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Abstract

We consider the widely-used weighted L2 norm total
variation multiplicative regularizer (MR) for both the
Gauss-Newton inversion (GNI) and contrast source inver-
sion (CSI) algorithms in microwave imaging (MWI). It is
shown that the proper numerical implementation of the dis-
cretized MR operator is important for the GNI algorithm
whereas the CSI algorithm is more robust with respect to
different implementations of this MR. For the GNI algo-
rithm, the MR operator should be discretized such that
high spatial frequency components are not present in its
nullspace, and also the resulting discrete operator is posi-
tive definite.

1 Introduction

In microwave imaging (MWI), one of the main challenges
is how to treat the ill-posedness of the associated inverse
scattering problem. To this end, regularization techniques
are used, which consist of two main components: (i) the
utilized regularization operator, and (ii) the method with
which the weight of the regularization operator is deter-
mined. Several regularization techniques have been used
in MWI, e.g., see [1]. One of the most successful MWI
regularization methods, which is the focus of this paper, is
the weighted L2 norm total variation multiplicative regular-
ization (MR) scheme, e.g., see [2, 3].1 This particular MR
has been successfully used with both the contrast source in-
version (CSI) and the Gauss-Newton inversion (GNI) algo-
rithms, resulting in the MR-CSI [2, 3] and MR-GNI [7, 8, 9]
algorithms. The success of this MR lies in providing adap-
tive2 and edge-preserving regularization [1, 3]. Herein, we
discuss one subtle, yet important, point regarding the nu-
merical implementation of this MR. It will be discussed that
the GNI performance is more sensitive to the numerical im-
plementation of the MR operator as compared to CSI. As
will be seen, this is related to the nullspace of the gradi-
ent operator as well as the positive-definiteness of the dis-
cretized MR operator. Herein, this numerical implementa-
tion is only discussed using pulse basis discretization for
the 2D transverse magnetic microwave imaging.

1We note that other forms of MR, e.g., in the form of Tikhonov or
shape/location regularization have also been used [4, 5, 6]. However, this
paper is merely concerned with the weighted L2 norm total variation MR.

2Adaptive regularization refers to the gradual decrease of the regular-
ization weight in nonlinear inversion algorithms such as CSI and GNI.

2 GNI versus CSI – A Review

MWI is governed by two main equations: data and do-
main (state) equations [3]. The data equation maps the in-
formation within the imaging domain to the external mea-
surement domain. On the other hand, the domain equation
governs the interaction merely within the imaging domain.
The GNI algorithm substitutes the domain equation into the
data equation. The main advantage of the GNI approach is
that it results in a cost functional that needs to be mini-
mized merely over the unknown relative complex permit-
tivity contrast profile χ . However, the resulting GNI cost
functional is ill-posed, and must be regularized. The CSI
algorithm does not substitute the domain equation into the
data equation, and instead uses the domain equation in the
form of an additive regularization term. This provides a
fundamental benefit for the CSI algorithm as it removes the
necessity of having an extra layer of regularization for the
CSI algorithm in many cases. However, it has been found
that CSI can still benefit from an extra layer of regulariza-
tion, in particular from the MR in some cases. On the other
hand, the CSI cost functional needs to be minimized not
only over χ , but also over the contrast sources; thus, the
number of unknowns increases as compared to GNI.

3 Nullspace

It is important that the nullspace3 of the regularization op-
erator intersects trivially with that of the ill-posed operator.
Assume that in a given iteration of the GNI algorithm, we
deal with the following ill-posed equation Ax = b. Regular-
izing this equation with the regularization operator R results
in the following L2-norm minimization over the unknown x

xα = argmin
x
{‖Ax−b‖2 +α

2 ‖R(x− x0)‖2} (1)

where x0 is an appropriate vector which can be, for ex-
ample, a zero vector. In addition, α2 ∈ R is an appro-
priate regularization weight. To ensure a unique regu-
larized solution xα for the above minimization, the inter-
section of the operators’ nullspaces needs to be trivial:
N (A)∩N (R) = /0 [10]. For example, for the case of
standard Tikhonov regularization, we have R = I where I
is the identity operator. Noting that N (I) = /0, the above

3The nullspace of a given matrix R, denoted by N (R), spans all the
vectors that satisfy Rx = 0.
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(a) MR-GNI - central
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(b) MR-GNI - forward
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(c) MR-CSI - central
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(d) MR-CSI - forward

Figure 1. Single-frequency (5 GHz) inversion of the synthetic noiseless E -target dataset using (top row) MR-GNI and (bottom
row) MR-CSI when the MR operator has been discretized using central (left) and forward (right) derivative approximations.
Note the instability in the MR-GNI reconstruction under the central derivative approximation.

requirement is automatically satisfied. If the regularization
operator has a non-trivial nullspace, we need to make sure
that the intersection of its nullspace with the ill-posed op-
erator A is trivial. To this end, the necessary condition is
to ensure that N (R) does not have high spatial frequency
components [11]. This is due to the fact that the ill-posed
operator, due to its smoothing effects, often has a numerical
nullspace containing high spatial frequency components.4

Therefore, if N (R) contains high spatial frequency com-
ponents, the above requirement may not be satisfied.

Let us now consider the nullspace of the derivative (gra-
dient) operator. In [11], it has been noted that for the 1D
forward derivative approximation, the discretized derivative
operator has a nullspace that is spanned by a constant vec-
tor. Therefore, this nullspace satisfies the necessary condi-
tion of not containing high spatial frequency components.
On the other hand, the use of the 1D central derivative ap-
proximation results in a nullspace spanned by two vectors:
a constant vector and a high spatial frequency vector. As
noted in [11], the reason for having this high spatial fre-

4Not that Avi = σiui where ui, vi, and σi are the ith left singular vector,
the ith right singular vector and the ith singular value of A, respectively.
In ill-posed problems, for large i indices, σi is very small, and therefore
Avi → 0. Therefore, the numerical nullspace of A contains vi with large
i indices. Noting that vi with large i indices correspond to high spatial
frequency components [12], the numerical nullspace of A will have high
spatial frequency components. Therefore, it is important that the nullspace
of R does not have high spatial frequency components.

quency component is that the central derivative approxi-
mation only correlates every second point within the dis-
cretized domain. Therefore, due to having a high spatial
frequency component, the central derivative approximation
to the derivative operator is not appropriate to be used as a
regularization operator.

Now, let us begin to see how this is related to the MR oper-
ator. The MR operator at the nth iteration of the inversion
algorithm is Ln =−∇ · (b2

n∇) where ‘∇·’ is the divergence
operator and ‘∇’ is the gradient operator. The inhomoge-
neous real-valued weight b2

n is used to determine if the reg-
ularization operator should act locally as a smoothing op-
erator (Laplacian) or as an edge-preserving operator. The
important item to recognize is the presence of the gradient
operator in the expression of Ln. This paper does not thor-
oughly consider the nullspace of the whole operator Ln.
However, based on the nullspace of the derivative operator
as explained above, we note that discretizing the MR oper-
ator using the central derivative approximation may cause
instability in the inversion process.5 On the other hand,
this is less likely to happen in the MR-CSI algorithm as the

5Based on our numerical experience, if the MR-GNI algorithm is ter-
minated earlier, this instability issue with the central difference approxima-
tion may be mitigated. This is perhaps due to the fact that at later MR-GNI
iterations the effect of the edge-preserving regularization, i.e., the gradient
operator, is stronger, and therefore, the issue with its nullspace becomes
more visible.
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(a) MR-GNI - central
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(b) MR-GNI - forward
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(c) MR-CSI - central
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(d) MR-CSI - forward

Figure 2. Single-frequency (6 GHz) inversion of the experimental FoamTwinDielTM dataset using (top row) MR-GNI and
(bottom row) MR-CSI when the MR operator has been discretized using central (left) and forward (right) derivative approxi-
mations. Note the instability in the MR-GNI reconstruction under the central derivative approximation.

MR-CSI algorithm has two layers of regularization (domain
equation and the MR) whereas the MR-GNI algorithm has
only one layer of regularization, i.e., the MR.

4 Positive Definiteness

The MR-GNI algorithm requires the calculation of the Hes-
sian matrix Hn where n denotes the iteration number. It is
desired that the Hessian matrix be a positive definite ma-
trix. Since one component of the Hessian matrix is the MR
operator, Ln, this requires the discretized implementation
of the MR to be positive definite. One way to ensure that
the discrete form of Ln is positive definite can be achieved
as follows. When Ln operates on a vector of appropriate
size, say y, the vector y is first reshaped into a matrix with
the same size as the 2D discretized imaging domain. Then,
zeros will be added around this matrix as shown in Fig-
ure 3. The derivative operators associated with Ln needs
to consider this zero boundary condition when calculating
the gradient for the marginal y elements which are y1i, y4i,
yi1, and yi4 for ∀i for the case shown in Figure 3. This is
based on what was presented in [13, Appendix E] in which
it was shown that Ln is positive definite in the continuous
domain under zero Dirichlet boundary condition. (This is
a valid assumption in MWI since the complex permittivity
contrast vanishes just outside the imaging domain.) Noting
that the MR-CSI algorithm does not use the Hessian matrix,
it does not require the discretized implementation of Ln to

be positive definite.

5 Results

We consider two data sets: one synthetic and the other ex-
perimental data set. The synthetic data set was collected
from the so-called E -target whose shape was originally
considered in [14]. Similar to [15], the relative permittivity
of the lossless E -target was set to 2.3, and the background
medium was air. The synthetic data were collected from
a 12× 12 cm2 domain discretized into 100× 100 square
pulses using 24 line sources at 5 GHz. The inversion was
performed on a 13×13 cm2 domain discretized into 71×71
square pulses. The MR-GNI reconstructions using the cen-
tral and forward difference approximations of the MR have
been shown in Figure 1(a) and (b) respectively. As can be
seen, the central difference approximation of the MR is not
quite stable. The MR-CSI reconstructions using the two
implementations of the MR have also been shown in Fig-
ure 1(c) and (d). As can be seen, the nullspace issue as-
sociated with the central difference approximation is much
less visible in the MR-CSI algorithm. Finally, we consider
the FoamTwinDielTM experimental data set at 6 GHz from
Fresnel Institute [16], and invert it within a 16× 16 cm2

domain discretized into 71× 71 square pulses. As shown
in Figure 2, the MR-GNI algorithm using the central dif-
ference approximation is not perfectly stable; however, the
rest of the algorithms and implementations are reasonably
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Figure 3. Considering an arbitrary vector, e.g., y∈C16, re-
shaping it into a matrix with the same size as the discretized
imaging domain, and then adding zeros around this matrix
to enforce the required zero Dirichlet boundary condition.

stable. Finally, we note that the MR-CSI algorithm also
worked when Ln was not a positive definite operator.

6 Conclusion

The numerical implementation of the discretized MR op-
erator in the GNI algorithm needs to be performed care-
fully. For the GNI algorithm, it needs to be checked that
the resulting discrete MR operator avoids having high spa-
tial frequency components in its nullspace and also is pos-
itive definite. On the other hand, the CSI algorithm seems
to be more robust with respect to different numerical imple-
mentations of the MR partly due to the fact that the CSI cost
functional is already regularized by the domain equation.
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