Implementation of a New Time-Constraint Approach for Handling Scheduling Problems in Computational Grid
T.B. Odeyemi
Federal University of Agriculture, Abeokuta
Odeyemitemitope05@gmail.com

Abstract

Reducing service time has been a major problem in grid computing as a result of this, researchers have devised lots of ways to solve the problem. Therefore, the algorithm approach was developed some of which are classified into best effort and quality of service method. The new approach used in this research paper is an algorithm that can be classified under best effort approach because it concentrates on reducing the execution time. The study is an improvement on the failure of the existing methods and it comprises of two components. The first component is resource filter through Monitoring and Discovery System (MDS), this particular component filters through the available system specification, uses mathematical formulae to determine availability of resources online, check the number of successful jobs on each available resource and also filter through the communication link speed. The second component is the scheduling and allocation part, this employs the use of mathematical method called ratio formulae which breaks the given job into smaller unequal sizes called Gridlets since the system specifications are not expected to be the same. The selected resource specification and the Gridlets are then sorted in other of their sizes before they are scheduled. The algorithm was implemented on GridSim platform running on netbeans and the service time, waiting time and failure rate were noted. The approach has a reduced service time and waiting time when tested with light and heavy load and compared with RASA that have the same complexity of O (n2).
© 2021 Elsevier B.V. All rights reserved.
Keywords: Grid computing; RASA; Gridlets

1.0 Introduction
The name grid was first mentioned in 1990s as a metaphor for making computer power as easy to access as an electric power grid in which no one knows where the generator is located but yet supplies electricity. Grid computing is a type of distributed system in which a large number of small loosely coupled computers are combined together to form a large virtual super-computer. The purpose is to solve a complex problem by dividing the task into smaller tasks and distribute the tasks to different computers (most experienced computer) to solve. Then combine the solved task together to form solution to the original complex problem [6-7]. Despite great success of this mechanism, there is always a delay in completion time which is a major setback. But, researchers have been developing methods for solving the problem. The algorithm based solution can be divided into two namely, best-effort based scheduling algorithm and Quality of Service (QoS) constraint based scheduling algorithm. QoS constraint based scheduling algorithm deals with minimizing the cost of execution while some also reduces the execution time [12]. Best-effort based scheduling algorithm concentrate on minimizing the execution time while cost of execution is ignored [14], [31].
2.0 Problem Statements:
The new approach aim is to reduce the task execution time in grid computing. The algorithm has four major functional parts;
i. Task breaking component, which breaks job into smaller pieces using mathematical approach called ratio formulae
ii. Resource filter based on availability, capacity (500 HDD, 2GHz speed, communication speed 100Mbps, 2G RAM etc)
iii. Mapping of the sorted tasks in (i) based on size with the sorted resource which have been selected based on (ii)
iv. Allocation of a single task to a resource
All these major functional parts are put in place to ensure the service time and waiting time are drastically reduced since tasks are mapped to capable resource and are not placed on a queue.
3.0 Related Works (Algorithm)
The names and contribution of researchers that reduce service time and eradicate resource failure problem is enumerated below with their weaknesses and strengths;
In [13] min-min, max-min and sufferage scheduling algorithm was proposed for grid computing which happened to be the first grid scheduling algorithm. The min-min algorithm sets high priority for task with minimum estimated completion time, while max-min algorithm sets high priority for task with maximum estimated completion time.
Sufferage algorithm sets high scheduling priority to tasks whose completion time by the second best resource is far from that of the best resource which can complete the task at earliest time.
Later [8] was introduced to solve the deadline and budget constrained scheduling problem by using fitness function which consists of two components called cost-fitness and time-fitness. The cost fitness aim is to minimize the cost while the time fitness reduces the execution time.
To commemorate Maheswaran work, [23] was proposed it’s an improvement on the existing algorithm such as min-min and max-min. It operates by alternative using parameter such as number of available resources to determine and assign task to resource using max-min or min-min. For example, if the number of resources is odd the min-min algorithm is applied to the 1st task while the 2nd task will use max-min. Alternative exchange of the Min-min and Max-min strategies results in consecutive execution of a small and a large task on different resources and hereby, the waiting time of the small tasks in Max-min algorithm and the waiting time of the large tasks in Min-min algorithm are ignored. The running time of RASA is O (mn2) which is equivalent to that of min-min or max-min.
In [4] selection of algorithm is done based on standard deviation of the expected completion time of tasks on resources while according to [9] tasks are distributed into 4 groups, each group has tasks with similar attributes (user type, task type, task length and task priority) after the separate allocation of task to resources begins. Scheduling is done in 2 steps: the first step is to decide which group will be scheduled first; this depends on the attributes of the tasks that belong to each group so the group that has tasks with high value of task attributes and high priority will be selected first. Second step is deciding which task inside the chosen group will be scheduled first. This depends on the completion time of task so the task that has minimum completion time will be scheduled first.
According to [10], efficient method for solving NP-hard problem is provided. During the implementation, optimal solution of 13 units when compared with the traditional methods of 23 units was recorded while the waiting time is drastically reduced.
While [14] provide an efficient strategy to minimize the overall processing time for scheduling workflow modelled by using directed acyclic graph (DAG) which in turn leads to optimised makespan and reliability. [22], [30] and [25] also reduces execution time and ensures that all types of resources are used.
The balancing of workload across the available computing resources is explained in [24] while it also improves resource utilization and reduces makespan. Also, several algorithms that reduces budget and takes deadline into consideration were proposed as mentioned in [5], [29]. According to [31] scheduled tasks are assigned equal time slice for execution in a circular order while [32] proposes load balancing strategy for grid computing. In [33] grid middleware is discussed since it’s like the brain or backbone of grid computing which serves as the interface between the user and the grid computing resources.

4.0 Proposed Research Methodology
It’s a batch mode algorithm that considers service time and memory space.
The proposed scheduling algorithm comprises of the following components:
i. Resource filter through Monitoring and Discovery System (MDS)
ii. Task scheduling and allocation component

Symbol Definition:
	Denotation
	Meaning

	EET (t, r)
	Estimated Execution Time: The amount of time the resource r will take to execute the task t, from the time the task starts to execute on the resource

	EAT (t, r)
	Estimated Availability Time: The time at which the resource, r is available to execute task, t

	FAT (t, r)
	File Available Time: The earliest time by which all the files required by the task, t will be available at the resource, r

	ECT (t, r)
	Estimated Completion Time: The estimated time by which task, t will complete execution at resource, r:

	MCT (t)
	Minimum Estimated Completion Time: Minimum ECT for task, t over all available resources

	Monitoring and Discovery Service (MDS) and Virtual Data System (VDS)
	They gather information about system specification/resources, users’ zone/location and type of network being used

	MAS (t, r)
	Maximum Resource Specification: The estimated maximum system specification required to execute task, t with max_ ECT (t, r)

	MIS (t, r)
	Minimum Resource Specification: The estimated minimum system specification required to execute task, t with min_ ECT (t, r)

	Quality of Service (QoS)
	It refers to any technology that manages data traffic to reduce packet loss, latency and jitter on the network.

	Ri
	Available resources

	URi
	Unscheduled /free resource

	Rs
	Resource size (memory)

	Rp ←
	Resource processing speed

	Lt ←
	Resource from same server zone

	Cs ←
	Communication link speed

	RR ←
	Resource RAM

	Fj ←
	Number of failed jobs on a resource

	Sj ←
	Number of successful jobs on a resource

	Ti ←
	Allocated task

ECT (t, r) = EET (t, r) +max (EAT (t, r), FAT (t, r))
Algorithm 1: Resources filter through Monitoring and Discovery System (MDS):
The resource filter select the capable resource from the vast number of available resource using criteria such as processor speed, communication link speed, memory size, locality/zone, Availability of systems (Av), number of successfully executed job on each resource and so on.
1. For all Ri = 1 to m do
2. If (Rs >= 500GB && Rp >= 2GHz)&
3. If (Fj <= (Sj/4) && ECT <= Tr)&
4. If (Cs >= 100Mbps && Lt == true)&
5. If (Av>=18hrs per day)
6. Ri ← ti // allocate task, ti to Ri
7. Else
8. End if
9. End if
10. End if
11. End for

Algorithm 2: Propose Scheduling Algorithm for Grid Computing
1. While ϶j ЄJ is not scheduled Do
2. Avail_Jobs ← get a set of unscheduled jobs
3. t ← Avail_Jobs or task
4. N ← number of available system online
5. end while
6. procedure: schedule (availTasks)
7. while ϶t Є Avail_Jobs is not scheduled Do
8. for all j Є Avail_Jobs Do
9. t ← timestamp// register job, j with their respective timestamp or arrival time
10. job_queue ← t // place job on a queue using timestamp/base on arrival
11. // number of element, i to increase by 1 on each arrival of job on the queue
Initialize i = 0
12. for all new job_arrival Do
13. i = i+1
14. m ← Job_Size// get each job size, m (in MB)
15. end for
16. end for
17. end while
18. //breakdown Avail_Jobs into number of systems available, n
19. Int Sr, Tr //Sr, single ratio while Tr, sum of the ratios
20. For (Sr=2000, Sr<=n, Sr=+4000)// if task size is less than 2GB/2000mb, task will be processed without looping
21. Tr ← get the sum of the ratios
22. Ti = (Sr/Tr)*m // breakdown jobs into task, Ti with unequal sizes
23. End for
24. //Ri ← get system with at least minimum processing speed of 2.0 GHz within the server zone for each task, Ti using MDS and VDS
25. Ri ← Sort specification in ascending order of processing speed
26. Ti ← Sort task in ascending order of size
27. //Allocate task Ti to Ri base on sorting number
Ri ← Ti
28. Remove Ti from availTasks
29. Update (Ti, Ri)
30. End while
4.1	Explanation of Proposed Algorithm Steps:
Step1-7, indicate that while subtask, j which is a subset of big task, J is not schedule; get the number of available jobs (j), available system (n) and the estimated budget for the jobs.
Step 8-14, place the available jobs on a queue using the timestamp or arrival time, while step 15 gets the value of each job size.
Step 19-22, select jobs base on arrival time and breaks it down into sub-jobs or tasks with unequal sizes (since the available resources/systems are not expected to have same specification) using ratio formular, while step 25-26 sort the sub-tasks and system specifications gotten through MDS in ascending order of job sizes and system specification.
Line 27, allocate task, Ti to resource, Ri base on sorting serial number, while allocated task Ti is removed from the list of un-allocated task in line 28. Tasks and resources are updated in line 29, if need be and the program terminate in line 30. Where, each task Ti is allocated to different resources while I represent the number of resources. Hence, M=∑Ti

4.2	The summary of the algorithm/System Architecture:
According to [26], the architecture of grid computing can be separated into 4 different layers which comprises of application and Serviceware layer, middleware layer, resources layer and network layer. In [26], the layers are co-joined to allow interoperability, the middleware can be considered as the operating system of the grid system [15], [18] upon which security policies and resource surveillance can be embedded as in [17], [33]. The diagram in fig. 10 gives the summary of the proposed algorithm.

 (
Grid Environment
SERVER
T1/1.1G
T2/3.3G
T3/5.6G

CLIENT
)
 (
R1/2GHz
) (
10G
)
 (
TASK
10G
)

 (
R2/3GHz
)

 (
R3/4GHz
)

KEYS:
T –Task
R – Resource
F_Task – Failed Task

Fig 10: Task allocation in the proposed algorithm (FT)

5.0 Proposed Implementation Plan

5.1	System Configuration:
The experiment is a client-server type and carried out in a GridSim (Grid Simulation) environment using netbeans Integrated Development Environment (IDE), this method has proven effective in implementation of grid problems such as [11], [20]. The gridsimtoolkit-4.0beta.zip was downloaded and decompressed to extract the GridSim and JavaSim jars. Both were added to netbeans new project library to simulate a grid environment as stated in [19].
Also, this can be done using command prompt by setting the path to the JavaSim jars, GridSim jars and the java file under system variables which can be found under advance system settings.
5.2	Implementation Topology:
Star topology was used in testing the performance of the 2 algorithms (RASA and the proposed algorithm).
5.3	Performance Evaluation
The experiment for RASA and the proposed algorithm was conducted repeatedly to ensure the figures generated are consistent while the average service time for the 2 experiments was computed and compared with each other.
The experiment was tested under the following condition to observe the behaviour of the algorithm under different loads;
i. Light load of 78 gigabytes with reduced number of Gridlets not more than 20.
ii. Heavy load of 398GB with 100 number of Gridlets
The evaluation of the 2 algorithms is done base on the following;
i. By calculating the average service time using average formular
Average service time =
ii. By calculating the normalised service time using formular
Normalised average service time, (ɖ) can be calculated as shown below;
Where (d) is the average service time and (a) is assumed to be zero.
ɖ = ½ (1-)
iii. The rate of resource failure and resource success
iv. The waiting time

5.4	Task Allocation by the proposed algorithm:
It must be noted that each sorted resources is allocated only one task or Gridlet, the number of resource or Gridlet to use can be derived from the total file size as shown below;
In the calculation only the whole numbers are considered since it’s not possible to have half number of resource or system.
Formular:
Q = [] +1
Where, X = []
Therefore,
D = X+1
Parameter definition:
M is the size of the job in GB
 D is the number of tasks or available resource for use/clients which must be whole number
Q and X are variables upon which D depends.
When M = 198GB; 2 (initial) and 4 (increment) are also in gigabytes
Q = [] + 1
Q = [] + 1	
Q = [] + 1
Q = 49+1 = 50 Gridlets/resources
When M = 250GB;
Q = [] + 1
Q = [] + 1	
Q = [62] + 1 = 63 Gridlets/resources
When M = 400GB;
Q = [] + 1
Q = [] + 1	
Q = [99] + 1 = 100 Gridlets/resources
When M = 600GB;
Q = [] + 1
Q = [] + 1	
Q = [149] + 1 = 150 Gridlets/resources
When M = 1000GB;
Q = [] + 1
Q = [] + 1	
D = [249] + 1 = 250 Gridlets/resources
When M = 1500GB;
Q = [] + 1
Q = [] + 1	
Q = [372] + 1 = 373 Gridlets/resources

From the calculation above, it must be noted that number of Gridlets must be equivalent to the number of resources used. The jobs are expected to be broken down into 50, 63, 100, 150, 250 and 373 tasks respectively and distributed to 50, 63, 100, 150, 250 and 373 Gridlets/resources respectively as a result of the constraint used in the algorithm which ensure that all online resources with at least processing speed of 2.0 GHz will be used with the aid of ratio formular. The data loss are expected to be minimized because the workload will be broken down into smaller sizes and shared among vast number of capable resources unlike other existing algorithms, therefore reducing service time and task failure.

5.5 Result and Analysis
The observation is as follows;
Task allocation and transmission with the proposed scheduling algorithm

Table 1: Output of the Proposed Algorithm Using Gridsim under Light Load of 78G
	Gridlet ID
	STATUS
	Resource ID
	Start time
	End time
	Service time(t)
	File size
	Output file
	Wait time

	1
	SUCCESS
	17
	390.30
	412.52
	22.22
	195
	215
	0

	2
	SUCCESS
	65
	475.00
	497.22
	22.22
	585
	605
	0

	3
	SUCCESS
	36
	622.10
	643.32
	21.22
	975
	995
	0

	4
	SUCCESS
	9
	830.76
	851.98
	21.22
	1365
	1385
	0

	5
	SUCCESS
	45
	1101.74
	1122.96
	21.22
	1755
	1775
	0

	6
	SUCCESS
	61
	1438.24
	1459.46
	21.22
	2145
	2165
	0

	7
	SUCCESS
	55
	1833.14
	1854.36
	21.22
	2535
	2555
	0

	8
	SUCCESS
	26
	2289.96
	2312.18
	22.22
	2925
	2945
	0

	9
	SUCCESS
	25
	2811.78
	2834.00
	22.22
	3315
	3335
	0

	10
	SUCCESS
	77
	3394.88
	3417.10
	22.22
	3705
	3725
	0

	11
	SUCCESS
	21
	4040.70
	4062.92
	22.22
	4095
	4115
	0

	12
	SUCCESS
	29
	4748.92
	4770.14
	21.22
	4485
	4505
	0

	13
	SUCCESS
	19
	5517.50
	5538.72
	21.22
	4875
	4895
	0

	14
	SUCCESS
	49
	6350.00
	6371.22
	21.22
	5265
	5285
	0

	15
	SUCCESS
	37
	7326.50
	7347.72
	21.22
	5655
	5675
	0

	16
	SUCCESS
	42
	8284.12
	8306.34
	22.22
	6045
	6065
	0

	17
	SUCCESS
	91
	9309.14
	9331.36
	22.22
	6435
	6455
	0

	18
	SUCCESS
	81
	10389.36
	10411.58
	22.22
	6825
	6845
	0

	19
	SUCCESS
	59
	11533.18
	11555.40
	22.22
	7215
	7235
	0

	20
	SUCCESS
	41
	12739.80
	12762.02
	22.22
	7605
	7625
	0

	TOTAL
	
	
	
	
	435.40
	78000
	
	0

						 	
From the table 1, we can deduce that the job is broken into 20 Gridlets of unequal sizes using a ratio formular { x TOTAL FILE SIZE (MB)}, since the system specification varies. Then the tasks are sorted in ascending order of magnitude base on file size while the nodes or resources specification (processing speed) are also sorted in ascending order.
Therefore, the sorted tasks (file size) were allocated to sorted resources (processing speed and other specification) serially from Gridlet ID 1 to 20. That is, the task with smallest size is allocated to the resource with small processing speed and so on. The algorithm is expected to ensure that all resources are put into use and also ensure that a resource is allocated only one Gridlet, thereby reducing the average service time and increase the makespan while at the same time ensure that the total cost of data transfer is less than or equal to the server budget.
The status indicates the number of successful file transfer or resource failure from server to client and vice versa. The resource failure is usually cause by hardware problem which leads to message loss between the two ends.
From table 1, the service time, average service time, normalized service time can be calculated as follows;

Total service = t1+t2+ --------- +t20
		= 435.40 sec

Average service time =
			= 435.40/20
			= 21.77 sec

Normalised service time (ɖ) = ½ (1-)
Where (d) is the average service time and (a) is assumed to be zero.
Therefore,

(ɖ) = ½ (1-)

(ɖ) = ½ (1-)

(ɖ) = ½ (1-)

(ɖ) = ½ ()

(ɖ) = ½ ()

(ɖ) = ½ (0.9541)

(ɖ) = 0.4770

Therefore, the total service time and average service time for light load of 78G are 435.40 sec and 21.77 sec respectively while the normalized service time is approximately 0.4770. Besides, the waiting time is approximately zero (0).
Table 2: Output of the Proposed Algorithm Using Gridsim under Heavy Load of 398G
	Gridlet ID
	STATUS
	Resource ID
	Start time
	End time
	Service time
	File size
	Output file
	Waiting time

	1
	SUCCESS
	5
	1875.20
	1996.42
	21.22
	40
	60
	0

	2
	SUCCESS
	9
	1909.70
	1930.92
	21.22
	120
	140
	0

	3
	SUCCESS
	13
	1957.00
	1978.22
	21.22
	200
	220
	0

	4
	SUCCESS
	17
	2017.58
	2038.80
	21.22
	280
	300
	0

	5
	SUCCESS
	21
	2090.48
	2112.70
	22.22
	360
	380
	0

	6
	SUCCESS
	25
	2177.34
	2199.56
	22.22
	440
	460
	0

	7
	SUCCESS
	29
	2276.36
	2298.58
	22.22
	520
	540
	0

	8
	SUCCESS
	33
	2388.98
	2411.20
	22.22
	600
	620
	0

	9
	SUCCESS
	37
	2513.60
	2535.82
	22.22
	680
	700
	0

	10
	SUCCESS
	41
	2651.74
	2673.96
	22.22
	760
	780
	0

	11
	SUCCESS
	53
	2802.36
	2824.58
	22.22
	840
	860
	0

	12
	SUCCESS
	57
	2966.26
	2988.48
	22.22
	920
	940
	0

	13
	SUCCESS
	61
	3142.56
	3164.78
	22.22
	1000
	1020
	0

	14
	SUCCESS
	65
	3333.26
	3355.48
	22.22
	1080
	1100
	0

	15
	SUCCESS
	69
	3535.56
	3557.78
	22.22
	1160
	1180
	0

	16
	SUCCESS
	73
	3750.98
	3773.20
	22.22
	1240
	1260
	0

	17
	SUCCESS
	77
	3979.36
	4001.58
	22.22
	1320
	1340
	0

	18
	SUCCESS
	81
	4220.38
	4241.60
	21.22
	1400
	1420
	0

	19
	SUCCESS
	85
	4476.80
	4498.02
	21.22
	1480
	1500
	0

	20
	SUCCESS
	89
	4742.02
	4763.24
	21.22
	1560
	1580
	0

	21
	SUCCESS
	93
	5020.28
	5041.50
	21.22
	1640
	1660
	0

	22
	SUCCESS
	97
	5311.50
	5332.72
	21.22
	1720
	1740
	0

	23
	SUCCESS
	101
	5615.76
	5636.98
	21.22
	1800
	1820
	0

	24
	SUCCESS
	105
	5932.74
	5953.96
	21.22
	1880
	1900
	0

	25
	SUCCESS
	109
	6263.56
	6284.78
	21.22
	1960
	1980
	0

	26
	SUCCESS
	113
	6614.06
	6635.28
	21.22
	2040
	2060
	0

	27
	SUCCESS
	117
	6973.20
	6994.42
	21.22
	2120
	2140
	0

	28
	SUCCESS
	121
	7344.26
	7365.48
	21.22
	2200
	2220
	0

	29
	SUCCESS
	125
	7728.36
	7749.58
	21.22
	2280
	2300
	0

	30
	SUCCESS
	129
	8122.14
	8143.36
	21.22
	2360
	2380
	0

	31
	SUCCESS
	133
	8530.64
	8552.86
	22.22
	2440
	2460
	0

	32
	SUCCESS
	137
	8955.82
	8978.05
	22.22
	2520
	2540
	0

	33
	SUCCESS
	141
	9394.61
	9416.83
	22.22
	2600
	2620
	0

	34
	SUCCESS
	145
	9846.19
	9868.41
	22.22
	2680
	2700
	0

	35
	SUCCESS
	149
	10306.01
	10328.23
	22.22
	2760
	2780
	0

	36
	SUCCESS
	153
	10780.23
	10802.45
	22.22
	2840
	2860
	0

	37
	SUCCESS
	157
	11268.05
	11290.27
	22.22
	2920
	2940
	0

	38
	SUCCESS
	161
	11771.87
	11794.09
	22.22
	3000
	3020
	0

	39
	SUCCESS
	165
	12289.27
	12311.51
	22.22
	3080
	3100
	0

	40
	SUCCESS
	405
	12817.11
	12839.33
	22.22
	3160
	3180
	0

	41
	SUCCESS
	45
	13355.97
	13378.19
	22.22
	3240
	3260
	0

	42
	SUCCESS
	401
	13907.79
	13930.01
	22.22
	3320
	3340
	0

	43
	SUCCESS
	397
	14474.09
	14496.31
	22.22
	3400
	3420
	0

	44
	SUCCESS
	393
	15055.51
	15077.73
	22.22
	3480
	3500
	0

	45
	SUCCESS
	389
	15642.69
	15664.91
	22.22
	3560
	3580
	0

	46
	SUCCESS
	385
	16244.67
	16266.89
	22.22
	3640
	3660
	0

	47
	SUCCESS
	381
	16862.09
	16883.31
	21.22
	3720
	3740
	0

	48
	SUCCESS
	377
	17491.94
	17513.17
	21.22
	3800
	3820
	0

	49
	SUCCESS
	373
	18132.37
	18153.59
	21.22
	3880
	3900
	0

	50
	SUCCESS
	369
	18784.07
	18805.29
	21.22
	3960
	4980
	0

	51
	SUCCESS
	365
	19455.37
	19476.59
	21.22
	4040
	4060
	0

	52
	SUCCESS
	361
	20135.47
	20156.59
	21.22
	4120
	4140
	0

	53
	SUCCESS
	357
	20829.33
	20850.55
	21.22
	4200
	4220
	0

	54
	SUCCESS
	353
	21535.91
	21557.13
	21.22
	4280
	4300
	0

	55
	SUCCESS
	349
	22249.61
	22270.83
	21.22
	4360
	4380
	0

	56
	SUCCESS
	345
	22979.31
	23000.53
	21.22
	4440
	4460
	0

	57
	SUCCESS
	341
	23723.01
	23744.23
	21.22
	4520
	4540
	0

	58
	SUCCESS
	337
	24480.23
	24501.45
	21.22
	4600
	4620
	0

	59
	SUCCESS
	333
	25252.73
	25273.95
	21.22
	4680
	4700
	0

	60
	SUCCESS
	329
	26032.35
	26053.57
	21.22
	4760
	4780
	0

	61
	SUCCESS
	325
	26826.37
	26847.59
	21.22
	4840
	4860
	0

	62
	SUCCESS
	321
	27634.55
	27655.77
	21.22
	4920
	4940
	0

	63
	SUCCESS
	317
	28456.25
	28477.47
	21.22
	5000
	5020
	0

	64
	SUCCESS
	313
	29292.35
	29313.57
	21.22
	5080
	5100
	0

	65
	SUCCESS
	309
	30135.97
	30157.19
	21.22
	5160
	5180
	0

	66
	SUCCESS
	305
	30993.27
	31014.49
	21.22
	5240
	5260
	0

	67
	SUCCESS
	301
	31866.49
	31887.71
	21.22
	5320
	5340
	0

	68
	SUCCESS
	297
	32752.11
	32773.33
	21.22
	5400
	5420
	0

	69
	SUCCESS
	293
	33652.53
	33674.75
	22.22
	5480
	5500
	0

	70
	SUCCESS
	289
	34561.95
	34584.17
	22.22
	5560
	5580
	0

	71
	SUCCESS
	285
	35484.97
	35507.19
	22.22
	5640
	5660
	0

	72
	SUCCESS
	281
	36422.39
	36444.61
	22.22
	5720
	5740
	0

	73
	SUCCESS
	277
	37373.25
	37395.47
	22.22
	5800
	5820
	0

	74
	SUCCESS
	273
	38337.07
	38359.29
	22.22
	5880
	5900
	0

	75
	SUCCESS
	269
	39309.05
	39331.27
	22.22
	5960
	5980
	0

	76
	SUCCESS
	265
	40301.67
	40323.89
	22.22
	6040
	6060
	0

	77
	SUCCESS
	261
	41303.09
	41325.31
	22.22
	6120
	6140
	0

	78
	SUCCESS
	257
	42319.71
	42341.93
	22.22
	6200
	6220
	0

	79
	SUCCESS
	253
	43349.21
	43371.43
	22.22
	6280
	6300
	0

	80
	SUCCESS
	249
	44385.03
	44407.25
	22.22
	6360
	6380
	0

	81
	SUCCESS
	245
	45434.29
	45456.51
	22.22
	6440
	6460
	0

	82
	SUCCESS
	241
	46495.47
	46517.69
	22.22
	6520
	6540
	0

	83
	SUCCESS
	237
	47571.77
	47593.99
	22.22
	6600
	6620
	0

	84
	SUCCESS
	233
	48665.19
	48687.41
	22.22
	6680
	6700
	0

	85
	SUCCESS
	229
	49765.81
	49788.03
	22.22
	6760
	6780
	0

	86
	SUCCESS
	225
	50880.03
	50902.25
	22.22
	6840
	6860
	0

	87
	SUCCESS
	221
	52007.85
	52030.07
	22.22
	6920
	6940
	0

	88
	SUCCESS
	217
	53151.03
	53173.25
	22.22
	7000
	7020
	0

	89
	SUCCESS
	213
	54313.25
	54335.47
	22.22
	7160
	7180
	0

	90
	SUCCESS
	209
	55484.27
	55506.49
	22.22
	7240
	7260
	0

	91
	SUCCESS
	205
	56668.89
	56691.11
	22.22
	7320
	7340
	0

	92
	SUCCESS
	201
	57868.55
	57890.77
	22.22
	7400
	7420
	0

	93
	SUCCESS
	197
	59081.33
	59103.55
	22.22
	7480
	7500
	0

	94
	SUCCESS
	193
	60307.63
	60329..85
	22.22
	7560
	7580
	0

	95
	SUCCESS
	189
	61542.02
	61564.24
	22.22
	7640
	7660
	0

	96
	SUCCESS
	185
	62790.64
	62812.86
	22.22
	7720
	7740
	0

	97
	SUCCESS
	181
	64053.66
	64075.88
	22.22
	7800
	7820
	0

	98
	SUCCESS
	177
	65331.72
	65353.94
	22.22
	7880
	7900
	0

	99
	SUCCESS
	173
	66624.18
	66645.40
	21.22
	7960
	7980
	0

	100
	SUCCESS
	49
	67924.68
	67945.90
	21.22
	8000
	8020
	0

	TOTAL
	
	
	
	
	2181
	398000
	
	0

From the second experiment as shown in Table 2, it can be deduced that the job is broken into 100 Gridlets and each Gridlet is then distributed to a resource based on ID (identity number), that’s a resource can only get one Gridlet. The tasks are completed at almost the same time due to the fact that file-sizes and system specification has been sorted and mapped to each other. It is also noted that the total file size is the same as the input file size (398G) while the total service time of 2181 sec is gotten. There is no status failure recorded.
The service time, average service time, normalized service time can be calculated as follows;

Total service = t1+t2+ --------- +t100
		= 2181 sec

Average service time =
			= 2181/100
			= 21.81 sec

Normalised service time (ɖ) = ½ (1-)
Where (d) is the average service time and (a) is assumed to be zero.
Therefore,

(ɖ) = ½ (1-)

(ɖ) = ½ (1-)

(ɖ) = ½ (1-)

(ɖ) = ½ ()

(ɖ) = ½ ()

(ɖ) = ½ (0.9541)

(ɖ) = 0.4770

Therefore, the total service time and average service time for heavy load of 398G are 2181 sec and 21.81 sec respectively while the normalized service time is approximately 0.4770. Besides, the waiting time is approximately zero (0).
6 Conclusion:
From the series of experiment performed so far, the following conclusions are derived:
i. The proposed scheduling algorithm breaks the task into unequal sizes knowing that system specifications for available systems are not expected to be the same. Therefore, mapping sorted tasks to sorted resources based on sizes/capacity which ensure that each tasks service time at each node are comparatively small compare with existing algorithms. Thereby, reducing overall average service time.
ii. Unlike other existing algorithms, the proposed scheduling algorithm makes use of large number of resources and ensures that only one task is allocated to each resource thereby eradicating Gridlets/sub-task queuing at the client end. This also ensures that sub-task service time are drastically reduced, thereby ensuring timely submission of sub-tasks to the server which quickly use the submitted sub-tasks to form desired result to the original problem.
iii. Due to proper scheduling of the new algorithm, there are no failed tasks.

6.1 Contributions to Knowledge
The following are the contribution of the study to knowledge:
i. The new scheduling algorithm have shorter average service time and lesser congestion level by equating the number of tasks to the number of capable resources thereby ensuring that tasks are not placed on a queue so that the end result won’t be delayed at the server side.
ii. Also, it ensures that capable resources are used, this annul the possibility of mapping a bigger task with a system with lower specification which can lead to delay in task completion and failed task that may be caused by hardware problem (incapable hardware resources such as memory).

6.2 Future Work
The following are some of the areas for future research work:
i. More reasons for failed task can be discovered and implemented to further reduce the rate of task failure.
ii. Work can be extended further to reduce the complexity of the new algorithm in term of running time, memory management and cost reduction.
iii. The task can still be broken-down into smaller sizes so as to reduce the average service time and cost of data transfer at the client end.
iv. The algorithm can further be implemented using variety of network topologies with different hardware design and configuration.

REFERENCES
1. Afzal A., Stephen M., and John D., (2008). Capacity planning and scheduling in Grid computing environments, Journal of Future Generation Computer Systems, 24: 404-414.
2. Anuradha A., Shipra S., Harendera K. and Pradeep K. Y., (2019). G.A.-based task scheduling algorithm for efficient utilization of available resources in computational grid, decision science in action, 119-126
3. Benjamin K., Bharadwaj V., Terence H. and Simon S., (2007). A multi-dimensional scheduling scheme in a Grid computing environment, Journal of Parallel and Distributed Computing, 67: 659-673
4. Etminani K. and Naghibzadeh M., (2007). A Min-min, Max-min Selective Algorithm for Grid Task Scheduling, the Third IEEE/IFIP International Conference on Internet, Uzbekistan
5. Feng L and Wei-Wei G., (2019). Optimized min-min dynamic task scheduling algorithm in grid computing, International conference on applications and techniques in cyber security and intelligence, 745-752, 2019
6. Ian F. and Carl K. (2003): The Grid 2: Blueprint for a new computing infrastructure, Elsevier
7. Ian F.: Grid computing, AIP conference proceedings 583 (1), 51-56, 2001
8. Jia Y. and Rajkumar B.: Scheduling workflow applications with deadline and budget constraints using genetic algorithm, scientific programming 14(3-4) 217-230, 2006
9. Kamalam G. K. and Anitha B., (2019). Task Group Scheduling Algorithm (TGSA) for mapping a set of independent tasks in each group based on QoS onto heterogeneous resources in a distributed grid environment, international journal of applied engineering research 14 (1), 92-96, 2019
10. Karthika R. A. and Sriramya P., (2020). Solving grid scheduling problems using Selective Breeding Algorithm (SBA), first international conference on sustainable technologies for computational intelligence, 581-591, 2020
11. Korovin A. V and Minukhin S. V., (2018). The development of implementation and efficient evaluation of the GRIDS scheduling resource methods in packet GridSim, problems in programming
12. Leili M. K. and Morteza A., (2007). Grid_JQA: A QoS Guided Scheduling Algorithm for Grid Computing. The Sixth International Symposium on Parallel and Distributed Computing (ISPDC’07), IEEE, 34-34.
13. Maheswaran M., (1999). Quality of service driven resource management algorithms for network computing, PDPTA, 1090-1096
14. Maslina A., Jemal H. A., and Morshed C., (2018). Scheduling workflow application with makespan and reliability constraints, Indonesian journal of electrical engineering and computer science 12(2), 482-488
15. Mateo T., Vivex B., Andre M., Loannis P., and Shantenu J., (2019). Middleware building blocks for workflow systems, computing in science and engineering
16. Mohammed A., Muhammad S. A., and Syed H. H. M., (2018). Fault tolerant aware scheduling technique for cloud computing environment using dynamic clustering algorithm, neural computing and application 29 (1), 279-293
17. Munmun S., Sanjaya K. P. and Suvasini P., (2019). Distributed computing security: Issues and challenges, cyber security in parallel and distributed computing: Concepts, Techniques, Applications and case studies, 129-138.
18. Muthoni M., Antoine B. and Victor N., (2010). MobiGrid: A middleware for integrating mobile phone and grid computing, international conference on network and service management, 523-526.
19. Neeraj K. R., (2015). Gridsim installation and implementation process, journal on cloud computing (JCC) 2 (4), 29-40
20. Pradeep S. R., Anuj K. Y. and Varun B., (2015). Grid resource computing environment simulation using GridSim toolkit, 2nd international conference on computing for sustainable global development (INDIA.com), 1069-1073
21. Prakash V. (2017). Types of Grid Computing Systems and Their Features; Computer Science and Engineering Department, Birla Institute of Technology, Mesra, Jharkhand 835215, India. Imperial Journal of Interdisciplinary Research (IJIR); Vol-3, Issue-4, 2017; ISSN: 2454-1362.
22. Rajinder V., Rajiv V. and Vikrant S., (2019). Optimised scheduling algorithms and techniques in grid computing, international conference on smart innovation ergonomics and applied human factors, 231-244
23. Saeed P. and Reza E., (2009). RASA: A New Grid Task Scheduling Algorithm, international journal of digital content technology and its applications 3 (4), 91-99, 2009.
24. Sardar K. Z., Tahir M., Mazhar A., and Kashif B. (2019): A load balanced task scheduling heuristic for large-scale computing systems.
25. Shipra S., Aggarwal A., Kumar H., and Pradeep K. Y.: G.A. based task scheduling algorithm for efficient utilization of available resources in computational grid, decision science in action, 119-126, 2019
26. Shruti N. P., Chitra P., and Snehal D. (August 2017). Grid Computing Architecture and Benefits; Lecturer at computer department, SSBT’s COET, Bambhori, International Journal of Scientific and Research Publications, Volume 3, Issue 8, 1-4, ISSN 2250-3153.
27. Suraj P., Marcel N. and Felix W., (2018). Efficient fault tolerant through dynamic node replacement, proceedings of the 18th IEEE/ACM international symposium on cluster cloud and grid computer, 163-172
28. Tarun K. G., Sanjoy D. and Nabin G., (2019). Job scheduling in computational grid using a hybrid algorithm based on GA and Particle Swarm Optimization (PSO), international conference on information technology and applied mathematics, 873-885, 2019.
29. Ting Sun, Chuanghai Xiao, and Xiujie Xu (2019). A scheduling algorithm using sub-deadline for workflow applications under budget and deadline constrained, cluster computing 22 (3), 5987-5996, 2019
30. Tracy D.B., Siegel H.J., Noah B., Maheswaran M., Albert I. R., Bin Y., Richard F.F and James P. R.: A comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous computing systems, eighth heterogeneous computing workshop (HCW’99), 15-29, 1999
31. Turendar S., Sandeep K. V., Mohit S. and Raksha P., (2019). An enhanced round-robin based job scheduling algorithm in grid computing, international conference on computer networks and communication technologies, 799-807.
32. Yagoubi B. and Slimani Y., (2007). Task Load Balancing Strategy for Grid Computing, Journal of Computer Science, 3 (3): 186-194.
33. Yong Z., Michael W., Ian F., Jens V., Thomas J., Elizabeth Q. and James D. (2004). Grid Middleware Services for Virtual Data Discovery, Composition and Integration, proceedings of the 2nd Workshop on Middleware for Grid Computing, 57-62.
