Monoamine Oxidase Polymorphisms in Japanese and rhesus macaques (Macaca fuscata and M. mulatta)

Danielle N. Jones¹,², Cody A. Ruiz³, Mary Ann Raghanti³,⁴, Anthony J. Tosí³,⁴, Hiroyuki Tanaka⁹, Yukiori Goto⁵

¹ Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA, ² Brain Health Research Institute, Kent State University, Kent, OH, USA, ³ Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan, ⁴ Cognition and Learning Section, Primate Research Institute, Kyoto University, Inuyama, Japan

ABSTRACT

Monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B) are enzymes that degrade several monoamines of the central nervous system and have long been implicated in the modulation of social behavior. Macaque monkeys are a suitable model for investigating the role of functional monoamine oxidase polymorphisms in behavior modulation given the high amount of social diversity among the nearly two dozen species. The present study reports allele frequencies for two polymorphisms, MAO-A-LPR and MBin2, in samples of humans (Macaca mulatta) and Japanese (M. fuscata) macaques. Our results suggest that the two species may differ in high- and low-activity MAOA-LPR allele frequencies. Specifically, 89% of the Japanese macaque alleles in our sample were the low-activity variant, whereas only 41% of the rhesus macaque alleles were of this sort. In our samples, the two species possessed similar allelic variation at the MBin2 locus, with each possessing one species-specific allele. We also tested for association between MAOA-LPR genotype and plasma serotonin (5-HT) and dopamine (DA) concentrations in a subset of rhesus macaques, which revealed no association with genotype. Our findings point toward potential differences in the monoaminergic system of two closely related macaque species.

INTRODUCTION

Japanese and rhesus macaques are estimated to have diverged between 0.31-0.88 million years ago¹ and breed similar social styles, as both species are highly despotic and aggressive relative to many other macaque species². Among Japanese macaques, regional differences in social tolerance have been observed³. They also form what are referred to as “clustering formations”. This behavior helps them conserve body heat in cold climates and has been associated with increased social tolerance⁴.

To investigate the genetic basis of social style in Japanese and rhesus macaques, we focused on two genetic polymorphisms, MAOA-LPR and MBin2. MAOA-LPR is a VNTR promoter polymorphism of the MAOA gene, which encode the enzyme MAO-A. This enzyme degrades various neurotransmitters, including serotonin (5-HT) and dopamine (DA). MAOA-LPR alleles interact with rearing environment to influence aggression in rhesus macaques⁵. MBin2 is an intronic dinucleotide repeat polymorphism of the MAOB gene, which encode the enzyme MAO-B. This enzyme degrades DA in addition to other neurochemicals. Little is known about MBin2’s role in mediating aspects of social behavior.

METHODS AND MATERIALS

Whole blood was used for direct PCR to target MAOA-LPR and MBin2 loci. ABI 3130 Genetic Analyzer was used for genotyping.

RESULTS

Japanese macaques are native to Japan, where they are adapted to the country's climate extremes.

Rhesus macaques are widely distributed throughout south and southeast Asia, where they thrive in a variety of environments ranging from forested to urban.

Japanese macaques were less variable at the MAOA-LPR locus.

While rhesus macaques possessed four alleles, with 41% being low-activity, Japanese macaques possessed two alleles, 89% of which were low-activity.

The two species possessed similar allelic variation at the MBin2 locus.

In a small subset of rhesus macaques for which data were available, plasma 5-HT and DA concentrations were not associated with MAOA-LPR genotype.

DISCUSSION

Japanese macaques are an island species, so the possibility that founders’ effect has contributed to the observed allele frequencies must be considered. Even so, the high frequency of low-activity variants found in our Japanese macaque sample may partially underlie the recent observation of elevated plasma 5-HT in Japanese macaques relative to rhesus macaques⁶.

It has been suggested that the formation of large huddles likely requires increased social tolerance among group members. The role of 5-HT and genetic variants that impact the central serotonergic system, such as MAOA-LPR, have not been investigated in the context of cluster formations. Future studies on this topic may be insightful for elucidating environmental drivers of social and physiological plasticity in the Japanese macaque relative to other species.

Future comparative neurobiological studies among macaque species, combined with the genetic data, will provide a more comprehensive view of the neurodiversity that may underlie the social complexity within the genus Macaca.

ACKNOWLEDGEMENTS

This research was funded by the National Science Foundation (NSF East Asia and Pacific Summer Institutes #1713932 and the Japan Society for the Promotion of Science (JSPS) Summer Program Research Fellowship.

REFERENCES


CONTACT

Danielle Jones
Kent State University
djones167@kent.edu

*Plasma subset role with J elevated samples number dinucleotide in MAOA the 28 a Natural associations 30 long & the Jour in locus Y of of have been MAO complex of enzyme cold studies years ago have solve due to unsuccessful genotyping of two rhesus monkeys, both female.

The number of monkeys included in the analysis, categorized by sex: MAOALA-LPR females, MAOALA-LPR males, MBin2 females, MBin2 males. While 25 rhesus monkeys were used in our examination of MAOA-LPR, only 23 were included in our MBin2 analysis due to unsuccessful genotyping of two rhesus monkeys, both female.

Distribution of MAOA-LPR alleles. 4, 5, 6, and 7-repeat alleles for MAOA-LPR correspond to 310, 328, 346, 564 bp fragment lengths obtained from genotyping. The activity of the 4-repeat allele is unknown, the 5- and 6- repeat alleles are high-activity, and the 7-repeat allele is low-activity.

Species N MAOA-LPR MBin2
female male
Japanese 17 21 55 55
rhesus 25* 18 68 64

*Plasma subset role with J elevated samples number dinucleotide in MAOA the 28 a Natural associations 30 long & the Jour in locus Y of of have been MAO complex of enzyme cold studies years ago have solve due to unsuccessful genotyping of two rhesus monkeys, both female.

The number of monkeys included in the analysis, categorized by sex: MAOALA-LPR females, MAOALA-LPR males, MBin2 females, MBin2 males. While 25 rhesus monkeys were used in our examination of MAOA-LPR, only 23 were included in our MBin2 analysis due to unsuccessful genotyping of two rhesus monkeys, both female.

Distribution of MAOA-LPR alleles. 4, 5, 6, and 7-repeat alleles for MAOA-LPR correspond to 310, 328, 346, 564 bp fragment lengths obtained from genotyping. The activity of the 4-repeat allele is unknown, the 5- and 6- repeat alleles are high-activity, and the 7-repeat allele is low-activity.

Specie N MAOA-LPR MBin2
female male
Japanese 17 21 55 55
rhesus 25* 18 68 64

*Plasma subset role with J elevated samples number dinucleotide in MAOA the 28 a Natural associations 30 long & the Jour in locus Y of of have been MAO complex of enzyme cold studies years ago have solve due to unsuccessful genotyping of two rhesus monkeys, both female.

The number of monkeys included in the analysis, categorized by sex: MAOALA-LPR females, MAOALA-LPR males, MBin2 females, MBin2 males. While 25 rhesus monkeys were used in our examination of MAOA-LPR, only 23 were included in our MBin2 analysis due to unsuccessful genotyping of two rhesus monkeys, both female.

Distribution of MAOA-LPR alleles. 4, 5, 6, and 7-repeat alleles for MAOA-LPR correspond to 310, 328, 346, 564 bp fragment lengths obtained from genotyping. The activity of the 4-repeat allele is unknown, the 5- and 6- repeat alleles are high-activity, and the 7-repeat allele is low-activity.