analysis in Meijaard et al. [4] gives a velocity that is much too130

large to characterize transverse wave propagation. This indicates that the trajectory associated131

with one rider passing another is more characteristic of the wave speeds within the peloton than132

the individual velocities associated with maximum longitudinal and transverse motion.133

3.3 Interpretations of wave behavior in cycling pelotons134

To rationalize the expected dependence of wave speed Vφ on rider spacing, consider two cyclists135

separated by a distance of ∆s. The trajectory of the first cyclist is (s(t), n(t)), where s and n136

refer to the longitudinal and transverse directions, respectively. For the case when a perfect137

wave-like motion is observed, the trajectory of the second cyclist is (s(t + ∆ts), n(t + ∆tn)).138
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For small changes in position,139

VφL =
∆s

∆ts
, (9)

VφT =
∆s

∆tn
, (10)

where VφL and VφT are the wave phase velocities in the longitudinal and transverse directions,140

respectively. Each ∆t represents the time it takes for the second cyclist to repeat the motions of141

the first. We refer to a general phase velocity Vφ and a general ∆t with the understanding that142

we can associate these with a pattern of behavior in an arbitrary direction.143

We can make the general forms of Eq.9 & 10 non-dimensional such that144

Vφ
Vp

=

(
Lb
Vp∆t

)
∆s

Lb
. (11)

where Vp is the peloton velocity and Lb is the bike (or “body”) length. A few manipulations145

of Eq.11 follow which have interesting interpretations for different observed wave propagation146

behavior.147

Constant positive slope. For cyclists reacting to wave motion with fixed reaction time ∆t = tr,148

we can re-write Eq.11 as149

Vφ
Vp

=

(
Lb
Vptr

)
∆s

Lb
. (12)

Thus, we can see that the wave speed is expected to increase linearly with spacing between rid-150

ers ∆s, which is what we see for non end of race (non-EOR) conditions (as shown by blue, green151

and yellow data markers in figure 3. The longitudinal waves propagate faster than the transverse152

waves because cyclists are responding to longitudinal perturbations 2 neighbors ahead (larger153

∆s), as discussed in the main text.154

Zero slope. Consider a group of points where155

Vφ
Vp

=

(
Lb
Vp∆t

)
∆s

Lb
= κ (13)
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where κ is a constant. This is the trend shown by transverse waves in the end of race (EOR)156

conditions represented by the red data markers in figure 3. Manipulating Eq.13, we can relate157

the timescale of repeated motion to spacing as158

∆t =
∆s

κVp
. (14)

Thus, for the behavior observed in EOR conditions, the characteristic timescale associated with159

wave propagation increases linearly with spacing between riders. The special case κ = 1 is160

instructive. Here, ∆t = ∆s/Vp, such that the reaction time is equal to the time it takes for161

each body to cover the space separating them. This is analogous to the situation observed when162

a streamline encounters a fixed obstacle in a fluid flow. This can be generalized to the more163

general case κ > 0, as shown in figure S8. Here, it becomes clear that if a pattern of behavior is164

such that the cyclists have a fixed non-dimensional wave speed κ, it is equivalent to a response165

to a stimulus which is moving in their same direction with speed (1− κ)Vp.166

4 Cue Utilization Theory in the context of sports psychology167

Sport psychology and performance-based examinations of the relationship between arousal (ac-168

tivation) states and field of perceptions (related to awareness of various cues) have been con-169

ducted to determine how arousal affects performance awareness. Easterbrook’s Cue Utilization170

Theory [5] was the first to predict that as arousal increases, individual perception of relevant171

task cues narrows. This theory suggests, supported by many subsequent studies, that attention172

toward task relevant cues is enhanced as arousal increases (i.e., at increased levels of physical173

exertion). However, as arousal increases beyond a zone of optimal functioning (individually174

and situationally effected) individual awareness of task relevant cues are not perceived (see fig-175

ure 5(b)). It follows that for each situation, there exists an ideal arousal range that maximizes176

focus on task-relevant cues while blocking irrelevant cues. This arousal range will be person177
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Figure S8. Interpretation of EOR cases with Vφ/Vc = constant (red markers in figure 3). a, This
scenario can be interpreted as cyclists moving at the peloton speed Vp around a virtual obstacle,
which is itself moving at a fraction (1− κ) of the peloton speed (where 0 ≤ κ ≤ 1). b, In the
frame of reference of the peloton riders, the stimulus is moving towards them at velocity κVp.
c, In a characteristic transverse wave motion in this scenario, a leading rider moves laterally
“around” the virtual obstacle. The following rider repeats this motion at a time ∆t = ∆s/κVp
later. Thus, the characteristic timescale associated with wave propagation increases linearly
with spacing between riders. d, The scenario may be interpreted as a streamline in a fluid flow
moving around a moving obstacle. The special case κ = 1 is instructive. Here, ∆t = ∆s/Vp,
such that the characteristic wave propagation timescale is equal to the time it takes for each
body to cover the space separating them. This is analogous to the situation observed when a
streamline encounters a fixed obstacle in a fluid flow.
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and task dependent. It has also been found that higher rates of intense exercise direct attention178

inward on the physical discomfort of acute exertion, additionally distracting the individual from179

relevant cues [6]. Therefore, it is important for athletes (cyclists) to be aware of their exertion180

rate, so that they can operate in their optimal zone of performance, focus on relevant task cues181

and filter out irrelevant cues, and continue to make ideal race decisions even as their arousal182

levels increase.183

Furthermore, there have been studies that link intensity of physical exercise to brain metabolic184

processes and cognition. Some theories suggest there is a “loss of executive control functions185

during conditions of moderate to high-intensity exercise,” as low level sensorimotor functions186

become prioritized [7, 8, 9], and “this pattern may be driven by a dynamic reallocation of brain187

metabolic resources from a frontal-parietal control network toward lower level salience net-188

works [10] (see also [7, 8, 9]). One might expect this type of process to coincide with end189

of race (EOR) conditions in which a cyclist may physically be in an ‘explosive’ exertion and190

make no more executive decisions. Indeed, sprinters near the end of the race are lead out by191

other riders on their team going at near maximal levels of effort. The sprinters get themselves192

into the highly aroused state (but not too high, yet) to ensure that they can still think and keep193

wider fields of perception as the line approaches. Once they decide to ‘explode’ for the finish194

line and put themselves into the physical ‘red zone,’ their attention is most likely very narrow.195

One recent study found that “high-intensity exercise induced arousal states...accentuated cen-196

tral detail memory” [11]. Therefore, sprinters can recall race sprints in detail related to what197

they perceived and what they did, while happening at high levels of arousal. This study also198

suggests its data were tending toward indicating that peripheral detail memory was decreased199

during exercise.200

There is most likely a learning curve such that by the time a cyclist competes at the Tour de201

France, they are no longer affected by expected race events. The final sprint is not as stressful202
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for the sprinter because they have become adept at handling the expected nature of the finishing203

dynamics. Professional cyclists have often developed coping techniques or strategies to mitigate204

the higher rates of arousal. Brunyé and Mahoney state that “theories of arousal-based competi-205

tion suggest that arousal during encoding (whether due to induced arousal or presented stimuli)206

selectively influences memory for high priority, salient information” [11] (see also [12]).207

5 Overview of the Tour de France professional bicycle race208

Over the course of 21 daily stages, throughout the month of July, the Tour de France (TdF)209

captures the attention of cycling fans around the world. Twenty-two teams of eight riders com-210

pete within each stage for cumulative individual classifications throughout the competition, but211

most eyes focus on the prestigious yellow jersey (maillot jaune), the iconic apparel worn by the212

current overall race leader. Each team is composed of riders with varying specialties, and in213

each stage, teams decide their plan for the day, utilizing individuals’ expertise to optimize the214

team’s collective performance towards those goals. While this paper argues that the moment by215

moment dynamics in the cycling peloton are governed primarily by the human visual sensory216

system, longer timescale dynamics are governed by individual and team objectives. Teams with217

potential winners of the overall race (determined by lowest cumulative time), tend to expend218

a lot of energy riding at the front of the peloton to pace, shield and protect their team leader.219

Teams with expert sprinters, or strong climbers, rally around those individuals with primary220

objectives of winning individual daily stages. Team objectives can change mid-race; e.g, if a221

team leader is injured and cannot continue, then the team objectives will shift. Each team’s222

goals and daily objectives are directed by one sporting director (directeur sportif), an individual223

who manages the intricacies of the team in training and on the course. While riders can be on224

the bike for upwards of six hours on a given day, it is the director’s job to develop, implement,225
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and adapt their team’s plan and communicate that to the riders on the course.226

The range of team goals (overall cumulative victory, individual stage victory, climbing227

champion, etc.) mean that teams have different incentives, and there are numerous “races within228

the race”. The daily stages are varied to accentuate these different objectives. The 2016 TdF229

analyzed herein consisted of 9 flat stages, 10 mountain stages and 2 individual time trial (ITT)230

stages [13]. The overall winner was Christopher Froome with a cumulative time of 89 hours,231

04 minutes, 48 seconds; the second place rider was 4 minutes, 05 seconds behind. The flat232

stages are considered to be “sprinter” stages, which are characterized by a fast paced, highly233

contested end of race condition. For stages that are considered key for the overall competition,234

top riders will watch each other and adapt tactics based on each other but can afford to ignore235

small groups of breakaway riders that compete for that day’s stage, as they are far enough down236

the cumulative time competition so as not to be a substantial threat. To be successful, sprinters237

will be of a heavier body type, and can struggle on hilly terrain, frequently finishing mountain238

stages over 15 minutes behind the stage winner. The high speeds of the race mean that racing239

cyclists generally need to ride as a group (the peloton) to benefit from aerodynamic drafting. In240

the ITT stages, cyclists ride individually without the benefit of drafting. As a result, the largest241

time gaps in cumulative time tend to be established on mountain and ITT stages. However, for242

the vast majority of the race, cyclists ride within large pelotons.243
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