Appendix – Proofs of Theorems 1-3

Proof of Theorem 1

Let $\hat{C} = I(T(X) \geq u)$ and consider the PPV of this classifier,

$$PPV(u) = \frac{\pi_1 P(T(X) \geq u \mid C = 1)}{\pi_1 P(T(X) \geq u \mid C = 1) + \pi_0 P(T(X) \geq u \mid C = 0)}.$$

We will first show $PPV(u)$ is an increasing function of u. By equivalently showing that $r(u) = \frac{P(T(X) \geq u \mid C = 1)}{P(T(X) \geq u \mid C = 0)}$ is an increasing function of u. With $T(X) = \log\left(\frac{h_1(X)}{h_0(X)}\right)$,

$$r(u) = \frac{\int_{T(X) \geq u} h_1(x) \, dx}{\int_{T(X) > u} h_0(x) \, dx} = \frac{\int_{T(X) \geq u} \left(\frac{h_1(x)}{h_0(x)}\right) h_0(x) \, dx}{\int_{T(X) > u} h_0(x) \, dx} = E\left\{\frac{h_1(x)}{h_0(x)} \mid C = 0, T(X) \geq u\right\}.$$

For any $u_1 < u_2$, it follows from the law of total probability that

$$r(u_1) = E\left\{\frac{h_1(x)}{h_0(x)} \mid C = 0, T(X) \geq u_1\right\}$$

$$= P\{T(X) \geq u_2 \mid C = 0, T(X) \geq u_1\} \times E\left\{\frac{h_1(x)}{h_0(x)} \mid C = 0, T(X) \geq u_2\right\}$$

$$+ P\{u_1 \leq T(X) < u_2 \mid C = 0, T(X) \geq u_1\} \times E\left\{\frac{h_1(x)}{h_0(x)} \mid C = 0, u_1 \leq T(X) < u_2\right\}$$

$$= \omega r(u_2) + (1 - \omega) r^*$$

where $\omega = P\{T(X) \geq u_2 \mid C = 0, T(X) \geq u_1\}$ and $r^* = E\left\{\frac{h_1(x)}{h_0(x)} \mid C = 0, u_1 \leq T(X) < u_2\right\}$. By definition,

$$r(u_2) = E\left\{\frac{h_1(x)}{h_0(x)} \mid C = 0, T(X) \geq u_2\right\} \geq e^{\mu_2} \geq E\left\{\frac{h_1(x)}{h_0(x)} \mid C = 0, u_1 < T(X) < u_2\right\} = r^*.$$
Because \(r(u_i) \) is a weighted average of \(r(u_2) \) and \(r' \), this implies \(r(u_i) \leq r(u_2) \) and this shows that \(r(u) \) and hence \(PPV(u) \) are increasing in \(u \). Similarly it can be shown that \(NPV(u) \) is decreasing in \(u \) and it therefore follows that the PROC is monotone.

Proof of Theorem 2

If \(T(X) \) is the log-likelihood ratio then Theorem 1 implies the PROC curve is increasing, which implies\(^{16} \) that \(h_o(u) \leq h_p(u) \) and \(\bar{h}_p(u) \leq \bar{h}_o(u) \) hold. The theorem then follows from necessary and sufficient conditions given in section 4.

Proof of Theorem 3

Define \(R_1 \) to be the set of all \((x_1, x_2)\) at the second stage for which the classifier predicts class 1, and let \(R_1^c \) denote the complement of \(R_1 \). Then,

\[
OER_2(u) = \pi_0 FPR_2(u) + \pi_1 FNPR_2(u) \\
= \pi_0 P(T_1(X_i) \geq u_i | C = 0) + \pi_0 P(u_0 < T_1(X_i) < u_i, (X_1, X_2) \in R_1 | C = 0) \\
+ \pi_1 P(T_1(X_i) < u_0 | C = 1) + \pi_1 P(u_0 < T_1(X_i) < u_i, (X_1, X_2) \in R_1^c | C = 1) \\
= \pi_0 P(T_1(X_i) \geq u_i | C = 0) + \pi_1 P(T_1(X_i) < u_0 | C = 1) + \pi_1 P(u_0 < T_1(X_i) < u_i | C = 1) \\
+ \left\lfloor \int_{R_1} I\{u_0 < T_1(x_i) < u_i\} \{\pi_0 h_0(x_1, x_2) - \pi_1 h_1(x_1, x_2)\} dx_1 dx_2 \right\rfloor,
\]

It is clear that to minimize \(OER_2(u) \) we should take \(R_1 \) to include all points \((x_1, x_2)\) for which \(h_1(x_1, x_2) / h_0(x_1, x_2) > \pi_0 / \pi_1 \), which is equivalent to the claim in the theorem.