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ABSTRACT 

Shake table testing is an important tool to challenge integrity of structural and non-structural specimens by 
imposing excitations at their base. When shake tables are loaded with specimens, the interaction between the 
tables and specimens influence the system dynamics that result in undesired performance. Open loop 
feedforward compensation methods have been used successfully in current practice of table controls, 
assuming that the specimens remain linear. However, unsatisfactory signal performances were observed 
when flexible and heavy specimens experience nonlinear behavior. While lack of high fidelity might be 
acceptable for the purpose of exploration of specimens subjected to random excitations, a high fidelity of 
signal reproduction is necessary for shake table qualification testing where specific target motion is required 
to challenge the specimens. A nonlinear tracking control scheme based on the feedback linearization method 
is proposed for the control of shake tables to simulate target motions at specific locations of the test 
structures having nonlinear hysteretic behavior. A real-time estimator using the extended Kalman filter 
combined with the controller is adopted in order to account for the changes and uncertainties in system 
models due to nonlinearities and yielding. The proposed adaptive tracking control method is applied in 
numerical simulations to a setup of a realistic shake table testing of a nonlinear structure.  ,  
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1 INTRODUCTION 

Shake table systems play a pivotal role in the experimental earthquake engineering. The systems 
provide effective ways to subject structural components, substructures, or entire structural systems 
to dynamic excitations, which are similar to those induced by real earthquakes [1]-[3]. Unlike 
general shake table testing where it is required to simulate a desired target motion at the shake table 
level, in other applications including the experimental evaluation of architectural or non-structural 
components such as suspended ceiling systems [4] or the qualification testing of complex 
equipment [5] it is often required to simulate a floor/roof motion at a specific location (such as roof 
corners or mid spans) of a structure mounted on a shake table. In order to simulate a target motion 
at a structure level (instead of the shake table platform), a feedforward compensation procedure 
using a shake table-structure system transfer function with possible offline iteration correction was 
developed, and the control method was verified experimentally [6]. 

The key element, for the development of tracking control methods for shake table discussed 
above, is a feedforward compensation method using the inverse transfer function. However, if a 
testing structure has more complex, nonlinear behavior (e.g. base-isolated systems) or a linear 
structure experiences yielding due to high intensity excitation, the transfer function, which can be 
defined only for a linear time invariant system [7], is not valid anymore. Therefore, the feedforward 
compensation loop, which is conducted offline, cannot be used and real-time feedback control 
schemes are needed [6]. 
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The objective of this study is to simulate a target motion at a specific location in a nonlinear 
structure mounted on a shake table for extended applications such as the qualification testing 
addressed above. To solve this tracking control problem, a real-time nonlinear feedback control 
scheme based on the feedback linearization method [8], [9] is proposed. A difficult challenge for a 
nonlinear structure control is that the system parameters might not be known a priori; for example, 
the change of structure stiffness in hysteretic behavior and/or the yielding force may not be 
accurately known in advance. In these cases, a real-time parameter estimation method might be 
required for adaptive control schemes. As addressed above, in this study, a real-time nonlinear 
feedback tracking controller based on the feedback linearization method is formulated and 
combined with the extended Kalman filter [10]-[12] as a real-time state and parameter estimator in 
order to develop a methodology to determine the control excitation input of a shake table, such that 
the output response of a nonlinear hysteretic structure will follow a pre-defined target motion.  

 

2 SHAKE TABLE – NONLINEAR HYSTERETIC STRUCTURE SYSTEM MODEL 

A shake table-structure system consists of a platform supported by bearings driven by servo 
controlled actuators and a structure (specimen) mounted rigidly on its surface. The simplified 
schematic of the assembly of the shake table–structure system is shown in Figure 1 where 
actuators’ forces and internal stress resultants acting on the system are also presented (i.e. fs,I, fD, fS 
are the structure inertia, damping, and restoring forces; ft,I is the table inertia force; fa is the actuator 
force). xt is the shake table displacement with respect to the ground, and xs is the relative 
displacement at the top of the structure with respect to the shake table. mt and ms are the mass of the 
shake table and the mass of the structure, respectively. 

 

 
Figure 1. Schematic of a shake table-structure system. 

 
In order to move the structure sitting on the platform to match a target response ym, a 

controlled excitation should be applied at its base. The objective of this control system of the shake 
table–structure is to determine the control excitation input u(t), which is the desired shake table 
displacement xd(t) in this study, such that the response output y(t) of the shake table or the mounted 
structure will follow the pre-defined target motion ym(t). In order to achieve this goal, a 
mathematical model of the system is introduced based on the developments by Rinawi and Clough 
[2] for a shake table-actuator system and Sivaselvan and Reinhorn [13] for a nonlinear hysteretic 
structure. 

Assuming linear relationships between the servovalve input and output oil flow rate, and 
between the oil flow rate and the servovalve’s spool displacement, the relation between the shake 
table input u = xd and the output xt can be expressed in the time domain [1], [2]:  
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where ωa, ξa, and ka are the natural frequency, the equivalent damping ratio, and the control gain of 
the shake table system, respectively. The natural frequency of the shake table system ωa (rad/s) is 

Target, ym Controller

Actuator 

y ≈ ym ? 

xs

xt
mt

ms

fa

u 



3 
 

also known as oil column frequency; i.e. fn,a (Hz) = ωa / 2π = π-1 (βA2/Vmt)
0.5 [3], in which: A is the 

actuator piston area; V is the volume of oil in the actuator; β is the bulk modulus of fluid.  
Structures (specimens) subjected to strong excitation can experience nonlinear hysteretic 

behavior due to yielding, or due to the nature of the seismically protected structure such as a base 
isolated system. A class of smooth hysteretic models was originally proposed by Bouc [14] and 
modified by many researchers including Wen, Y. K. [15] and Sivaselvan and Reinhorn [13]. 
Sivaselvan and Reinhorn [13] claim that the restoring force fS(x) can be modeled as a combination 
of elastic and hysteretic components (as expressed in Eq. (3)). Even though the model is versatile 
and capable to simulate stiffness degradation, strength degradation, and pinching, this study focuses 
only on a plain, bilinear type hysteretic behavior in order to facilitate the development of a real-time 
controller.  

Considering a nonlinear hysteretic single degree-of-freedom (SDOF) system, the equation of 
motion can be written as (adopted from Sivaselvan and Reinhorn [13]): 

( ) ( ) ( ) ( )s s s s S s tm x t c x t f x m x t       (2) 

where cs is the damping of the structure, and fS(x) is a nonlinear restoring force. The governing 
equation of the restoring force is expressed 

       
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    
     

 
 (3) 

in which kT(x) indicates the instantaneous tangent stiffness; ks is the elastic stiffness; kH(x) is the 
hysteretic stiffness; and α is the post-yielding stiffness ratio to the elastic stiffness having the 
following property: 0 < α < 1. In this parallel-spring representation, the stiffness of the hysteretic 
spring kH(x) can be expressed as 

          *
2 11 sgn /

N

H s H s H yk x k f x x t f x f       (4) 

where the hysteretic force fH(x) = fS(x) – αksx(t); the hysteretic yielding force fy
* = (1 – α) fy with the 

yielding force fy = ksdy where dy is the yielding displacement; N is the power controlling the 
smoothness of the transition from elastic to inelastic range; η1, η2 are parameters controlling the 
shape of the hysteretic loop, which must satisfy η1 + η2 = 1 [16] i.e. in this study, η1 = η2 = 0.5 are 
chosen for simplicity, and sgn = the signum function. The instantaneous tangent stiffness kT(x) in 
Eq. (3) can be rewritten therefore as 

            *1 1 0.5 1 sgn /
N

T s s H s H yk x k k f x x t f x f          (5) 

and its response can be fully captured by four constant parameters: ks, α, dy, and N; in addition to 
the knowledge of the state responses. First, assuming that all these parameters are known a priori, a 
nonlinear feedback controller is proposed in Section 3. However, in real applications, only initial 
approximations of the true parameters might be available from static tests; therefore in Section 4, a 
real-time estimator to determine these parameters is introduced to be combined with the controller. 
It is noted that the control law determined in Section 3 involves the differentiation of the 
instantaneous stiffness kT(x) and the estimator (the extended Kalman filter) in Section 4 requires the 
Jacobian matrix; however, Eq. (3) includes the terms of sgn(ẋs(t)) × ẋs(t) = |ẋs(t)| that is not a 
differentiable function at ẋs(t) = 0. In this study, d|x| / dx ≜ sgn(x); it is defined along with  d|x| / dx 
≜ 0 at x = 0, assuming that this instant effect might be not significant in the control and estimation 
procedure; this assumption is examined through numerical simulations in Section 5. 

Considering a test structure mounted on the shake table shown in Figure 1 is a nonlinear 
hysteretic SDOF system, the equations of motion of the shake table-structure system can be 
expressed in the state space form [17], [18]: 
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where u(t) = xd(t), and ωa, ξa, and ka are the natural frequency, the equivalent damping ratio, and the 
control gain of the shake table system as defined in Eq. (1), and all parameters are previously 
defined. For the output y(t) of the total acceleration response ẍs

t(t) = ẍs(t) + ẍt(t) at the top of the 
structure, the output equation is 

      1
s s s Sy t m c x t f x  . (7) 

The equation can be solved by using the 4th order Runge-Kutta method for actual implementations.  
 

3 TRACKING CONTROL METHOD 

For the tracking control of a shake table-nonlinear hysteretic structure system, a nonlinear 
feedback controller based on the feedback linearization control method [8], [9] is proposed. Using 
the feedback linearization tracking control (FTC), a controller can be designed to cancel undesired 
nonlinear terms and to introduce a new linear input term such that the output response of the 
controlled system follows a desired target motion.  

The shake table-nonlinear hysteretic structure model, expressed in Eq. (6) and Eq. (7) with the 
output y(t) of the total acceleration response ẍs

t(t) at the structure, can be rewritten: 
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by using abbreviated  notations for sake of simplification: 

       
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The system output y(t) is to be differentiated until the control excitation input u(t) appears in the 
expression of the differentiated output. For this system, after differentiating the output twice, the 
control excitation input appears 
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where the expression of ሶ݇ ்(x) can be found in [17], [18]. The main objective of the tracking control 
is to reduce a tracking error signal e(t) = y(t) - ym(t), which is defined as the difference between the 
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system output y(t) and the target motion ym(t), by using the control excitation input u(t). The desired 
tracking error dynamics can be defined as  

     * *
1 2 0e t k e t k e t     (10) 

where ݇ଵ
∗ and ݇ଶ

∗ are tracking error design coefficients. It is noted that in order to guarantee the 
boundedness of all state responses x(t) of the controlled system, one may introduce the following 
additional error terms, as addressed in another work of the authors [17], [18]: 

         * *
3 40 0 0

t tt t
add s m s me t k x t y d k x t y d d


                    (11) 

where ݇ଷ
∗ and ݇ସ

∗ are tracking error design coefficients, the total displacement ݔ௦௧(t) = xs(t) + xt(t) and 
the total velocity ݔሶ௦௧(t) = ẋs(t) + ẋt(t), and the integration and double integration of the target motion 
ym(t) are chosen as bounded motions and their initial values are zeros. The following relations are 
used in this study:  
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
                    

  . (12) 

Therefore, by introducing a new term, ݁(t) = [ݔ௦௧(t) ‒ ׬ ׬ ݕ
ఛ
଴

௧
଴ m(ζ)dζdτ], the desired tracking error 

dynamics (Eq. (10)) with the additional terms in Eq. (11) can be rewritten as 

         (4) * (3) * * *
1 2 3 4 0e t k e t k e t k e t k e t       (13) 

where ݁(4) and ݁(3) denote the fourth and third derivatives of ݁(t) with respect to time, respectively, 
and as discussed above, ݇ଵ

∗ through ݇ସ
∗ are tracking error coefficients.  

Equation (13) can be rewritten by using the expression ݁(4) = ݕሷ (t) - ݕሷm(t) as   

           * (3) * * *
1 2 3 4 0my t y t k e t k e t k e t k e t            . (14) 

Moving all terms in Eq. (14) to the right-hand side except ݕሷ (t) gives 
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where a new term notation υ*(t) = ݕሷm(t) – ݇ଵ
∗݁(3)(t) – ݇ଶ

∗ ሷ݁ (t) – ݇ଷ
∗ ሶ݁ (t) – ݇ସ

∗݁(t) is introduced for 
brevity. Equating this equation to the right-hand side of Eq. (9) yields 
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By solving this equation for the control excitation input u(t), the feedback tracking control law is 
obtained as following:  

       1 * *u t ag y t t       (17) 

where the first term ݕሷ ∗(t) is defined from Eq. (9) in order to cancel the original system dynamics as 

               
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     

  


 (18) 

and the new input υ*(t) in Eq. (17) is chosen to accomplish the tracking objective as expressed in 
Eq. (15). 

By using the control excitation input determined above, u(t) in Eq. (17), it is ensured that the 
tracking error e(t) → 0 as t → ∞ as shown in Eq. (13) (i.e. e(t) = ሷ݁ (t) as in Eq. (12)). It is noted that 
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the tracking error coefficients, ݇ଵ
∗ through ݇ସ

∗ in Eq. (13), can be chosen by the engineer to achieve 
desired responses; i.e. for example, one may choose 2 of the four eigenvalues for a dominant 
second-order system and choose the remaining eigenvalues to have a sufficiently damped response, 
as in an estimator design approach [12], such that all eigenvalues of the system matrix 
corresponding to Eq. (13) have negative real parts; thus, the tracking error terms ݁(t) = [݁, ሶ݁ , ሷ݁ , 
݁(3)]T will go to zero as time goes to infinity; ݁(t) → 0 as t → ∞.  

In order to check the boundedness of the state responses x(t) of the controlled system, one 
may check the closed loop system by substituting the control excitation input u(t) from Eq. (17) into 
the true system equation shown in Eq. (8). It has been shown that if the target ym(t) and its 
derivatives (ݕሶm(t), ݕሷm(t)) and its integration and double integration as in Eq. (12) are bounded and 
the design coefficient is ݇ଵ

∗ ≥ cs(݉௦
ିଵ+݉௧

ିଵ), the all state responses x(t) are bounded. The interested 
reader is referred to the work of the authors [17]. 
 

4 STATE AND PARAMETER ESTIMATION METHOD 

When system properties are not fully known, it is essential to identify and quantify these 
system parameters for the tracking control problem. The extended Kalman filter (EKF), well-known 
system state and parameter identification method [10], [11], is adopted in this study. A general 
formulation of the EKF can be found in the previous studies [10], [12]. In addition to the true state 
estimation x from the measurements that are contaminated by noise, the EKF can be also used to 
estimate unknown system parameters θ. In order to estimate system parameters, new states are 
augmented to the original state vector i.e. xa(t) = [xT(t)  θ T]T. For the shake table-nonlinear 
hysteretic structure system, x(t) = [xs(t)  ݔሶ s(t)  fS(x)  xt(t)  ݔሶ t(t)  fa(t)/mt]

T (refer to Eq. (6)) and θ = [cs  
ks  α  dy  N]T; thus, the dimension of the augmented state vector becomes n = 11 in this case.  It is 
noted that the four constant parameters: ks, α, dy, and N; are needed to estimate the instantaneous 
stiffness kT(x) (refer to Eq. (5)). The performance of the estimator with uncertainties in model 
parameters and in measurements is demonstrated by the numerical simulations in Section 5.  
 

5 NUMERICAL SIMULATION OF ADAPTIVE CONTROL  

For a nonlinear structure with known parameters mounted on a shake table, the tracking 
control law is established as shown in Eq. (17) in Section 3. When there are uncertainties in the 
system model parameters, one possible way is to use the adaptive control scheme that combines the 
established control law with the estimated parameters using the real-time estimator introduced in 
Section 4. For the case where the damping coefficient cs and the instantaneous stiffness kT(x) of the 
test structure are not fully known, five constant system parameters θ = [cs  ks  α  dy  N]T are to be 
estimated as discussed in Section 4. The established control law in Eq. (17) can be reformulated by 
using the estimated values: ܿ̂s(t),  ෠݇T(x) (i.e. hat ^ indicates the estimated parameters); of the true 
parameters: cs, kT(x); as well as the estimated state responses ݔො(t). Due to estimation errors, the 
right-hand side of the tracking error dynamic equation in Eq. (13) may have some residual errors. 
The tracking error e(t) will diminish when the estimated error becomes small. As discussed in 
Section 3 above, the tracking error coefficients ݇ଵ

∗ through ݇ସ
∗ can be chosen to achieve desired 

responses by the engineer. It is noted, however, that the demand of faster tracking performance may 
require larger control efforts and may cause a problem in the stability of the controller.  

The feedback tracking control method combined with the real-time state and parameter 
estimator using the EKF is applied to a realistic shake table and structure system whose 
characteristics are obtained from the real systems in the Structural Engineering and Earthquake 
Simulation Laboratory (SEESL) at the University at Buffalo (UB). Numerical simulations are 
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performed for practical target motions generated from selected excitation motions including a real 
earthquake motion. 

 

 
Figure 2. UB uniaxial shake table [19] (left) and an SDOF structure [20] (right). 

 
The shake table consists of one uniaxial actuator having the maximum horizontal actuator 

force fa,max = 24.5 kN and stroke xt,max = 76 mm and a 1219 × 914 mm platform, whose mass mt  =  
1,589 kg, as shown in Figure 2 (left) [19]. The natural frequency fn,a, the equivalent damping ratio 
ξa, and the control gain ka of the shake table system defined in Eq. (1) are fn,a = 30 Hz,  ξa = 50 %, 
ka = 25 where the values of ξa and ka are assumed in this numerical study.  

The structure, shown in Figure 2 (right), is a three-story steel frame shear building rigidly 
braced in the top two floors to simulate an SDOF system [21]. The mass of the structure ms = 2950 
kg; the structure elastic stiffness ks = 1.4 kN/mm; damping coefficient cs = 0.0016 kN·sec/mm; i.e. 
therefore, (before yielding) the fundamental frequency fn,s = 3.47 Hz and the inherent damping ratio 
ξs = 1.24 %. The yielding force fy = 24.9 kN, and post-yielding stiffness ratio to the elastic stiffness 
α = 0.1 are chosen to demonstrate the hysteresis behavior effects on the tracking control in this 
study. It is noted that the dynamic properties of a shake table such as ωa, ξa, and ka: the natural 
frequency, the equivalent damping ratio, and the control gain of the shake table system, 
respectively; are subject to change after mounting a test structure on the shake table because of the 
shake table-structure interaction. Therefore, it is necessary to identify them at the beginning of 
testing using quasi-static and/or dynamic system identification procedures as described in [2], [22]. 
In this numerical simulation, the aforementioned shake table properties are used.  

 

Figure 3. Tracking control setup for an SDOF nonlinear system using a shake table. 

Target ym 
u = xd 

 T[ො  መ݀y  ෡ܰߙ  s  ෠݇ŝܿ] = ෠ߠ

 T fa[෠Tߠ   ොTݔ] = ොaݔ

Measurements ݕ 

 ݒ
Output y = ẍs

t 
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Figure 3 shows the schematic of the tracking control test setup for the shake table-structure. 
The target motion ym(t) is pre-defined according to test objectives. The output response y(t) = ẍs

t(t), 
the total acceleration of the top of the test structure. The control excitation input u(t) (i.e. u(t) = 
xd(t), the desired shake table displacement in this study), is computed by using the tracking control 
method (refer to Eq. (17)) with the measurements from instrument sensors. For practical 
applications, instead of the full state x(t) = [xs(t)  ݔሶ s(t)  fS(x)  xt(t)  ݔሶ t(t)  fa(t)/mt]

T feedback, limited 
measurements including the structure displacement xs(t) and total acceleration ẍs

t(t), and the table 
displacement xt(t) and actuator force fa(t) are considered; i.e. ݕk = [ݔs,k   ݔሷ s

t
,k  ݔt,k  ݂a,k/mt]

T, where bar 

(‒) indicates the measured responses. In order to examine the measurement noise effects, a zero-
mean Gaussian white-noise process of 3% RMS noise-to-signal ratio are added to each 
measurement. Five unknown parameters θ = [cs  ks  α  dy  N]T are to be estimated. The extended 
Kalman filter (EKF) is used to estimate the unknown parameters and the true state responses from 
the measurements contaminated by noise as described in Section 4.  

The tracking control results using the feedback linearization tracking control (FTC) method 
combined with the extended Kalman filter (EKF) estimator are obtained through numerical 
analyses; some of the interesting results are presented below. The selected control parameters are ݇ଵ

∗ 
= 42, ݇ଶ

∗ = 592, ݇ଷ
∗ =4,200, ݇ସ

∗ = 10,000 (see Eq. (13)) by assigning the dynamic characteristics of 
the tracking error equation to be ωe1 = 10, ξe1 = 0.7 and ωe2 = 10, ξe2 = 1.4. For the parameter 
estimations using the EKF, the initial parameter estimate ߠ෠଴ is chosen as ߠ෠଴ = 0.8 × θ* (20% errors 
in the initial guesses), and the initial covariance matrix is chosen as P0 = diag([0  0  0  0  0  0  ܿ̂௦,௢

2  
෠݇
௦,௢

ො௢ߙ  2
2  መ݀௬,௢

2  ෡ܰ௢
2]T × 0.01). The error covariance matrices QE and RE are chosen as QE = 0 × 

I11×11 (i.e. all zeroes, assuming the errors in the system model is negligible) and the RE = diagonal 
matrix, whose elements are computed as the square of noise root-mean-square (RMS); i.e. noise 
RMS = 3% × corresponding signal RMS (i.e. noise variances RE are assumed to be known from the 
instruments information). The time step of 0.002 sec (sampling rate = 500 sec-1) is used for the 
simulations. The target motion ym(t) is the total acceleration output, generated from a reference 
linear SDOF system. The linear reference system properties are: mm = 2950 kg, km = 2.9 kN/mm, 
and cm = 0.0093 kN·sec/mm (fn,m = 5.0 Hz, ξm = 0.05), subjected to a real earthquake motion, 
Elcentro N-S, 1940 100% [23], which is high-pass filtered at 0.3 Hz cutoff frequency in order to 
avoid large demand of shake table shift. The target motion is presented in Figure 4 (a - Target). The 
tracking control results are presented in Figure 4 through Figure 9.  

 

 
Figure 4. Target vs. Controlled total acceleration: (a) 0 - 35 sec; (b) Zoomed view 4 – 6 sec. 

 

 
Figure 5. (a) Control input (u = xd); (b) Structure restoring force fS - displacement xs relationship. 
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Figure 4 presents the comparisons between the target motion ym(t) and the controlled output 
of the total acceleration at the top of the structure y(t) = ẍs

t(t), and they show very good agreements. 
Figure 5 (a) presents the control excitation input u(t) = xd(t), the desired shake table displacement. 
The structure restoring force fS(x) and the relative displacement xs(t) relationship is shown in Figure 
5 (b). Figure 6 presents the performance of the system parameter estimation of the five constant 
parameters θ = [cs  ks  α  dy  N]T. The results show good convergence to the true values (i.e. note that 
the initial guess of each parameter has 20% error as addressed above); i.e. the estimated errors = 
|true - estimated| / true × 100% are between 0.1% and 3.8% (the estimated values are identified at 
the end of each history). Figure 7 presents the comparisons between the true vs. estimation of the 
instantaneous stiffness kT(x), determined by using the estimated constant parameters of ks, α, dy, and 
N (refer to Eq. (5)), and shows very good agreements: it is a very encouraging result because the 
accuracy of the instantaneous stiffness kT(x) for the control excitation computation (refer to Eq. (17)
) is more important than that of each constant parameter.  

 

 
Figure 6. Estimate of constant parameters θ = [cs  ks  α  dy  N]T. 

 

 
Figure 7. Estimate of instantaneous stiffness kT(x): (a) 0 - 35 sec; (b) Zoomed view 0 – 5.5 sec. 

 

 
Figure 8. Estimate of structure total acceleration ẍs

t(t):(a) 0-35 sec; (b)Zoomed view 2.87–2.89 sec. 
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Figure 8 presents the comparison between the estimated and measured structure total 
acceleration responses ẍs

t(t), where the estimated response is computed by using the estimated state 
responses as expressed in the last equation of Eq. (8). The results clearly show that the 
measurement noise is effectively reduced by the EKF.    

 

 
Figure 9. Shake table response: (a) Actuator force fa(t); (b) Table displacement xt(t). 

 
Although the tracking performance is very good and all responses of the controlled system are 

bounded, Figure 9 indicates that the force fa(t) capacity demend of the actuator and shake table 
displacement xt(t) (shown by the blue dot lines) are exceeded. Thus the simulation reveals the 
limitation of the testing system. This limitation might be overcome by adjusting the target motion 
and/or the properties of the test structure and shake table. In this study, the target motion is reduced 
by 20% (as usually done for practical purposes in laboratory when the equipment has limitations): 
in other words, a new target motion is generated from the same linear reference model subjected to 
Elcentro N-S 80% excitation. As expected, using the reduced amplitude of the target motion, the 
maximum actuator force demand and the table displacement are fa,max = 16 kN and xt,max = 65 mm, 
which are within the allowable limits. The results of the simulation for the reduced amplitude target 
motion shows that the agreement between the target motion and the controlled output is very good 
as in the previous example. It is noted that the reducing the test demand (the target motion) requires 
smaller restoring force and structural deformation, such that less nonlinear hysteretic behavior 
occurs and results in smaller responses of the shake table.  

Instead of reducing the amplitude of the target motion, the test structure can be also mounted 
on a larger shake table. For example, the maximum actuator force and table displacement of the 
6DOF shake table at the University at Buffalo are 225 kN and 150 mm, respectively [24], which are 
greater than the maximum demands of actuator force (38 kN) and table displacement (80 mm) 
(presented in Figure 9). Since the system responses will be affected by the dynamics of the shake 
table, the feasibility of applications will need to be checked again by using the simulation procedure 
developed here. The numerical simulations using the realistic test setup demonstrate that the 
proposed nonlinear feedback tracking control algorithm can successfully simulate target motions 
within nonlinear structures experiencing hysteretic behavior. The simulation procedure developed 
in this study can be used in order to check the limitations and feasibility of applications before 
actual tests. 
 

6 CONCLUDING REMARKS 

For qualification tests using shake tables, whose main objective is to verify certain 
performance of test structures or equipment, it is often required to challenge the specimens by 
specified target motions. In these tests, the fidelity of signal reproduction is very important. In this 
study, a nonlinear feedback tracking controller based on the feedback linearization control scheme 
is proposed to simulate target motions at specific locations of specimens that experience nonlinear 
behavior. To account for the uncertainties in system parameters and the effects of measurement 
noise, a real-time state and parameter estimator using the extended Kalman filter is adopted and 
combined with the proposed controller. For practical applications, limited measurements are also 
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considered. The proposed adaptive control method is applied to a simulation of a realistic test setup 
including a nonlinear test structure and shake table of the University at Buffalo’s laboratory by 
means of numerical simulations. The results demonstrate that realistic target floor motions, induced 
by an earthquake motion, can be accurately simulated by using the proposed control method. An 
experimental study by using the test setup presented in Section 5 is planned in the near future in 
order to resolve implementation challenges and to study effects of uncertainties.  
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