
Decoding of NB-LDPC codes over SubfieldsDecoding of NB-LDPC codes over Subfields
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY 4.0

SUBMISSION DATE / POSTED DATE

09-07-2020 / 10-07-2020

CITATION

Wijekoon, V B; Viterbo, Emanuele; Hong, Yi (2020): Decoding of NB-LDPC codes over Subfields. TechRxiv.
Preprint. https://doi.org/10.36227/techrxiv.12628718.v1

DOI

10.36227/techrxiv.12628718.v1

https://www.techrxiv.org
https://dx.doi.org/10.36227/techrxiv.12628718.v1

1

Decoding of NB-LDPC codes over Subfields
V. B. Wijekoon, Emanuele Viterbo, Yi Hong

Monash University, Australia

Abstract—The non-binary low-density parity-check (NB-
LDPC) codes can offer promising performance advantages but
suffer from high decoding complexity. To tackle this challenge, in
this paper, we consider NB-LDPC codes over finite fields as codes
over subfields as a means of reducing decoding complexity. In
particular, our approach is based on a novel method of expanding
a non-binary Tanner graph over a finite field into a graph over
a subfield. This approach offers several decoding strategies for
a single NB-LDPC code, with varying levels of performance-
complexity trade-offs. Simulation results demonstrate that in a
majority of cases, performance loss is minimal when compared
with the complexity gains.

Index Terms—Non-binary LDPC codes, Graph expansion, Iter-
ative decoding

I. INTRODUCTION

Low-density parity-check (LDPC) codes, introduced by Gal-
lager in 1962 [1], have become the error-correcting codes of
choice for many practical applications, such as Ethernet, Wi-
Fi, and digital television, due to their capacity approaching
performance and low-complexity decoding algorithms [2].
Davey and Mckay introduced the non-binary (NB) counterparts
of these codes in 1998 [3], and it was soon realized that NB-
LDPC codes outperform the binary LDPC codes of comparable
length, especially for short-to-moderate code lengths. But these
performance gains are yet to be realized in practice due to the
high complexity of decoding algorithms.

Best performing decoding algorithm for NB-LDPC codes
is the Q-ary sum-product algorithm (QSPA), a generalization
of the sum-product algorithm used with binary LDPC codes
[3]. Complexity of QSPA is of the order O(q2), where q
is the cardinality of the algebraic structure over which the
code is defined. This complexity is too high for most prac-
tical applications, also considering that QSPA requires large
memory resources, since the messages used for decoding
are probability vectors of length q. Fast Fourier transform
based implementation of QSPA (FFT-QSPA) reduces decoding
complexity to O(q log q), but still requires similar levels of
memory resources [4]. Log-domain implementations of QSPA
(LLR-QSPA) have also been considered in the literature [5].

In [5], the authors introduced a simplified version of LLR-
QSPA, referred to as ‘max-log-SPA’, by extending the sim-
plification used in min-sum decoding to NB-LDPC codes
and QSPA. This approach was further developed in [6] by
introducing the ‘Extended Min-Sum’ (EMS) algorithm. Instead
of considering the complete length q vectors at check node
operations, EMS uses the nm most significant values of each
vector, resulting in a complexity order of O(nmq). A different
approach to simplifying operations of QSPA was proposed in
[7], where the ‘Min-max’ algorithm was introduced with the

same complexity order as QSPA, but using only addition and
comparison operations. Efficient hardware implementations
were proposed for both EMS and min-max algorithms in [8]
and [9].

Expanding the parity-check matrix (PCM) of a NB-LDPC
code into a binary one allows devising low-complexity bit-
level decoding strategies for the non-binary code. Such expan-
sion was proposed in [10] and is referred to as the ‘extended
binary representation’. Additionally, a decoding algorithm for
NB-LDPC codes over the binary erasure channel was intro-
duced in [10]. This strategy is adapted to general channels, as
discussed in [11]. In [12], the authors used the binary image
of the non-binary PCM to decode NB-LDPC codes.

While it is possible to construct NB-LDPC codes over many
algebraic structures, they are often defined over finite fields,
particularly those of characteristic 2 , (i.e., F2r) [3]. Given
that a finite field Fpr contains a unique subfield Fpm , for
every m | r [13], in this paper, we consider expanding the
PCM of a NB-LDPC code over Fpr to a matrix over any
subfield Fpm . For codes over F2r , this includes the expansion
into F2, a binary expansion as a special case. We then
propose a general decoding algorithm, usable with any one of
the possible expansions. Since the operations of the decoder
would now be with a smaller size field, significant gains in
complexity is achievable, and simulation results demonstrate
that the performance loss in comparison to QSPA is minimal.
Moreover, using our approach, it is possible to decode the
same code over several different fields, each offering a range
of performance-complexity trade-offs.

The remaining of the paper is organized as follows. Section
II introduces the mathematical concepts used for the expansion,
while Section III provides the expansion along with some
examples. Section IV presents the decoding strategy, whereas
Section V includes simulation results. Section VI analyzes the
complexity and memory requirements of the new decoding
scheme, and Section VII concludes the paper.

II. α-CONNECTED SUBGROUPS

Consider a finite field of characteristic p, Fpr , and one of its
additive subgroups, G. We denote a primitive element of Fpr
with α. It is easy to verify that multiplying all the elements in
G with some αi ∈ Fpr yields another additive subgroup. Then
we have the following definition.

Definition 1. Additive subgroups G1 and G2 of Fpr , where
one can be obtained from the other by multiplying by some
power of α, are called α−connected subgroups.

If subgroups G1 and G2 are α-connected, and so are G2

and G3, then clearly G1 and G3 are also α-connected. This
yields the following denifition.

2

Definition 2. A set of subgroups S = {G1, .., Gn} of Fpr is
an α-connected set if

1) each Gi ∈ S is α-connected with all other Gj ∈ S.
2) Gi ∈ S is α-connected with some G, then G ∈ S.

An α-connected set S can be generated using any Gi ∈
S, simply by multiplying with increasing powers of α. Each
generated subgroup will be added to the set until αi

∗ ·Gi = Gi
for some power i∗. This i∗ gives the cardinality |S| of the set
S. Lemma 1 considers the minimum possible cardinality of an
α-connected set.

Lemma 1. Consider Fpr and let m divide r (i.e., m | r). Then
the smallest possible α-connected set of additive subgroups of
order pr−m has a cardinality of pr−1

pm−1 .

Proof: Let G be an additive subgroup of Fpr of order
|G| = pr−m. The minimum possible cardinality of an α-
connected set is the minimum value i ∈ {1, ..., pr − 2}
satisfying αi ·G = G, denoted by im.

Let Sαim be the set of elements in Fpr generated by αim .
Note that im is the minimum non-zero power of α in Sαim . If
αim ·G = G, then clearly αkim ·G = G, for any αkim ∈ Sαim .
Since we are focused on the minimum, we only consider im,
for which the following relation holds.

im|Sαim | = (pr − 1) (1)

Since we assume αim ·G = G, if g ∈ G, then g ·Sαim ⊂ G.
As G is an additive subgroup, it must contain the additive
identity 0, and 0 · Sαim = {0}. Note that for g1, g2 ∈ G that
are both 6= 0, the sets g1 ·Sαim and g2 ·Sαim would be of the
same size, and they should either be the same set or disjoint.
Then, as the order of G is pr−m, disregarding 0, following
should hold for some value n.

n|Sαim | = (pr−m − 1) (2)

From (1) and (2), we see that |Sαim | is a factor of both
(pr−1) and (pr−m−1). Since (1) shows that im and |Sαim | are
inversely proportional, |Sαim | should be the greatest common
divisor of (pr − 1) and (pr−m − 1). The following relations

(pr − 1) = (pm − 1)

r
m−1∑
i=0

(pm)i

(pr−m − 1) = (pm − 1)

r
m−2∑
i=0

(pm)i

r
m−1∑
i=0

(pm)i = pm

r
m−2∑
i=0

(pm)i + 1

allow us to conclude that gcd(pr − 1, pr−m − 1) = (pm − 1),
and using (1);

im =
pr − 1

pm − 1

Lemma 1 shows that the smallest α-connected set has
cardinality pr−1

pm−1 but it does not reveal how to construct such
a set. It should also be noted that the additive property of the

group G is not used for the proof: only the existence of the
additive identity is used.

Lemma 2 outlines a method to explicitly construct an α-
connected set of subgroups of order pr−m.

Lemma 2. Let G be a subgroup of order pm in H ′ =
{Fpr ,+}, and ψ some surjective homomorphism ψ : H ′ →
G. The kernels of the set of homomorphisms ψi(h

′) =
ψ(α−ih′), for i = {0, 1, ..., pr − 2}, form an α-connected set
of additive subgroups of order pr−m.

Proof: For ψ : H ′ → G, ker(ψ) is an additive subgroup
of order pr−m in Fpr [13]. Since ψi(h

′) = ψ(α−ih′), it is
clear that ker(ψi) = αi ker(ψ). Thus, ker(ψ) and ker(ψi) are
α-connected subgroups for all possible i. Also, for any i1, i2,
ker(ψi1) = αi1−i2 ker(ψi2). Then, the set of kernels S =
{ker(ψ0), ker(ψ1), ..., ker(ψpr−2)}, where possible duplicates
have been removed, satisfy the conditions of Definition 2, and
thus form a α-connected set.

The cardinality of an α-connected set generated as in
Lemma 2 depends on the homomorphism ψ. Therefore, to
construct the smallest α-connected set, one must find a suitable
homomorphism. The homomorphism we use is based on the
representation of Fpr as an extension of the subfield Fpm . The
following Lemma establishes the structure of Fpm in Fpr .

Lemma 3. Let Sβ be the set of elements in Fpr generated by
β = α

pr−1
pm−1 . Then, Sβ ∪ {0}, where 0 is the additive identity

of Fpr , is the subfield Fpm .

Proof: Since m | r, Fpr contains the subfield Fpm . Let us
consider the multiplicative groups K ′ = {Fpr ,×} and K =
{Fpm ,×}. Then K is a subgroup of order (pm−1) of K ′. Note
that both K and K ′ are cyclic. From properties of subgroups of
cyclic groups [13], there should be only one unique subgroup
of a specific order in K ′. The set of elements generated by β,
Sβ , is such a subgroup, of order (pm − 1), and thus K = Sβ .
This allows to conclude that Fpm = Sβ ∪ {0}.

We are interested in the polynomial representation of Fpr as
an extension of Fpm . In such a representation, some αi ∈ Fpr
is represented with a polynomial Eαi(x) over Fpm , of degree
at most (rm − 1). In the case of elements belonging to Fpm
(for βi), the polynomials would be of degree 0. The primitive
polynomial Π(x) for the representation is of degree r

m and,
since Π(x) is irreducible, it must have a non-zero constant
term. Based on this representation, we define a homomorphism
ψ∗ between the additive groups of Fpr and Fpm as follows.

Definition 3. Let H ′ = {Fpr ,+}, and H = {Fpm ,+}. The
homomorphism ψ∗ : H ′ → H is mapping h′ ∈ H ′ to h ∈ H
where the constant term in Eh′(x) is h.

Using homomorphism ψ∗ in the method proposed in Lemma
2 generates an α-connected set of minimum cardinality.

Lemma 4. The set of kernels of homomorphisms ψ∗i (h′) =
ψ∗(α−ih′), for i = {0, 1, ..., pr−2} form an α-connected set of
additive subgroups of order pr−m of the minimum cardinality
pr−1
pm−1 .

3

Proof: Let ψ∗ : H ′ → H , where H ′ = {Fpr ,+} and
H = {Fpm ,+}. Since |H| = pm, ker(ψ∗) is a subgroup of
order pr−m in H ′. Using ψ∗i in Lemma 2, it is clear that
kernels of ψ∗i (h′) = ψ∗(α−ih′) form an α-connected set. The
cardinality of this set is equal to the minimum value of i for
which ker(ψ∗i) = αi ker(ψ∗0) = ker(ψ∗0), which we denote
with im.

Let gj ∈ ker(ψ∗0) and αimgj = γj , j = 1, ..., pr−m. Let
polynomial representations (in the extended form) of αim , gj
and γj be Eαim (x), Egj (x) and Eγj (x), respectively. These
are related by the mod Π(x) polynomial multiplication

Eαim (x)Egj (x) = Π(x)Kj(x) + Eγj (x)

where Kj(x) is some polynomial over Fpm . Since gj ∈
ker(ψ∗0), the constant term in Egj (x) is zero, which makes
the constant term in Eαim (x)Egj (x) also zero. Note that
for γj ∈ ker(ψ∗0), constant term of Eγj (x) should be zero.
As observed earlier, Π(x) has a non-zero constant term, and
therefore, for γj ∈ ker(ψ), Kj(x) should be a polynomial with
a zero constant term. For αim ker(ψ∗0) = ker(ψ∗0), this should
be true for j = 1, .., pr−m.

Polynomial representations of elements in ker(ψ∗0) contains
at least one polynomial of each possible degree, from 0
to r

m − 1. Then, if deg(Eαim (x)) > 0, for at least one
value of j, Eαim (x)Egj (x) would be of degree r

m . Since
Π(x) is also of degree r

m , this requires Kj(x) to be a
non-zero constant for that particular value of j, resulting in
αim ker(ψ∗0) 6= ker(ψ∗0). Therefore, for γj ∈ ker(ψ∗0) for all
j = 1, .., pr−m, deg(Eαim (x)) = 0. In such a case, Kj(x) = 0
for all j. This requires αim ∈ Fpm , and since we require the
minimum, im = pr−1

pm−1 .
Thus, using the homomorphism ψ∗ in Lemma 2, it is

possible to construct an α-connected set of additive subgroups
of order pr−m, that has the minimum cardinality pr−1

pm−1 , whose
existence was proved in Lemma 1.

III. GRAPH EXPANSION

In this section, we present how a graph over Fpr can be
expanded into a larger one over Fpm , where m | r, using the
smallest set of α-connected subgroups of order pr−m in Fpr ,
constructed as detailed in the previous section. We represent
this special α-connected set by Θmfrom here onwards. Basic
mathematical concepts used in the expansion are first briefly
over-viewed in Subsection A, while the expansion is presented
in Subsection B, along with an example.

A. Preliminaries

Consider some surjective homomorphism ψ : H ′ → H ,
where H ′ = {Fpr ,+} and H = {Fpm ,+}. As remarked ear-
lier as well, ker(ψ) is a subgroup of H ′, of order pr−m. Since
the homomorphism is surjective, according to the first isomor-
phism theorem [13], the quotient group Qψ = H ′/ ker(ψ) is
isomorphic to H , i.e., Qψ contains the pm cosets of ker(ψ),
including the trivial coset (ker(ψ) itself). In the isomorphism
between Qψ and H , this trivial coset maps to the identity

element of H (the additive identity of Fpm), and the other
cosets map to the remaining elements of H .

Let Qψ = {C0
ψ, C

1
ψ, ..., C

pm−1
ψ }, where each Cjψ represents

some coset of ker(ψ), with C0
ψ representing the trivial coset.

Cosets contain elements in Fpr , and using the multiplicative
properties of the field, we define a ‘multiplication’ operation
on Qψ as follows.

Definition 4. Operation βQψ , for some β ∈ Fpr , is defined
as βQψ = {βC0

ψ, βC
1
ψ, ..., βC

pm−1
ψ }.

If two subgroups in H ′ are α-connected, then the respective
quotient groups are also related in a similar way, as shown in
the following lemma.

Lemma 5. Let Gψ1 and Gψ2 be two α-connected subgroups
of H ′, with Gψ1

= αkGψ2
. Let Qψ1

= H ′/Gψ1
and Qψ2

=
H ′/Gψ2

be the corresponding quotient groups. Then, αkQψ2

is the same set as Qψ1
.

Proof: Let Qψ1
= {C0

ψ1
, ..., Cp

m−1
ψ1

} and Qψ2
=

{C0
ψ1
, ..., Cp

m−1
ψ1

}. Here the trivial cosets C0
ψj

are the sub-
groups themselves, and all the cosets can be represented using
the respective subgroup and some coset leader term as follows:

Qψ1
= {Gψ1

, Gψ1
+ l1ψ1

, ..., Gψ1
+ lp

m−1
ψ1

}

Qψ2
= {Gψ2

, Gψ2
+ l1ψ2

, ..., Gψ1
+ lp

m−1
ψ2

}

Using the multiplication operation on Qψ2
yields

αkQψ2 = {αkGψ2 , α
kGψ2 + αkl1ψ2

, ..., αkGψ2 + αklp
m−1
ψ2

}

As cosets of any subgroup are mutually exclusive, and due
to the multiplicative properties of the field, any αkGψ2

+αkljψ2

is disjoint with any other. Since Gψ1
= αkGψ2

then

αkQψ2
= {Gψ1

, Gψ1
+ αkl1ψ2

, ..., Gψ1
+ αklp

m−1
ψ2

}

αkQψ2 is a set containing Gψ1 , and its (pm − 1) proper
cosets, albeit the coset leader terms could have changed. Thus,
Qψ1

and αkQψ2
are the same sets. When elements of the

quotient groups are considered in some specific order, then
αkQψ2

will be some permutation of Qψ1
.

The homomorphisms ψ∗i we use in constructing the smallest
α-connected set, Θm, are all surjective. Θm consists of the
kernels of these homomorphisms, and it is possible to construct
a set of quotient groups with those kernels. Let that set be
ΘQ
m = {Qψ∗i ; i = 0, ..., p

r−1
pm−1 − 1}. Since all ψ∗i ’s are

surjective, each Qψ∗i is isomorphic to H , the additive group
of Fpr . Since Θm is α-connected, according to Lemma 5,
multiplying some Qψ∗i ∈ ΘQ

m by some power of α results
in a permutation of some other Qψ∗j ∈ ΘQ

m.
These observations about ΘQ

m provide some insights on how
to decode a code over Fpr over one of its subfields Fpm .
Instead of traditionally used symbol probabilities, we consider
the probabilities of a variable node belonging to each coset
of each quotient group in ΘQ

m. Then, for each variable node,
pr−1
pm−1 probability vectors of length pm are required, which
we refer to as ‘coset probability vectors (CPVs)’. Complexity

4

bottleneck in decoding NB-LDPC codes are the check node
operations [6]-[7], and advantages of our approach become
apparent when the impact on that step is assessed.

Check node operations in decoding NB-LDPC codes consist
of two major sub-steps: permutation and convolution of prob-
ability vectors [4]. In the permutation sub-step, the simpler
one of the two, symbol probability vectors received by the
check node are permuted, where the permutations are defined
by the respective edge weights. Since ΘQ

m is constructed using
the smallest α-connected set Θm, it is clear from Lemma
5 that CPVs will also have to be permuted similarly. Thus,
complexity of the permutation step will not be significantly
affected in the proposed approach.

In order to understand how our approach changes the
convolution sub-step, consider the simple case of a degree
3 check node in a code over Fpr , where the parity-check
equation is v1 + v2 + v3 = 0. A convolution has to be
carried out using the incoming symbol probability vectors of v1
and v2 for computing the outgoing symbol probability vector
of v3, psv3 . Since these vectors are of length r, convolution
will be of complexity order O(p2r). Now assume we have to
compute some i’th CPV of v3, pcv3,i. This computation also
only requires the incoming i’th CPVs of the remaining two
variable nodes. Note that these are of length m, where m | r.
As all quotient groups in ΘQ

m are isomorphic to the additive
group of Fpm , computation of pcv3,i should be the same as
the convolution sub-step at a check node of a code over Fpm .
Thus, complexity is now only of order O(p2m). However, with
|ΘQ
m| = pr−1

pm−1 , that many CPVs will have to be computed,
resulting in an overall complexity of p2m× pr−1

pm−1 ≈ O(pm+r).
Nevertheless, particularly for the cases where m � r, this is
a significant reduction of complexity.

Motivated by the observation that using coset probability
vectors instead of symbol probability vectors can allow faster
decoding of NB-LDPC codes, we will provide a more detailed
analysis of these complexity advantages in Section VI. In the
following subsection, we explain how to expand a graph over
Fpr into one over Fpm so that CPVs can be used in decoding.

B. Graph Expansion
We assume that a Tanner graph of a code over Fpr is to

be expanded into a graph over Fpm , where m | r. The set
of quotient groups, ΘQ

m, will be of cardinality pr−1
pm−1 . Each

Qi ∈ ΘQ
m is isomorphic to {Fpm ,+}, and in decoding, an

associated CPV has to be used. Observations on how CPVs
impact decoding suggest that it is possible to simply replace
each node in the original graph, i.e., the so-called Fpr nodes,
with pr−1

pm−1 Fpm nodes. Each variable node over Fpm would
represent some CPV, and check nodes would calculate their
estimates. How the set of Fpm variable and check nodes of
a single neighboring variable-check node pair of the original
graph are connected will depend on the original edge weight,
as evident from Lemma 5.

Consider a check node and a variable node in the original
graph, connected with an edge of weight αk ∈ Fpr . According
to Lemma 5, Qi ∈ ΘQ

m becomes a permutation of some Qj ∈

ΘQ
m when multiplied with αk. Then, in the expansion, the Fpm

variable node representing the i’th CPV should be connected
to the Fpm check node calculating estimates of the j’th CPV.
As Qi turns into a permutation of Qj , CPVs transmitted along
this edge is permuted as well. Thus, this is a 2-step process,
where first the set of CPVs are permuted, and then each CPV is
permuted within itself. From the point-of-view of expansion,
it is equivalent to connecting the set of Fpm variable nodes
with the set of check nodes using edges labeled with elements
from Fpm .

As an example, consider parity-check equation ρ from a
code over F24 , where α denotes a primitive of the field.

ρ⇒ α4v1 + αv2 = 0 (3)

Fig. 1 presents the initial expansion for ρ. The shaded graph
is the original Tanner graph over F24 , and the graph beneath
is the expansion over F22 . In both graphs, circles denote
variable nodes and squares denote check nodes. Note that ω
is a primitive of F22 and that edges in the expanded graph are
labeled with F22 elements.

α
4

α

1

1 1

1

ω

ω

ω

ω

ω
2

ω
2

Fig. 1: Initial Expansion

Since each Qi ∈ ΘQ
m contains different groupings of the

same set of symbols, the associated CPV contains some
information about all other CPVs. Unfortunately, initial graph
expansion is unable to capture these dependencies. In order to
clearly visualize the relationships between CPVs, we propose
an alternate representation of Fpr symbols below.

As each Qi ∈ ΘQ
m is isomorphic to H = {Fpm ,+}, every

coset in Qi maps to some element of H . We define the value
of some γ ∈ Fpr with respect to some Qi ∈ ΘQ

m as the
element of H that maps to the coset containing γ. Since
|ΘQ
m| =

pr−1
pm−1 , using values defined with respect to each Qi,

γ can be uniquely represented as a vector of pr−1
pm−1 elements

of H . For example, consider the case of F24 and F22 . Table I
presents the 24−1

22−1 = 5 quotient groups in ΘQ
24−2 , where each

coset is listed under the H22 = {F22 ,+} element we map
to it in the isomorphism between its quotient group and H22 .
Alternative representations of F24 elements as length 5 vectors
over F22 are listed in Table II. Note that a position i in these
vectors map to quotient group Qi as given in Table I.

Note that the sixteen vectors in Table II form a 2-
dimensional space over F22 . In channel coding terms, they are
the 16 codewords of a (2, 5) linear code over F22 . Thus, values
of some γ ∈ F24 with respect to 2 Qi’s in ΘQ

24−2 are sufficient

5

0 1 ω ω2

Q0 0, α, α6, α11 1, α4, α12, α13 α2, α3, α5, α9 α7, α8, α10, α14

Q1 0, 1, α5, α10 α, α2, α4, α8 α6, α7, α9, α13 α3, α11, α12, α14

Q2 0, α4, α9, α14 1, α, α3, α7 α5, α6, α8, α12 α2, α10, α11, α13

Q3 0, α2, α7, α12 1, α8, α9, α11 α, α5, α13, α14 α3, α4, α6, α10

Q4 0, α3, α8, α13 1, α2, α6, α14 α4, α5, α7, α11 α, α9, α10, α12

TABLE I: Quotient Groups in ΘQ
24−2

0 : 00000 α3 : ωω21ω20 α7 : ω2ω10ω α11 : 0ω2ω21ω
1 : 10111 α4 : 110ω2ω α8 : ω21ω10 α12 : 1ω2ω0ω2

α : 011ωω2 α5 : ω0ωωω α9 : ωω01ω2 α13 : 1ωω2ω0
α2 : ω1ω201 α6 : 0ωωω21 α10 : ω20ω2ω2ω2 α14 : ω2ω20ω1

TABLE II: Alternate Representations of Symbols in F24

to derive the remaining three. The dependancies could easily
be captured through the parity-check equations of the code.

In the general case of Fpr and Fpm , alternate representation
vectors would form a r

m dimensional vector space, or in other
words a (p

r−1
pm−1 ,

r
m) code, over Fpm . The pr−1

pm−1 Fpm nodes
of every Fpr variable node would form this code, and since
each such instance only involves the set of Fpm nodes of a
single Fpr variable node, we refer to it as the ‘local code’.
We propose using the parity-check matrix (PCM) of the local
code, pHr,mL , to succinctly represent the dependancies between
CPVs. Note that codes with parameters of the form (p

r−1
pm−1 ,

r
m)

are from the family of non-binary simplex codes. Since dual
of such a code is the (p

r−1
pm−1 ,

pr−1
pm−1 −

r
m) Hamming code

over Fpm [14], parity-check equations would be Hamming
codewords, and the PCM would contain pr−1

pm−1 −
r
m of those.

As an example, the ‘local’ PCM for the case of F24 and F22 ,
2H4,2

L , which consists of 3 codewords of the (3, 5) Hamming
code over F22 , is given below.

2H4,2
L =

 1 1 1 0 0
1 ω 0 1 0
1 ω2 0 0 1

 (4)

From the perspective of the expansion, parity-check equa-
tions due to the local code are a set of additional check nodes,
which have to be added to the expanded graph. Since the set of
Fpm nodes of every Fpr variable node forms one instance of
the local code, pr−1

pm−1 −
r
m additional check nodes representing

the local PCM have to be added per variable node of the
original graph. Adding such a large number of check nodes
might seem to increase complexity, but it should be noted
that these new nodes are of low degrees. Since the dual is
a Hamming code, it should always be possible to find a set of
degree 3 parity-check equations for the local PCM. With each
new check node only being connected with a subset of the
pr−1
pm−1 nodes of one Fpr variable node, they will be referred
to as ‘local check nodes’ here onward. Check nodes resulting
from expanding Fpr nodes will be called ‘regular check nodes’.

Performance with any form of iterative message passing
decoding is dependant on features of the graph used, and

it is well-known that short cycles in the graph negatively
impact decoding. While with binary codes, where the edge
labels are all 1, effects of cycles depend only on their length,
edge labels themselves have an impact in the non-binary case
[15]. Particularly troublesome there are the cycles created
by sub-matrices in the PCM that are not of full-rank [15]-
[16]. Decoding performance of the expanded graph may be
improved if the subgraph induced by the local PCM is free
of these undesirable structures as much as possible. Although
one could use a canonical generator matrix of a Hamming
code as the local PCM, the graph induced may not entirely
suit iterative decoding. In such a scenario, row operations can
be carried out on the matrix until a ‘better’ one is obtained.
This is particularly important when the expansion results in
a binary graph (p = 2 and m = 1), since then any short
cycle is detrimental for decoding. We have explored this case
separately in [17], where the expansion was derived in an ad-
hoc way, different from the more general approach presented
here. In the non-binary case (m > 1), it might not be possible
to remove all short cycles, and one might have to settle with
a local PCM only free of short cycles not satisfying the ‘full-
rank condition’, such as 2H4,2

L given in (4). The decoding
scheme we propose in the next section employs a technique
to further reduce the possible negative effects of cycles among
local check nodes.

Local check nodes enable us to adequately capture the
various dependancies between CPVs, and adding those to
the expanded graph wraps up the expansion. Different steps
necessary for expanding a graph over Fpr into one over Fpm ,
where m | r, can be summarized as follows.

1) Obtain the smallest set of α-connected subgroups Θm,
using the homomorphism in Definition 3, and following
the steps outlined in Lemma 4. Use that to derive the
set of quotient groups ΘQ

m.
2) Map cosets of each Qi ∈ ΘQ

m with elements of
H = {Fpm ,+}. Use these isomorphisms to obtain the
alternate representation vectors of Fpr elements.

3) Find a PCM more suited to iterative decoding for the
code formed by alternate representation vectors.

4) Expand each node in the original graph into pr−1
pm−1 Fpm

nodes. Connect the new variable and check nodes and
label the edges, based on edge labels in the original
graph.

5) Add local check nodes to represent the local PCM found
in step 3.

Fig. 2 presents the complete expansion for the earlier ex-
ample of parity-check equation ρ, given by (3). The F24 graph
is shaded grey, and the expansion to F22 is depicted in white.
Circles represent variable nodes, squares regular check nodes,
and hexagons local check nodes. Note that in the interest of
a clearer figure, edge labels are only shown for the instances
where they are 6= 1.

IV. DECODING SCHEME

An iterative message passing decoding algorithm that uti-
lizes the Tanner graph representation of NB-LDPC codes can
be used with the expanded graph. Advantage herein is the

6

α
4

α

ω

ω

ω

ω

ω
2

ω
2

ω
ω

ω
2

ω
2

Fig. 2: Final Expansion

expansion being over a smaller field than the original graph,
leading to a lower decoding complexity. Note that a few
different options are available for expanding a graph over Fpr ,
one for each factor of r. Each of these would offer a different
complexity-performance trade-off, which may suit different
applications.

Any generic decoding algorithm can be applied
straightforwardly to decode the expanded graph with
some simple modifications. In the following, we present these
modifications, and explain why they are required. Note that
the explanation is from the perspective of a soft decision
decoding (SDD) algorithm, such as QSPA [3], and its many
variations [4]-[8], but can be also applied to other algorithms
such as majority-logic decoding [18].

1) Computing Channel Estimates: Any SDD algorithm has
to be initialized with probability estimates based on channel
observations. In QSPA and its variants, for initializing the
decoder, variable nodes compute channel estimates that are
of the form of symbol probability vectors. In the proposed
expansion, each variable node represents some CPV. Thus,
when using SDD algorithms on expanded graphs, it is required
to compute initial estimates for CPVs.

Note that each coset contains a subset of elements in Fpr .
This makes computing initial estimates of CPVs quite straight-
forward, i.e., probability of a (Fpr) variable node belonging
to a particular coset of some subgroup can be calculated by
simply summing up probabilities of those symbols that belong
to the coset. Equation (5) presents this computation, where psn
is the symbol probability vector of original variable node n,
pcn,i is the i’th CPV of that node, Cji is the j’th coset in i’th
quotient group, and ajk’s are Fpr elements in that coset.

pcn,i(j) =
∑
ajk∈C

j
i

psn(ajk) j = 0, 1, . . . , (pm − 1) (5)

In most practical applications, decoders operate on either log
or log-likelihood ratio (LLR) domain, due to hardware stability
concerns [19]. In such a case, pcn,i has to be converted to the

desired domain, for example

Lcn,i(j) = log
pcn,i(j)

pcn,i(0)
j = 0, 1, . . . , (pm − 1) (6)

For one Fpr variable node, pr−1
pm−1 Fpm nodes that represent

CPVs have to be initialized as in (5). Only a single symbol
probability vector, corresponding to the single Fpr element
transmitted through the channel, will be used for all those
computations. This implies that channel observation is only
sufficient to initialize r

m Fpm symbols. However, in this
approach, there are pr−1

pm−1 nodes that are initialized. Thus,
channel observations are duplicated and dependencies are
created between initial estimates of CPVs. Any error in channel
estimates gets multiplied, and propagates through the graph,
leading to performance losses.

Recall the fact that the set of Fpm nodes of a single Fpr
variable node are ‘connected’ via the local code. Local code
is an (p

r−1
pm−1 ,

r
m) code, and therefore, r

m out of the pr−1
pm−1

Fpm nodes can be thought of as representing information
symbols, and others parity symbols. We propose first picking
a suitable set of r

m nodes to represent information symbols,
and initializing only these as in (5) and (6). For rest of the
nodes, those that represent parity symbols of the local code,
an additional scaling factor δ (0 ≤ δ ≤ 1) will be used in
(6). Our simulation results show that this modification helps
in reducing propagation of errors in channel information, but
δ has to be optimized per code. Equation (7) presents this
modification.

Lcn,i(j) = δ. log
pcn,i(j)

pcn,i(0)
j = 0, 1, . . . , (pm − 1) (7)

After initialization, operations of the decoder would be
similar to those of a decoder for a code over Fpm except
for a couple of minor modifications that are explained in the
following.

2) Distinguishing Local Checks from Regular Checks: Ex-
panded graphs contain two different types of check nodes;
local check nodes that represent dependencies between CPVs,
and regular ones, resulting from expanding check nodes in the
original graph. Here, local check nodes are only connected
with Fpm nodes of a single Fpr variable node, whereas a
regular check node will only be connected with one such.
Thus, local check nodes do not represent relationships between
different variables of the original code, and regular ones
represent only those. This means that estimates from the two
types of check nodes are based on two separate linear codes,
and treating them similarly may not be the best approach to
take.

As discussed in Section III B, local PCM may contain some
short cycles, and these would be present in the expanded graph
among the local check nodes. Estimates computed by a check
node involved in one such cycle in two different iterations
will be correlated with each other to some degree. This can
make the estimates ‘over-confident’ of a variable node taking
a particular value.

7

Taking into consideration the need to distinguish between
estimates of local and regular check nodes, and also since local
check nodes could be involved in short cycles, we propose
using another scaling factor ψ (0<ψ<1) with estimates of
local check nodes. In the literature, similar approaches have
been taken to mitigate effects of short cycles with satisfactory
results, for example in [20].

Combining probability estimates with this modification, at
some variable node i of the expanded graph during k’th
decoding iteration, is given by (8). There, Li is the initial
estimate for node i, R(k)

i is the combined estimate, and r(k)j−→i
is the estimate sent from j’th check node to i’th variable node,
in k’th iteration. Li, R

(k)
i and r(k)j−→i are all length pm vectors

of log or LLR values. Nr
i and N l

i are, respectively, sets of
regular and local check nodes in the neighborhood of node i.

R
(k)
i = Li +

∑
j∈Nr

i

r
(k)
j−→i + ψ.

∑
j∈N l

i

r
(k)
j−→i (8)

Similar to scaling factor δ used in initialization, ψ also has
to be optimized per code.

3) Testing for Convergence: In iterative decoding of NB-
LDPC codes, a tentative decision is taken by every variable
node in each iteration to test whether the decoder has con-
verged to a valid codeword. If so, then the check-sum at every
check node should be zero, and the decoding process can
be terminated. Same approach may be taken when decoding
on expanded graphs. Tentative decision at each variable node
would be the Fpm element most likely for the node, and
check-sums would be computed at all check nodes, including
local ones. Output of the decoder would be a vector of Fpm
elements that’s pr−1

pm−1 times longer than the original code
length. Original codeword can be recovered by mapping each
set of pr−1

pm−1 Fpm elements to a single Fpr element, via the
‘local’ code, as discussed in Section III B.

Even though we replace each Fpr node with pr−1
pm−1 Fpm

nodes, just r
m Fpm elements are sufficient to represent a

single Fpr element, which is also evident from the local
code. This observation leads to a slightly easier approach to
checking convergence. Rather than deciding on all Fpm nodes
of a single Fpr variable node, we propose only using the r

m
nodes selected as the ‘information symbols’ of the local code.
Most likely Fpm elements of these would map to a single
Fpr element, once more through the local code. Check-sums
of original parity-check equations can then be computed with
these Fpr elements. Note that even though now check-sums
are computed over the larger field, computations involve only
simple field arithmetic, and also there will be a significant
reduction in the number of computations required when
compared with the straight-forward approach.

With these three modifications, any iterative soft-decoding
algorithm [3]-[8] proposed for NB-LDPC codes may be used
with expanded graphs. This allows a large number of decoding
strategies. For applications where decoding latency is the
primary concern, a simplification of QSPA, such as min-max

decoding [7], can be used with an expanded graph, thereby
achieving the complexity gains of both the simplification
and the expansion. Section V presents some results from
simulations where a few of these different strategies were
evaluated.

V. SIMULATION RESULTS

In this section, we compare error-correcting performance of
decoding schemes discussed in Section IV against some ex-
isting decoding algorithms for NB-LDPC codes. We consider
different expansions of the same Tanner graph (different m for
a fixed graph), and use QSPA [3], and one of its well-known
simplifications, min-max decoding [7], with each expansion.
QSPA and min-max decoding are also used on the original
graph, along with max-log-SP algorithm [5], which is a special
case of the extended min-sum (EMS) algorithm [6], where nm
and nc are set to the maximum possible values of the size of
the field and check-node degree, respectively. All algorithms
were implemented in LLR domain [5], and simulations were
done over the BI-AWGN channel, with maximum decoding
iterations of 50 for all. Algorithms over expanded graphs were
used with the modifications proposed in Section IV, and scaling
factors δ and ψ were optimized through simulations. In the
following, we use the algorithm along with the field size to
refer to different decoding setups, for example, we let Fpr -
QSPA denote QSPA on a graph over Fpr , and etc.

3.6 3.8 4 4.2 4.4 4.6 4.8

E
b
/N

0
(dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

F
E

R

F
2

6-qspa

F
2

6-minmax

F
2

6-maxlogsp

F
2

3-qspa

F
2

3-minmax

F
2

2-qspa

F
2

2-minmax

Fig. 3: FER Perf. with a (1998,1776) code over GF (26) (C1)

Fig. 3 shows FER performance of decoding schemes with
C1, a rate 0.89 code over F26 , of 1998 symbols in length. Code
was generated through random re-labeling of a regular binary
LDPC code of column weight 4, obtained from [21].

In Fig. 3, we observe that decoding algorithms over ex-
panded graphs perform close to the best known decoder,
QSPA over the original graph. In fact, QSPA over the F23

expansion performs within 0.2dB of F26 -QSPA, at a FER of
10−4. When using the F22 expansion, this widens slightly
to 0.3dB. While min-max decoding over the original graph
has a gap of only about 0.08dB with F26 -QSPA, it should
be noted that decoding is still over F26 , and thus, it is more
complex than QSPA over expanded graphs, as made evident in

8

Section VI. Interestingly, the max-log-SP algorithm (which is
simpler than QSPA), is outperformed by all proposed decoding
schemes, even though it operates in the original field. Max-
log-SP shows a gap of about 0.55dB with F26 -QSPA, at a
FER of 10−3. We also evaluate performance of min-max
decoding over expanded graphs, which is quite satisfactory. In
the case of F23 expansion, min-max only has a gap of 0.06dB
with F23 -QSPA, while the gap between F22 -QSPA and F22 -
min-max is around 0.1dB. These two decoding setups, which
have complexity advantages of expansion and simplification,
manage to outperform the max-log-SP algorithm over the
original graph. Optimum values for scaling factors (δ, ψ) were
found to be (0.75, 0.25) for F23 -QSPA and F22 -QSPA, (0, 0.3)
for F23 -min-max, and (0, 0.4) for F22 -min-max.

2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

E
b
/N

0
(dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

F
E

R

F
2

4-qspa

F
2

4-minmax

F
2

4-maxlogsp

F
2

2-qspa

F
2

2-minmax

spa

minsum

Fig. 4: FER Perf. with a (1000,861) code over GF (24) (C2)

Fig. 4 illustrates the FER performance of proposed schemes
with a rate 0.861 code over F24 , of 1000 symbols in length
(C2). The C2 was generated by re-labeling a regular binary
graph of column weight 3, constructed with the progressive
edge growth algorithm [22]. For this code, we consider expan-
sions over F22 and F2. Expansion over F2 is of special interest,
since it results in a binary graph. When using this binary graph,
we replace QSPA and min-max decoding with SPA and its
well-known simplification, min-sum algorithm (MSA). Unique
features and advantages offered by the binary expansion have
been explored separately in [17].

Fig. 4 shows that the performance losses of the proposed
schemes are quite small in this case as well. Gap between
using QSPA on the original graph and its F22 expansion
is less than 0.3dB at a FER of 10−4. Loss of replacing
QSPA by its simplification min-max decoding is about 0.1dB
for both original and expanded graphs. With C2, max-log-
SP algorithm seems to perform a bit better than with C1.
Here, its performance is very similar to that of using min-max
algorithm on F22 expansion, with a gap of close to 0.4dB
with F24 -QSPA, at a FER of 10−4. When compared with
QSPA on the original graph, using SPA on the binary graph
results in a 0.5dB loss in performance. Simplifying SPA to
MSA only loses a further 0.05dB. Although a 0.5dB loss
seems significant, as explored in [17], decoding on a binary

expansion provides unique advantages in decoding complexity
and hardware implementations. Optimum values for scaling
factors (δ, ψ) here were (0.5, 0.25) for F22 -QSPA, SPA, and
MSA, and (0, 0.3) for F22 -min-max.

Simulation results show that decoding algorithms imple-
mented on proposed graph expansions are capable of per-
forming quite close to those using the original graph. For
any algorithm, performance gap of decoding on the expanded
graph and using the original widens when the size of the field
used for the expansion decreases. With a few different graph
expansions possible, many decoding options become available
for any given code. As discussed in the next Section, all these
decoding schemes provide attractive complexity gains, with
different levels of performance-complexity trade-offs.

VI. DECODING COMPLEXITY

In the following, we analyze the complexities of some
decoding schemes on expanded graphs. We consider imple-
menting the two popular versions of QSPA, LLR-QSPA [5] and
FFT-QSPA [4], and also min-max decoding [7] on proposed
expansions and compare them in terms of complexity with
the same algorithms implemented on the original graph. Since
NB-LDPC codes are most often defined over finite fields of
characteristic 2 [3], a code over F2r , where r has a factor m, is
used in the complexity analysis. Complexities of the two major
steps in iterative decoding, check node operations and variable
node operations, are compared separately. For the comparison,
we consider operations at a single node of each type during
one iteration. Since the proposed expansions replace each node
over F2r with Ef = 2r−1

2m−1 nodes, complexity of all those is the
total complexity for the decoding schemes on expanded graphs.
As explained in Section III B, these graphs also have the
additional feature of local check nodes. Since Lf = 2r−1

2m−1−
r
m

such nodes are included per variable node of the original graph,
their complexities are included with that of variable nodes.

At hardware level, apart from the number of operations, the
type of operation also affects the complexity. It is well-known
that operations such as multiplications are more complex
than comparisons [19]. Therefore, we consider the number
of operations of a few different types; comparisons (Comp),
additions/subtractions (Add), multiplications/divisions (Mult)
and table look-ups (LUT). Note that max∗ operation in LLR-
QSPA can be performed with one comparison, two additions,
and one table look-up [5], and that transformation between
log and probability domain, required in FFT-QSPA, can be
carried out with look-up tables. It has also been assumed
that the forward-backward approach [7] is used in check node
operations of the three algorithms. Further, cost of permuting
probability vectors has been disregarded, since its impact on
total complexity is negligible.

Table III lists complexities of check node operations in each
decoding setup, while Table IV considers variable node opera-
tions. Average degrees of a check node and a variable node in
the original graph are denoted with dc and dv , while dl denotes
the average degree of a local check node. As discussed in
Section III B, local PCM is formed with Hamming codewords,
and therefore it should always be possible to set dl = 3. Due

9

to these new check nodes, average variable node degree would
slightly increase in the expanded graphs, and we denote this
new value with d̃v , given by

d̃v = dv +
Lf × dl
Ef

(9)

Substituting the values for Ef , Lf and dv yields

d̃v = dv + 3− 3× r(2m − 1)

m(2r − 1)
(10)

Note that degrees of regular check nodes in the expanded
graphs remain dc. When presenting complexities of decoding
schemes on these graphs, we let Ef , Lf and d̃v denote the
number of new nodes per original node, number of local check
nodes, and average variable node degree, respectively.

TABLE III: Check Node Complexity

Algorithm Check Node Operations
Comp Add Mult LUT

F2r (3dc − 4)× (3dc − 4)× 0 (3dc − 4)×
-LLR-QSPA 2r(2r − 1) 2r(3.2r − 2) 2r(2r − 1)

F2m Ef (3dc − 4)× Ef (3dc − 4)× 0 Ef (3dc − 4)×
-LLR-QSPA 2m(2m − 1) 2m(3.2m − 2) 2m(2m − 1)

F2r 0 2dc× (2dc − 1)× 2dc×
-FFT-QSPA 2rr 2r 2r

F2m 0 Ef .2dc× Ef (2dc − 1)× Ef .2dc×
-FFT-QSPA 2mm 2m 2m

F2r (3dc − 4)× 0 0 0
-Min-Max 2r(2.2r − 1)

F2m Ef (3dc − 4)× 0 0 0
-Min-Max 2m(2.2m − 1)

From Table III, it can be seen that complexity gains of
proposed schemes at check node operations depend on the
decoding algorithm being used. For both LLR-QSPA and min-
max decoding, using an expanded graph instead of the original
results in a significant reduction in complexity, while for
FFT-QSPA, the gains are modest. In the case of LLR-QSPA,
using the original graph requires approximately 3dc × 22r

comparisons, additions, and table look-ups, which results in
an overall complexity of O(22r). However, with the expansion
over F2m , there are only approximately 3dc×2r+m operations
of each type, which reduces overall complexity to O(2r+m).
This is a significant gain, especially in the cases with a large r,
and we feel that, as a trade-off, the small performance losses
observed in Section V are justifiable. Using an expanded graph
can reduce the complexity order from O(22r) to O(2r+m)
in check node operations of min-max decoding as well. It
should be noted that although they are of the same complexity
order, min-max decoding is simpler than LLR-QSPA, since
only comparisons are required. Gains of the proposed scheme
reduce in the case of FFT-QSPA. Here, the number of mul-
tiplications and table look-ups required are almost the same
(approximately 2dc× 2r) when using the original graph or an
expanded one. There is a slight reduction in the number of
additions though, from approximately 2dc×2rr to 2dc×2rm.
Thus, the overall complexity of FFT-QSPA on an expanded
graph is O(2rm), slightly lower than O(2rr) on the original
graph.

TABLE IV: Variable Node Complexity

Algorithm Variable Node Operations
Comp Add Mult LUT

F2r 2r − 1 2dv× 0 0
-LLR-QSPA 2r

F2m (r/m)× Ef .2d̃v× 0 0
-LLR-QSPA (2m − 1) 2m

5Lf× 5Lf× 0 5Lf×
Local Checks 2m(2m − 1) 2m(3.2m − 2) 2m(2m − 1)

F2r 2r − 1 2dv× 0 0
-FFT-QSPA 2r

F2m (r/m)× Ef .2d̃v× 0 0
-FFT-QSPA (2m − 1) 2m

0 6Lf× 5Lf× 6Lf×
Local Checks 2mm 2m 2m

F2r (dv + 1)× 3dv× 0 0
-Min-Max 2r 2r

F2m (Ef .d̃v + r/m) Ef .3d̃v× 0 0
-Min-Max ×2m 2m

5Lf× 0 0 0
Local Checks 2m(2.2m − 1)

When considering variable node operations of decoding
schemes on expanded graphs, we include the complexity of
the Lf local check nodes added for each original variable
node. Note that complexity of one such node can be derived
by substituting dl = 3 as the node degree, and 2m as the field
size, in the expressions for the respective algorithm in Table
III. Due to this additional cost, complexity at variable nodes
are higher in proposed schemes. However, this complexity
increase is not sufficiently high to completely offset the gain
obtained at check node operations, especially for LLR-QSPA
and min-max decoding. As Table IV shows, complexity orders
of these algorithms change from O(2r) on the original graph to
O(2r+m) on an expanded one, while in Table III, this change
is from O(22r) to O(2r+m) at check node operations. Hence,
the overall gain is still significant for LLR-QSPA and min-
max decoding, especially for larger values of r. In the case of
FFT-QSPA, the complexity increase is comparatively smaller,
from O(2r) to O(2rm). Since its gain at check nodes was also
quite modest, the overall complexity gain would be minimal.

Tables III and IV demonstrate that decoding on expanded
graphs is advantageous in terms of asymptotic complexity,
while the actual performance gains would depend on parame-
ters of the code used, such as field sizes, code length, rate, and
average node degrees. In Table V, we consider complexities of
some decoding schemes used in Section V with C1, a code over
F26 with the codeword length 1998 and code rate 0.89. In this
case, the original graph is over F26 , and expansions over F23

and F22 are used for decoding. Table V presents complexities
of using LLR-QSPA, FFT-QSPA, and min-max decoding on
all three graphs, in terms of number of operations of each
type per iteration. For decoding schemes over expansions, we
also present the number of operations required as a percentage
of the requirement when using the same algorithm with the
original graph.

In Table V, we observe that using LLR-QSPA on expanded
graphs offers exceptional complexity gains for C1. Less than
20% of the operations for the original graph are required when

10

TABLE V: Number of Operations per Iteration with C1

Algorithm Number of Operations (×105)
Comp Add Mult LUT

F26 -LLR-QSPA 932.17 2817.73 - 930.91
F23 -LLR-QSPA 155.8 507.01 - 155.52

(≈ 17%) (≈ 18%) (≈ 17%)
F22 -LLR-QSPA 79.94 287.93 - 79.76

(≈ 8%) (≈ 10%) (≈ 8%)

F26 -FFT-QSPA 1.26 71.61 10.09 10.23
F23 -FFT-QSPA 0.28 72.89 16.94 18.22

(≈ 22%) (≈ 101%) (≈ 168%) (≈ 178%)
F22 -FFT-QSPA 0.18 66.17 20.43 22.06

(≈ 14%) (≈ 92%) (≈ 202%) (≈ 215%)

F26 -Min-Max 1882.99 15.35 - -
F23 -Min-Max 342.7 27.33 - -

(≈ 18%) (≈ 178%)
F22 -Min-Max 197.38 33.09 - -

(≈ 10%) (≈ 215%)

using the F23 expansion. This reduces further with the F22

expansion, to less than 10%. These gains correspond to speed-
ups of more than 5 times in the F23 case, and more than
10 times in the F22 case. Considering that the performance
losses, as shown in Section V, are only 0.2dB and 0.3dB,
the complexity gains are very attractive. With FFT-QSPA
though, using expansions are not particularly advantageous.
Only gain of F23 expansion, when compared with using the
algorithm on the original F26 graph, is in the number of
comparisons required. Both decoding setups use a similar
number of additions, while the setup on the expanded graph
needs significantly more multiplications and table look-ups.
This is due to the operations of local check nodes, which are
absent in the original graph. With F22 expansion, the number
of comparisons reduces further, and the number of additions
used is also slightly lesser than that of the F26 case. Since F22

expansion has more local check nodes than the F23 one, the
number of multiplications and table look-ups have increased
significantly. Thus, for C1, using FFT-QSPA with any of the
two expansions is more complex than implementing on the
original graph. The case of min-max decoding is very similar
to that of LLR-QSPA; complexity gains are significant, and
they are higher when the size of the field used is smaller.
Due to local check node operations, the number of additions
in proposed schemes is higher than in the original algorithm.
Nevertheless, since the reduction in the number of comparisons
is much higher in magnitude, min-max decoding on expanded
graphs is significantly less complex.

Majority of existing algorithms are of complexity order
O(22r) for a code over F2r , and implementing those algo-
rithms on graph expansions results in significant complexity
gains with minimal performance losses. For algorithms whose
complexity order is not polynomial in field size, such as FFT-
QSPA, the new strategy may not be advantageous. But as [19]
pointed out, out of the two variants of QSPA, LLR-QSPA
is more suitable for hardware implementations, due to better
numerical stability of LLR domain operations. Therefore, the
strategy proposed in this paper could be applied to reduce
decoding complexity in most practical applications that adopt
NB-LDPC codes. In particular, our proposed strategy enables

to decode a code defined over a large field using a graph over
a much smaller field, while providing a good performance and
complexity tradeoff, leading to a practical solution to decoding
NB-LDPC codes.

VII. CONCLUSIONS

In this paper, we proposed a new method to expand a
Tanner graph of a NB-LDPC code over Fpr into a graph over
Fpm , where m is a factor of r. Most decoding algorithms
proposed for NB-LDPC codes can be adapted to use these
expanded graphs with simple modifications. This offers a
number of different decoding options for any given code,
with a different performance-complexity trade-off. Simulation
results show that, in general, decoding on expanded graphs
provide significant complexity gains, while performance losses
are minimal. It may be interesting to note that the proposed
expansion may find applications beyond decoding NB-LDPC
codes.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes”, IRE Transactions on
Information Theory, vol. IT-8, pp. 21-28, Jan. 1962

[2] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices”, IEEE Transactions on Information Theory, vol. 46, no. 2, pp.
399-431, Mar. 1999

[3] M. C. Davey, and D. J. C. Mackay, “Low-density parity check codes
over GF (q)”, IEEE Communication Letters, vol. 2, no. 6, pp. 165-167,
June 1998

[4] L. Barnault, and D. Declerq, “Fast decoding algorithm for LDPC over
GF (2q)”, Proceedings of IEEE Information Theory Workshop, Paris,
France, Apr. 2003

[5] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decod-
ing of LDPC codes over GF (q)”, Proceedings of IEEE International
Conference on Communications, Paris, France, Jun. 2004

[6] D. Declercq, and M. Fossorier, “Decoding algorithms for nonbinary
LDPC codes over GF (q)”, IEEE Transactions on Communications, vol.
55, no. 4, pp. 633-643, Apr. 2007

[7] V. Savin, “Min-Max decoding for non binary LDPC codes”, Proceedings
of IEEE International Symposium on Information Theory, Toronto,
Canada, July 2008

[8] E. Li, D. Declercq, and K. Gunnam, “Trellis-based extended min-sum
algorithm for non-binary LDPC codes and its hardware structure”, IEEE
Transactions on Communications, vol. 61, no. 7, pp. 2600-2611, July
2013

[9] J. O. Lacruz, F. Garcia-Herrero, D. Declercq, and J. Valls, “Simplified
trellis minmax decoder architecture for nonbinary low-density parity-
check codes”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 23, no. 9, pp. 1783-1792, Sep. 2015

[10] V. Savin, “Binary linear-time erasure decoding for non-binary LDPC
codes”, Proceedings of IEEE Information Theory Workshop, Taormina,
Italy, Oct. 2009

[11] Y. Yu, W. Chen, J. Li, X. Ma, and B. Bai, “Generalized binary
representation for the nonbinary LDPC code with decoder design”, IEEE
Transactions on Communications, vol. 62, no. 9, pp. 3070-3083, Sep.
2014

[12] M. Zhang, K. Cai, Q. Huang, and S. Yuan, “On bit-level decoding of
nonbinary LDPC codes”, IEEE Transactions on Communications, vol.
66, no. 9, pp. 3736-3748, Sep. 2018

[13] J. J. Rothman, “Advanced modern algebra”, 1st ed. Prentice Hall, 2003,
pp. 116-218

[14] S. Lin, and D. J. Costello, “Error control coding”, Upper Saddle River,
NJ, USA: Pearson Education, 2004

11

[15] B. Amiri, J. Kliewer, and L. Dolecek, “Analysis and enumeration
of absorbing sets for non-binary graph-based codes”, IEEE Trans. on
Comm., vol. 62, no. 2, pp. 398-409, Feb. 2014

[16] S. Cho, K. Cheun, and K. Yang, “A message-passing algorithm for
counting short cycles in nonbinary LDPC codes”, Proc. of IEEE ISIT,
Vail, CO, USA, June 2018

[17] V. B. Wijekoon, Emanuele Viterbo, Yi Hong, R. Micheloni, and A.
Marelli, “A Novel Graph Expansion and a Decoding Algorithm for NB-
LDPC Codes”, IEEE Trans. on Comm., vol. 68, no. 3, pp. 1358 - 1369,
Mar. 2020

[18] Chao-Yu Chen, Qin Huang, Chi-chao Chao, and Shu Lin, ”Two low-
complexity reliability-based message-passing algorithms for decoding
non-binary LDPC codes”, IEEE Transactions on Communications, vol.
58, no. 11, Nov. 2010

[19] C. Spagnol, E.M. Popovici, and W.P. Marnane , “Hardware implemen-
tation of GF (2m) LDPC decoders”, IEEE Trans. Circuits Syst. I, vol.
56, no. 12, pp. 2609-2620, Mar. 2009

[20] J. Jiang, and K. R. Narayanan, “Iterative soft-input soft-output decoding
of Reed-Solomon codes by adapting the parity-check matrix”, IEEE
Trans. on Inf. Th., vol. 52, no. 8, pp. 3746-3756, Aug. 2006

[21] D. J. C. Mackay, “Encyclopedia of Sparse Graph Codes”, [Online].
Available: http://www.inference.org.uk/mackay/codes/data.html.

[22] X.-Y. Hu, E. Eleftheriou, and D.M. Arnold, “Regular and irregular
progressive edge-growth tanner graphs”, IEEE Trans. on Inf. Th., vol.
51, no. 1, pp. 386-398, Jan. 2005

