Supporting Information for “A minimal computational model for three dimensional cell migration”

FULL MODEL

Our three-dimensional model for the cell boundary and cell motion is extended from earlier studies [1-3] in two dimensions. Briefly, we model the cell boundary as an interface with tension and bending, driven by an activator A. Cell motion obeys the overdamped force balance equation $\mathbf{F}_{\text{act}} + \mathbf{F}_{\text{mem}} + \mathbf{F}_{\text{sub}} + \mathbf{F}_{\text{geo}} + \mathbf{F}_{\text{fric}} = 0$ where \mathbf{F}_{act} is the active force proportional to the activator concentration, \mathbf{F}_{mem} describes the membrane tension, \mathbf{F}_{sub} is the cell-substrate forces like adhesion, and \mathbf{F}_{fric}. Furthermore, and based on our experiments that show that the total cell membrane and volume does not change during migration (Fig. S1), \mathbf{F}_{geo} represents surface and volume conservation. Note that we do not explicitly model the traction force patterns that have been obtain in experiments [1,5]. This could be accomplished by including actin flow, as carried out in earlier work [2], or in models which greatly simplifies morphologies [6].

The active force from the activator is governed by $\mathbf{F}_{\text{act}} = \eta(z)M(A)\mathbf{n}$, where $\mathbf{n} = -\nabla \phi/|\nabla \phi|$ is the outward-pointing normal direction of the membrane, and $M(A) = A/\left(A + A_0\right)$ where A_0 represents a threshold value for activation of A. One key assumption in our model is that the active protrusive force depends on the distance z from the substrate. In simulations, we put the substrate at $z = 0$, and the protrusive force is

$$\eta(z) = \frac{\eta_0}{4\left(3 - \tanh\left(\frac{z - h}{h_0}\right)\right)},$$

(S1)

which represents a protrusive force that smoothly changes from approximately η_0, close to the substrate, to $\eta_0/2$ far away from the substrate, with a maximal gradient at $z = h$. The parameter h_0 represents the width of the region where the protrusive force changes from η_0 to $\eta_0/2$. We have verified that other functional forms in which the protrusive strength varies smoothly between these two values give qualitative similar results.

The membrane tension is computed using the functional derivative [3] $\mathbf{F}_{\text{mem}} = \frac{\partial H(\phi)}{\partial \phi} \nabla \phi/\delta_\epsilon$, with $\delta_\epsilon = \epsilon/|\nabla \phi|^2$ and

$$H(\phi) = \gamma \int \left(\frac{\epsilon}{2} |\nabla \phi|^2 + \frac{G(\phi)}{\epsilon} \right)d^3r.$$

(S2)

Here, $G(\phi)$ is a double well potential with minima at $\phi = 1$ and $\phi = 0$: $G(\phi) = 18\phi^2(1 - \phi)^2$. Note that the cell membrane can be tracked by the phase field:

$$\psi = 2\frac{G(\phi)}{\epsilon}.$$

(S3)

The location of the substrate is determined by χ, with $\chi = 1$ indicating the substrate into which the cell cannot penetrate, and $\chi = 0$ indicating the region accessible to the cell:

$$\chi(z) = \frac{1}{2} \left[1 + \tanh \left(\frac{3z}{\epsilon} \right) \right].$$

(S4)

The interaction between the cell membrane and substrate is represented by $\mathbf{F}_{\text{sub}} = \frac{\partial H(\phi, \chi)}{\partial \phi}$ with

$$H(\phi, \chi) = \int d^3r \phi^2(\phi - 2)^2\left[-2f_{\text{adh}} \frac{G(\chi)}{\epsilon} + f_{\text{rep}} \chi(z + \epsilon)\right].$$

(S5)

similar to [7]. Here, f_{adh} is the adhesive strength between the cell membrane and the substrate and f_{rep} is a parameter that measures the penalty of overlap between cell and substrate [8]. Note that we can use a similar strategy to incorporate substrates with more complex geometries, for example in the form of capillaries or fibrous networks. Defining a field as in Eq. [S4] will allow us to identify the location of this substrate and can, for example, be used to define a protrusive strength that depends on the distance from the substrate (see Eq. [S1]).

We implement surface and volume conservation as $\mathbf{F}_{\text{geo}} = [B_S (\int \psi d^3r - S_0) + B_V (\int \phi d^3r - V_0)]\mathbf{n}$ where B_S, B_V represent the strength of the surface and volume conservation and S_0, V_0 is the prescribed surface size and volume, respectively. The friction is $\mathbf{F}_{\text{fric}} = \xi \mathbf{v}$ so that \mathbf{v} is obtained from the force balance equation: $\mathbf{v} = (\mathbf{F}_{\text{act}} + \mathbf{F}_{\text{mem}} + \mathbf{F}_{\text{sub}} + \mathbf{F}_{\text{geo}})/\xi$ where all forces are defined per unit area. The motion of the phase field ϕ is then determined by the
advecitve equation $\partial\phi/\partial t = -\mathbf{v} \cdot \nabla \phi$. Finally, coupling the phase field equations to the reaction-diffusion equations presented in the main text, we arrive at the full equations:

\[
\begin{align*}
\frac{\partial (\psi \phi)}{\partial t} &= D_A \nabla \cdot (\psi \nabla \phi) + \psi [(\frac{k_a A^2}{K_a^2 + A^2} + b) A_{\text{cyt}} - (d_1 + d_2 R)A + \zeta_1(t)], \quad \text{(S6)} \\
\frac{\partial (\psi \phi)}{\partial t} &= D_R \nabla \cdot (\psi \nabla \phi) + \psi [c_2 A - c_1 R] \tau + \zeta_2(t)], \\
\xi \frac{\partial \phi}{\partial t} &= \eta(z) M(A) |\nabla \phi| + \gamma(\nabla^2 \phi - \frac{G'((\phi))}{\epsilon^2}) + \mathbf{F}_{\text{sub}} + \mathbf{F}_{\text{geo}} \cdot \nabla \phi. \quad \text{(S8)}
\end{align*}
\]

Notice that the reaction-diffusion process only happens at the cell membrane ψ and $A_{\text{cyt}} = (N_{\text{tot}} - \alpha \int A \psi d^3r) / V_0 = A_{\text{tot}} - \alpha \int A \psi d^3r / V_0$. The parameters of the biochemical module, including tension and adhesion, are taken from [3,7]. The parameters of the biochemical module (k_a, K_a, etc.) are estimated from experiments [8,9] and follow our previous work [10]. Cell morphology parameters such as surface size and volume are estimated from experimental measurements. We have verified that changing the parameters of the biochemical module or the tension and adhesion parameters by $\pm 10\%$ did not alter the qualitative results.

NUMERICAL DETAILS

The parameters used for numerical simulations are listed in Table S1. Equations are evolved in a region of size $L_x \times L_y \times L_z = 20 \times 20 \times 20 \mu$m with discrete grids of $n \times m \times l = 128 \times 128 \times 128$ and periodic boundary conditions. Eq(S8) is discretized using the forward Euler method with $\partial_t \phi = (\phi^{(n+1)} - \phi^{(n)}) / \Delta t$. Derivatives are calculated using finite difference formulas: $\partial_x \phi = (\phi_{i+1,j} - \phi_{i-1,j}) / (2\Delta x)$ and $\partial^2 \phi = (\phi_{i+1,j} + \phi_{i-1,j} - 2\phi_{i,j}) / \Delta x^2$, with similar equations for the derivatives in the y, z-direction. $\phi^{(n+1)}$ is determined by a semi-implicit form

\[
\phi^{(n+1)} - \frac{\Delta t \gamma}{\xi} \nabla^2 \phi^{(n+1)} = \frac{\Delta t}{\xi} \eta(z) M(A) |\nabla \phi^{(n)}| - \frac{\gamma G'((\phi^{(n)}))}{\epsilon^2} + (\mathbf{F}_{\text{sub}} + \mathbf{F}_{\text{geo}}) \cdot \nabla \phi^{(n)}
\]

and solved by Fourier transform

\[
\phi_k^{(n+1)} = \frac{\phi_k^{(n)} + \Delta t / \xi [\eta(z) M(A) |\nabla \phi^{(n)}| - \gamma G'((\phi^{(n)})) / \epsilon^2] + (\mathbf{F}_{\text{sub}} + \mathbf{F}_{\text{geo}}) \cdot \nabla \phi^{(n)}]}{1 + \Delta t \gamma k^2 / \xi}.
\]

Eq(S6,S7) are discretized using the forward Euler scheme with $\partial_t (\psi \phi) = \psi^{(n)} (A^{(n+1)} - A^{(n)}) / \Delta t + A^{(n)} (\psi^{(n+1)} - \psi^{(n)}) / \Delta t$. The diffusion terms $\nabla \cdot (\psi \nabla A)$ are also approximated using finite difference. The x-term, for example, reads $\{(\psi_{i+1,j} + \psi_{i-1,j}) (A_{i+1,j} - A_{i,j}) / (2\Delta x) - (\psi_{i,j} + \psi_{i-1,j}) (A_{i,j} - A_{i-1,j}) / (2\Delta x)\} / \Delta x$. The white noise terms are simulated as Wiener processes with $\zeta(t) \Delta t = \sqrt{\sigma \Delta t} N(0,1)$. Mass conservation is enforced for the activator but not for the inhibitor. We avoid any negative values by introducing setting the value of the inhibitor to zero whenever it becomes negative. In practice, however, this does not occur due to the small value of the added noise.

As initial condition for ϕ, we use a cylinder with surface size S_0 and volume V_0. The activator and inhibitor concentration outside the boundary is 0. To implement this boundary condition, we solve Eq(S6,S7) only for $\phi > 5 \times 10^{-5}$, and set $A = R = 0$ outside this region.

REGULATION FROM SUBSTRATE ON BIOCHEMICAL MODULE

As mentioned in the main text, the model can also produce different migration modes when a biochemical, rather than a mechanical parameter, becomes z dependent. For example, we can make the activation rate of the inhibitor c_2 vary as a function of z:

\[
c_2(z) = c_b + (c_c - c_b)[1 + \tanh(z - h)] / 2, \quad \text{(S9)}
\]

In this case, close to the substrate we have $c_2 = c_b$ while far away from the substrate $c_2 = c_c$. In between, c_2 changes gradually and this change is maximal at $z = h$.

In our simulations, we have taken $c_1 = 8$ so that the top part of the cell is not excitable nor oscillatory. As a result, wave propagation is constrained to the basal surface bottom. The simulation results of varying c_b and proactive
strength parameter η_b are shown in Fig. S4. By changing c_b, we can reproduce the amoeboid-like, oscillatory and fan-shaped cell morphologies, similar to Fig. 5 in the main text. Furthermore, the oscillatory cells show a periodic area and height dependence. For this model variant, however, activator patches in the amoeboid-like cells only occur at the cell-substrate interface. Notably, by changing the protrusive force, we can observe transitions of fan-shaped cells to cells with unstable waves, similar to our earlier studies [10]. Those cells move like amoeboid cells with random polarity while the basal surface area changes are irregular compared to the oscillatory cells (Fig. S4).
REFERENCES

FIG. S1: The total volume (blue symbols) and the total surface area (orange symbols) for each migration mode for the cells in Fig. 2 of the main text.
FIG. S2: Basal surface area as a function of time (left panels) and corresponding autocorrelation (right panels) for the amoeboid and oscillating cell shown in Fig. 2 of the main text. The blue horizontal lines in the autocorrelation plots represent the 95%-confidence interval and the dashed line shows a fit to an exponentially decaying sinusoidal function $\cos(2\pi t/T)\exp^{-t/\tau_{\text{decay}}}$. For the amoeboid cell, the period T and decay time τ_{decay} were found to be 24 s and 600 s, respectively. For the oscillating cell, these values are 570 s and 300 s.
FIG. S3: Total time-averaged limE-GFP fluorescence as a function of height for a fan-shaped cell.
FIG. S4: Snapshots of cell morphologies (front view) in the c_b, η_0 phase space, with $c_z(z)$ given by Eq. S8. The activated membrane-bound activator is plotted using the color scheme indicated by the bar. Cells within the black frame are amoeboid, within the blue frame are oscillatory, and within the red frame are fan-shaped. The cell with $\eta_0 = 6, c_b = 1$ shows random migration with unstable waves at the bottom, and the basal surface area size changes irregularly, compared to the oscillatory cells with $\eta_0 = 6, c_b = 4$.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>Tension parameter</td>
<td>3 pN μm</td>
</tr>
<tr>
<td>ε</td>
<td>Width of phase field</td>
<td>1.5 μm</td>
</tr>
<tr>
<td>B_V</td>
<td>Cell volume conservation strength</td>
<td>10 pN/μm3</td>
</tr>
<tr>
<td>B_S</td>
<td>Cell surface conservation strength</td>
<td>10 pN/μm2</td>
</tr>
<tr>
<td>V_0</td>
<td>Cell volume</td>
<td>350μm3</td>
</tr>
<tr>
<td>S_0</td>
<td>Cell surface</td>
<td>300μm2</td>
</tr>
<tr>
<td>h</td>
<td>height of the half-maximum protrusive force</td>
<td>3μm</td>
</tr>
<tr>
<td>h_0</td>
<td>length scale of the protrusive force variation</td>
<td>2μm</td>
</tr>
<tr>
<td>f_{adh}</td>
<td>Cell-substrate adhesion strength</td>
<td>1 pN$/\mu$m</td>
</tr>
<tr>
<td>f_{rep}</td>
<td>Cell-substrate repellent strength</td>
<td>20 pN</td>
</tr>
<tr>
<td>ξ</td>
<td>Friction coefficient</td>
<td>1.25 pN min/μm2</td>
</tr>
<tr>
<td>k_a</td>
<td>Activation rate</td>
<td>40 min$^{-1}$</td>
</tr>
<tr>
<td>K_a</td>
<td>Activation threshold</td>
<td>1 μM</td>
</tr>
<tr>
<td>b</td>
<td>Basal activation rate</td>
<td>0.4 μM min$^{-1}$</td>
</tr>
<tr>
<td>A_t</td>
<td>Total activator concentration($= N_{tot}/V_0$)</td>
<td>2 μM</td>
</tr>
<tr>
<td>α</td>
<td>Activator activation coefficient</td>
<td>5</td>
</tr>
<tr>
<td>d_1</td>
<td>Basal degradation rate</td>
<td>4 min$^{-1}$</td>
</tr>
<tr>
<td>d_2</td>
<td>Degradation rate from inhibitor</td>
<td>4 μM$^{-1}$min$^{-1}$</td>
</tr>
<tr>
<td>c_1</td>
<td>Inhibitor degradation coefficient</td>
<td>1</td>
</tr>
<tr>
<td>τ</td>
<td>Time scale of negative feedback</td>
<td>1.25 min</td>
</tr>
<tr>
<td>D_A</td>
<td>Activator diffusion coefficient</td>
<td>2 μm2/min</td>
</tr>
<tr>
<td>D_R</td>
<td>Inhibitor diffusion coefficient</td>
<td>2 μm2/min</td>
</tr>
<tr>
<td>σ</td>
<td>Noise intensity</td>
<td>0.04 μM2/min</td>
</tr>
<tr>
<td>Δt</td>
<td>Time step</td>
<td>0.001 min</td>
</tr>
<tr>
<td>l, n, m</td>
<td>Space grid size</td>
<td>128, 128, 128</td>
</tr>
<tr>
<td>$L_{x,y,z}$</td>
<td>Space size</td>
<td>20, 20, 20 μm</td>
</tr>
</tbody>
</table>

TABLE S1: Model Parameters
MOVIES

Movie S1: Migration of a keratocyte-like with the actin distribution visualized with the fluorescent marker limE-GFP.
Movie S2: Side view of an oscillatory cell expressing the fluorescent marker limE-GFP, obtained using LLSM.
Movie S3: LimE-GFP dynamics of an oscillatory cell, visualized using LLSM, in the basal plane (top), and in a cross-sectional plane perpendicular to the substrate (bottom).
Movie S4: Simulated amoeboid-like cell with the membrane-bound activator distribution displayed using the color scheme and parameters of Fig. 4.
Movie S5: Oscillatory cell obtained in simulations with the membrane-bound activator distribution displayed using the color scheme and parameters of Fig. 4.
Movie S6: Simulated keratocyte-like cell with the membrane-bound activator distribution displayed using the color scheme and parameters of Fig. 4.