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Consistency and Asymptotic Normality of the
Maximum Likelihood Estimator in GaGLM

Benchao Wang, Hong Gu, and Pan Qin

Abstract
The Gamma distribution based generalized linear model (GaGLM) is a kind of statistical model feasible for

the positive value of a non-stationary stochastic system, in which the location and the scale are regressed by the
corresponding explanatory variables. This paper theoretically investigates the asymptotic properties for maximum
likelihood estimates (MLE) of GaGLM, which can benefit the further interval estimates, hypothesis tests and stochastic
control design. First, the score function and the Fisher information matrix for GaGLM are derived. Then, the Lyapunov
condition is derived to ensure the asymptotic normality of the score function normalized by the Fisher information
matrix. Based on this condition, the asymptotic normality of the MLE of GaGLM is proven. Finally, a numerical
example is given to testify the asymptotic properties obtained in the research. The numerical results indicate that the
MLE of GaGLM converged to a normal distribution as the number of sample measurements increased.

Index Terms
Asymptotic Theory, Gamma distribution, Gamma regression, Generalized linear model, maximum likelihood esti-

mator.

I. INTRODUCTION

THE generalized linear model (GLM) expands the general linear model so that a dependent variable is linearly
related to the factors and covariates via a specified link function [1]. Moreover, the model allows the dependent

variable to keep the attribute of actually applied data, such as integer literal, positive and asymmetric, not belong to
a normal distribution. It covers widely used statistical models, such as logistic regression models for binary distributed
responses, Poisson regression models for count data and Gamma regression models for positive real data.

As a family of moderate skewness and continuous phenomena distributions, the Gamma distribution is a useful model
in many areas of statistics when the normal distribution is not appropriate. In the Gamma distribution-based approach,
the system output Z can be assumed to be a subject Z ∼Ga(α,β)，where Ga(α,β) is a Gamma distribution with the
shape parameter α and the rate parameter β governing its probability density function shape. This distribution was
first introduced [2] and subsequently studied in detail [3]. In some special cases, the Gamma distribution reduces to
the exponential distribution as α= 1 and β = 1/λ, the Erlang distribution as α= n and the χ2 distribution as α= n/2
and β = 1/2.

Because of the flexibility of the relationship to many other distributions, the Gamma distribution can be a suitable
alternative for modelling such kinds of the positive-valued dependent variable. The Gamma distribution-based models
have been applied in many areas, such as medical science [4], [5], biology [6], economics [7], [8], forest science [9] and
education [10]. Considering the ubiquitous heteroscedasticity of actually applied data, as a member of the well-known
GLM, the Gamma distribution based generalized linear model (GaGLM) is more widely used when α and β (or µ and
k ) are both dependent variables. However, it should be noted that the GaGLM does not belong to the exponential
family of distributions based GLM. Therefore, it is necessary to establish a baseable asymptotic theory for GaGLM.

This research investigates the theoretical aspects of maximum likelihood estimator (MLE) for GaGLM. Because
GaGLM is a model with two equations being respectively parameterized for α and β, the estimation procedure could
be relatively complex. In statistics, several expectation-maximization (EM) type algorithms have been developed for
the Gamma distribution inference, where β was assumed to be a latent variable [11]. However, those algorithms were
developed by fixing β as constant. If β parameterized as regression models, the EM algorithm would be extremely
computationally involved. Thus, rather than using the EM algorithm, we directly solve MLE for GaGLM by using
the Fisher scoring algorithm [12]. To this end, the score function and the Fisher information matrix are derived for
GaGLM. Furthermore, we obtain the condition to assure the positive definiteness of the Fisher information matrix.

The consistency and the asymptotic normality explaining the efficiency of the estimators have been widely investi-
gated in system identification and statistics [13], [14]. The consistency of MLE for GaGLM can be proved by using the
same approach for GLM [14]. To verify the asymptotic normality of MLE, the asymptotic normality of the normalized
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score function is necessary. GLM was developed for the exponential family, whose moment generating functions are
exponential functions of the sufficient statistics. Based on the uniform moment generating function, the asymptotic
normality of the normalized score function was proved for GLM.

To investigate asymptotic properties of MLE for parameters occurring in GaGLM, we need prove the consistency
and asymptotic normality of MLE by central limit theorems. Compared with commonly used Lindeberg condition,
Lyapunov condition is stronger in proving asymptotic properties. First, we derived the score functions normalized by
the Fisher information matrix for the Lyapunov condition, which ensure the asymptotic normality of the normalized
score functions [15]. Based on this result, the asymptotic normality of MLE for GaGLM is finally proved. These results
can dramatically facilitate the hypothesis testing, the construction of interval estimates, and stochastic control design
for the non-stationary stochastic system [16], [17].

The rest of this paper is organized as follows. The concept of GaGLM and maximum likelihood estimation are
introduced in Section II. Section III gives the assumptions of asymptotic properties of the MLE in GaGLM, including
the proof of related lemmas and theorems. Results of a simulation study are reported in Section IV. Concluding
comments are presented in Section V.

II. Problem Statement
In this section, we briefly review GaGLM, including its structure and numerical method of MLE.

A. Model and estimation
Suppose that we observe realizations of a positive real random variable Z, and we believe that Z has a specified

positive continuous distribution.
Let Dn = {(Zi,xxxi,yyyi), i= 1, ...,n} be independent random vectors defined on the probability space (Ω,F ,P). For each

i= 1, ...,n, the response variable Zi is generated from the following process:

Zi ∼Ga(αi,βi), (1)

where Ga(αi,βi) denotes the Gamma distribution with positive shape parameter αi and rate parameter βi. The
probability density function is

f(Zi|αi,βi) =


βαi

i

Γ(αi)
zαi−1

i e−βizi , when z > 0

0, when z ≤ 0,

where Γ(·) is the Gamma function. The mean and variance of the random variable Zi are given by

E(Zi) = αi

βi
(2)

and

V ar(Zi) = αi

β2
i

. (3)

Then, we can develop GaGLM by regressing explainatory variable ωωωi = (xxxT
i ,yyy

T
i )T with xxxi ∈ Rp to αi and yyyi ∈ Rq to

βi as follows: {
αi = exp(xxxT

i aaa)
βi = exp(yyyT

i bbb),
(4)

where aaa = (a1, ...,ap) and bbb = (b1, ..., bq) denote the regression parameter vectors for αi and βi respectively, and •T

denotes the transpose of •. Further, θθθ= (aaaT, bbbT)T is any parameter in an admissible set Kθθθ ⊂Rp+q. For the observations
z1,z2, . . . ,zn, the log-likelihood l(θθθ) derived from the GaGLM can be written as

ln(θθθ) =
n∑

i=1
f(Zi|ωωωi,θθθ)

=
n∑

i=1

(
αi logβi − logΓ(αi)+αi logzi − logzi −βizi

)
=

N∑
i=1

(
exxxT

i aaayyyT
i bbb− logΓ(exxxT

i aaa)+ exxxT
i aaa logzi − logzi −eyyyT

i bbbzi

)
(5)
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Then, θθθ can be estimated by

θ̂θθ = argmax ln(θθθ). (6)

According to (5), the first three order derivative of ln(θθθ) with respect to θθθ is continuous and finite for all θθθ ∈Kθθθ. This
condition ensures the existence of the Taylor expansion, the finite variance of the derivatives of ln(θθθ). Thus, MLE can
be obtained by the scoring method [19], in which the score function can be obtained by

sssn(θθθ) = ∂ln(θθθ)
∂θθθ

=
(
sssT

aaa(θθθ),sssT
bbb (θθθ)

)T

=
[
∂ln(θθθ)
∂aaaT

∂ln(θθθ)
∂bbbT

]T
,

(7)

and the Fisher information matrix can be obtained by

FFFn(θθθ) = E

[
∂ln(θθθ)
∂θθθ

∂ln(θθθ)
∂θθθT

]

=

E
(
∂ln(θθθ)
∂aaa

∂ln(θθθ)
∂aaaT

)
E

(
∂ln(θθθ)
∂aaa

∂ln(θθθ)
∂bbbT

)
E

(
∂ln(θθθ)
∂bbb

∂ln(θθθ)
∂aaaT

)
E

(
∂ln(θθθ)
∂bbb

∂ln(θθθ)
∂bbbT

)
 .

(8)

With the score function and the Fisher information matrix, (6) can be iteratively solved by using the generalized
Newton-Raphson (NR) method, so-called Fisher’s scoring (FS) algorithm [19] as the following

θ̂θθ(new) = θ̂θθ(old) +FFF−1
n (θ̂θθ(old))sssn(θ̂θθ(old)). (9)

In what follows, the score function and the Fisher information matrix are derived for GaGLM. Furthermore, the
condition that ensures the positive definiteness of FFFn(θθθ) obtained in Corollary 1.

In statistics, the asymptotic properties, mainly including the consistency and asymptotic normality, are often used
to evaluate the efficiency of estimators [20]. Another important role of sssn(θθθ) and FFFn(θθθ) is to prove the asymptotic
properties. If the first three order derivates of ln(θθθ) with respect of θθθ exist, the consistency, i.e. θ̂θθ converging in
probability to the true coefficients θθθ0, can be proved under a generalized framework [21]. However, the asymptotic
converged of the covariance matrix for GaGLM cannot be proved by using the generalized approach in [21]. To tackle
this problem, we first prove the asymptotic normality of the normalized score function FFF−T/2

n (θθθ)sssn(θθθ) motivated by [14].
Note that [14] dealt with the exponential family-based models, whose moment generating function is the exponential
function of the sufficient statistics. [14] used such moment generating function to prove the asymptotic normality of
the normalized score function. However, there is not an asymptotic theory of MLE to Gamma distribution, where the
approach in [14] cannot be extended to the GaGLM. Furthermore, the elements constructing FFF−T/2

n (θθθ)sssn(θθθ) cannot
be expected to be identically distributed. Thus, we investigate the Lyapunov condition and the Taylor expansion, the
asymptotic normality of MLE of GaGLM can be proved. In what follows, we first derive the score function and the
Fisher information matrix of MLE of GaGLM.

III. Score function and Fisher information matrix for GaGLM
For deriving the score function and the Fisher information matrix, the log-likelihood function of θθθ is formulated from

(6). The score function (7) can be represented as follows.
Lemma 1: (Component-wise score function for GaGLM). The two components of the score function (7) are obtained

by

sssaaa(θθθ) = ∂ln(θθθ)
∂aaa

= (s1(θθθ), . . . ,sp(θθθ))T

=
n∑

i=1
(logβi −ψ0(αi)+ logzi)

=
n∑

i=1
(αi logβi −ψ0(αi)αi +αi logzi)xxxi

(10)
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and

sssbbb(θθθ) = ∂ln(θθθ)
∂bbb

=
n∑

i=1
(αi −βizi)yyyi, (11)

where ψ0(α) = Γ′(α)
Γ(α) is digamma function, which can be seen in Equation (19).

Proof Lemma 1: The following derivatives can be directly derived from (4).


∂αi

∂aaa
= αixxxi

∂βi

∂bbb
= βiyyyi.

(12)

Then, derivatives of the log-likelihood function (5) are straightforwardly obtained.
■

The Fisher information matrix will be derived via the Hessian matrix follows

Hn(θθθ) =


∂ln(θθθ)
∂aaa

∂ln(θθθ)
∂aaaT

∂ln(θθθ)
∂aaa

∂ln(θθθ)
∂bbbT

∂ln(θθθ)
∂bbb

∂ln(θθθ)
∂aaaT

∂ln(θθθ)
∂bbb

∂ln(θθθ)
∂bbbT


:=

[
hhhp,p(θθθ) hhhp,q(θθθ)
hhhq,p(θθθ) hhhq,q(θθθ)

]
,

(13)

with entries:

hhhp,p(θθθ) = ∂2ln(θ)
∂aaa∂aaaT

=
n∑

i=1
αi [logβi +logzi −ψ0(αi)

−αiψ1(αi)]xxxixxx
T
i

(14)

where ψ1(α) = ψ′(α) is trigamma function, which can be seen in Equation (20).

hhhq,q(θθθ) = ∂2ln(θ)
∂bbb∂bbbT

= −
n∑

i=1
βiziyyyiyyy

T
i

(15)

and

hhhp,q(θθθ) = hhhT
q,p(θθθ) = ∂2ln(θ)

∂aaa∂bbbT

=
n∑

i=1
αixxxiyyy

T
i

(16)

In order to derive the Fisher information matrix and prove asymptotic normality, the following Lemmas 2 and 3 are
necessary.

Lemma 2: If Z ∼Ga(α,β) then

E(logZ) = ψ0(α)− logβ (17)

and

E(logZ)k ≤ C(α,β,k), k = 1,2, ...,n (18)

where C is positive constant depending on α, β and k, and k > 0 is any finite positive integer.
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Proof Lemma 2: Before the proof of this lemma, we should recall the Euler’s gamma function Γ(α) and digamma
function ψ0(α) for α > 0 defined as

ψ0(α) = Γ′(α)
Γ(α)

, with Γ(α) =
∫ ∞

0
uα−1e−u du. (19)

For basic properties of these functions see [22]. Polygamma functions ψn, such as trigamma, tetragamma and
pentagamma functions when n= 1,2,3, are defined to be n-order derivatives of ψ0 function, that is,

ψn(α) = ψ
(n)
0 (α), n= 1,2, ... (20)

The following integral and series representations are valid for z > 0 and n= 1,2,3, ...:

(−1)n−1ψn(α) =
∫ ∞

0

tne−αt

1−e−t
dt

= n!
∞∑

k=0

1
(α+k)n+1 (α > 0),

(21)

which are monotonically increasing and continuous function in α > 0 [23]. Then, We can get Γ(k)(α)
Γ(α) by polygamma

functions with k = 1,2, ...,n. When n= 1, we can get
ψ1(α) = ψ′

0(α)

=
(

Γ′(α)
Γ(α)

)′

= Γ′′(α)
Γ(α)

−
(

Γ′(α)
Γ(α)

)2

= Γ′′(α)
Γ(α)

−ψ2
0(α),

then
Γ′′(α)
Γ(α)

= ψ1(α)+ψ2
0(α). (22)

When n= 2, we can get
ψ2(α) = ψ′

1(α)

=
(

Γ′′(α)
Γ(α)

)′
− (ψ2

0(α))′

= Γ′′′(α)
Γ(α)

− Γ′′(α)Γ′(α)
Γ2(α)

−2ψ0(α)ψ′(α)

= Γ′′′(α)
Γ(α)

−
(
ψ1(α)+ψ2

0(α)
)
ψ0(α)−2ψ0(α)ψ1(α)

= Γ′′′(α)
Γ(α)

−ψ3
0(α)−3ψ0(α)ψ1(α).

In the following,
Γ′′′(α)
Γ(α)

= ψ2(α)+ψ3
0(α)+3ψ0(α)ψ1(α) (23)

Continuous derivative of (19) function as (22) and (23), we can get Γ(k)(α)
Γ(α) function.

Γ(k)(α)
Γ(α)

= fkΓ (ψ0(α),ψ1(α),ψ2(α), ...,ψk−1(α)) , (24)

where fkΓ (ψ0(α),ψ1(α),ψ2(α), ...,ψk−1(α)) is a finite j-order polynomial combination function of the ψi(α) functions
with i < k and j ≤ k.

Let Z ∼Ga(α,β), we have
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∫ ∞

0

1
Γ(α)

βαzα−1e−βzdz = 1. (25)

Multiply at each side of equation (25) by Γ(α), we can get

Γ(α) =
∫ ∞

0
βαzα−1e−βzdz. (26)

Then, take the k-order derivative with respect to α of both sides, that

Γ(k)(α) =
k∑

i=0
Ci

k

∫ ∞

0
βαzα−1e−βz logk−iβ logi zdz. (27)

Divided by Γ(α) at both sides of (27), we obtain

Γ(k)(α)
Γ(α)

=
k∑

i=0
Ci

k

∫ ∞

0

1
Γ(α)

βαzα−1e−βz logk−iβ logi zdz

=
k∑

i=0
Ci

k logk−iβE(logZ)i.

(28)

For k = 1,

ψ0(α) =
∫ ∞

0

1
Γ(α)

βα logβzα−1e−βzdz+
∫ ∞

0

1
Γ(α)

βαzα−1 logze−βzdz

= logβ+E(logZ)
(29)

then

E(logZ) = ψ0(α)− logβ. (30)

Let fk(•) denote finite j-order polynomial of logβ by j ≤ k and linear combination of E(logZ)i with i= 1,2, ...,k−1
function. Combining (24) and (26), we can get

E(logZ)k = Γ(k)(α)
Γ(α)

+fk

(
logβ,E(logZ),E(logZ)2, ...,E(logZ)k−1)

= fk

(
logβ,E(logZ),E(logZ)2, ...,E(logZ)k−1)

+fkΓ (ψ0(α),ψ1(α),ψ2(α), ...,ψk−1(α))
≤ C(α,β,k)

(31)

■
Lemma 3: If Z ∼Ga(α,β), the kth moment of Z is limited as

EZk ≤ C(α,β,k), k = 1,2, ...,n (32)

where C is positive constant depending on α, β and k, and k > 0 is any finite positive integer.
Proof Lemma 3:

EZk =
∫ ∞

0

1
Γ(α)

βαzk+α−1e−βzdz

=
∫ ∞

0

Γ(k+α)
Γ(α)

β−k

Γ(k+α)
βk+αzk+α−1e−βzdz

= Γ(k+α)β−k

Γ(α)

∫ ∞

0

1
Γ(k+α)

βk+αzk+α−1e−βzdz

= Γ(k+α)β−k

Γ(α)
≤ C(α,β,k)

(33)

■
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Theorem 1: (Fisher information matrix for GaGLM). The components of the Fisher information matrix are obtained
as follows:

E

(
∂ln(θθθ)
∂aaa

∂ln(θθθ)
∂aaaT

)
=

n∑
i=1

(αi logβi −ψ0(αi)αi +αi logzi)xxxixxx
T
i (34)

E

(
∂ln(θθθ)
∂bbb

∂ln(θθθ)
∂bbbT

)
=

n∑
i=1

αiyyyiyyy
T
i (35)

E

(
∂ln(θθθ)
∂aaa

∂ln(θθθ)
∂bbbT

)
= −

n∑
i=1

αixxxiyyy
T
i (36)

Proof Theorem 1: Under the assumptions of mild general regularity, we have FFFn(θθθ) = −EHn(θθθ) by [24], and
FFFn(θθθ) is positive semi-definite matrix [25]. Thus, using Lemmas 1, 2, equations (8) and (13), the Fisher information
matrix can be straightforward computed as follows

FFFn(θθθ) = −EHn(θθθ)

= −
[
Ehhhp,p(θθθ) Ehhhp,q(θθθ)
Ehhhq,p(θθθ) Ehhhq,q(θθθ)

]
:=

[
fffp,p(θθθ) fffp,q(θθθ)
fffq,p(θθθ) fffq,q(θθθ)

]
.

According to (17) in lemma 2, they are expressed respectively as follows

fffp,p = −E [hhhp,p(θθθ)]

= −E
[ n∑

i=1
αi

(
logβi +logzi −ψ0(αi)−αiψ1(αi)

)
xxxixxx

T
i

]

=
n∑

i=1
α2

iψ1(αi)xxxixxx
T
i ,

(37)

fffq,q = −E [hhhq,q(θθθ)]

= −E
n∑

i=1
βiziyyyiyyy

T
i

=
n∑

i=1
αiyyyiyyy

T
i

(38)

and
fffp,q(θθθ) = fffT

q,p(θθθ) = −E [hhhp,q(θθθ)]

= −E
n∑

i=1
αixxxiyyy

T
i

= −
n∑

i=1
αixxxiyyy

T
i .

(39)

Then, we can get

FFFn(θθθ) =
n∑

i=1

[
α2

iψ1(αi) −αi

−αi αi

][
xxxixxx

T
i xxxiyyy

T
i

yyyixxx
T
i yyyiyyy

T
i

]

=
n∑

i=1
αi

[
αiψ1(αi) −1

−1 1

][
xxxi

yyyi

][
xxxT

i yyyT
i

]
.

(40)

■
Corollary 1: (Definiteness of Fisher information matrix for GaGLM). If

∑n
i=1ωωωiωωω

T
i is of full rank, with ωωωi =

(xxxT
i ,yyy

T
i )T denoted in Section II, the Fisher information matrix FFFn(θθθ) is positive-definite.
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Proof Corollary 1: To prove the positive character of the Fisher information matrix, we need derive the range of
αψ1(α). From the equation (21) as n= 1, we can get following inequality

ψ1(α) =
∞∑

k=0

1
(α+k)2

>

∞∑
k=0

1
(α+k)(α+k+1)

=
∞∑

k=0

(
1

α+k
− 1
α+k+1

)
= 1
α

− 1
α+1

+ 1
α+1

− 1
α+2

+ 1
α+2

− ...

= 1
α
.

(41)

Then, we can get

αi

∣∣∣∣αiψ1(αi) −1
−1 1

∣∣∣∣ = αi(αiψ1(αi)−1)> 0. (42)

If
∑n

i=1ωωωiωωω
T
i is of full rank, the Fisher information matrix FFFn(θθθ) is positive-definite.

■

IV. Asymptotic theory for the maximum likelihood estimator in GaGLM
Under the mild assumptions, the asymptotic properties of the MLE was proved in GLM for canonical link functions

[14]. These asymptotic conditions can be applied to prove similar results for GaGLM as well as noncanonical.
To normalize the score function, we introduce the Cholesky square root matrix for positive definite matrix FFF , such

that FFF 1/2(FFF 1/2)T = FFF . We set FFF 1/2 denotes the unique lower triangular matrix with positive diagonal elements. For
convenience, set FFFT/2 := (FFF 1/2)T, FFF−1/2 := (FFF 1/2)−1 and FFF−T/2 := (FFFT/2)−1. For convenience, we drop the argument
θθθ0 in sssn(θθθ0), sssni(θθθ0), FFFn(θθθ0) Eθθθ0 etc. and write sssn, sssni, FFFn, E etc. Ci for i = 1,2, ... will further denote constants,
with or without subindexes. The same C’s represent different constants in different formula.

Let ∥·∥ denote the spectral norm of square matrices. The spectral norm of a real-valued matrix FFF is given by

∥FFF∥ =
(
λmax(FFFFFFT)

)1/2

= sup
∥uuu∥2=1

∥FFFuuu∥2 ,
(43)

where ∥·∥2 denotes the L2− norm of vectors. The maximal (minimal) eigenvalue of a square matrix FFF will be further
denoted by λmax(FFF ) (λmin(FFF )). For ε > 0, a neighborhood of the unknown true parameter θθθ0 can denote by

Nn(ε) =
{
θθθ :

∥∥∥FFFT/2
n · (θθθ−θθθ0)

∥∥∥ ≤ ε
}
. (44)

In this paper, let’s make the following assumptions.
(A1)

λmin(FFFn) ≥ n

C
∀ n≥ 1, (45)

where C is a positive constant.

(A2) {xxxn,n≥ 1} ⊂Kx,{yyyn,n≥ 1} ⊂Ky, where Kx ⊂ Rp and Ky ⊂ Rq are compact sets.

(A3) Kθθθ ⊂ Rp+q is an open set, and θθθ0 is an interior point of the set Kθθθ.

Furthermore, Assumption (A1) means that λmin(FFFn) and n are the same order infinity, which is used to prove
Lemmas 4 and 5. Assumption (A2) implies what we deal with are compact regressors. If θθθ lies on the boundary of
parameter space Kθθθ, the statements of Theorem 2 do not valid anymore.

Based on the assumptions above, we need to prove two preliminary Lemmas 4 and 5 for asymptotic properties of
MLE θ̂θθ first.
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Lemma 4: Under the assumptions (A1)–(A3), there is

FFF−T/2
n sssn

D−→NP (000, IIIp+q) as n→ ∞, (46)

where NP (000, IIIp+q) is a (p+ q)-dimensional normal distribution with mean vector 000 and covariance matrix IIIp+q.
Proof Lemma 4: Derived from Cramer-Wald [20], we only need to prove that a linear combination uuuTFFF−1/2

n sssn

converges in distribution to N(0,uuuTuuu) for any vector uuu ∈ Rp+q(uuu ̸= 000). Without loss of generality, we set ∥uuu∥ = 1.
Then, let

sssn(θθθ) =
(
sssT

aaa(θθθ),sssT
bbb (θθθ)

)T

= (s1(θθθ), . . . ,sp(θθθ),sp+1(θθθ), . . . ,sp+q(θθθ))T ,
(47)

where

sr(θθθ) := ∂ln(θθθ)
∂ar

=
n∑

i=1
sr,i(θθθ)

with

sr,i(θθθ) = (αi logβi −ψ0(αi)αi +αi logzi)xir (48)

for r = 1, . . . ,p, and ψ0(·) is digamma function (seen in Equation (19)).

sp+r(θθθ) := ∂ln(θθθ)
∂br

=
n∑

i=1
sp+r,i(θθθ)

with

sp+r,i(θθθ) = (αi −βizi)yir (49)

for r = 1, . . . , q.
Now observe that sssn can be written as a sum of independent random vectors, namely

sssn =
n∑

i=1
sssni, (50)

where sssni = (s1,i, ...,sp,i,sp+1,i, ...,sp+q,i)T with sr,i := sr,i(θθθ0) defined in (48) and (49) for r = 1,2, ...,p+ q and i =
1, ...,n, respectively. Further, define independent random variables ξin by ξin := uuuTFFF−1/2

n sssni. Since E(ξin) = 0 and
V ar(

∑n
i=1 ξin) = 1, it is enough to show that the Lyapunov condition is satisfied, i.e.

Ls :=
n∑

i=1
E|ξin|s n→∞−−−−→ 0, ∃ s > 2. (51)

Let s= 3 (see p. 393, e.g., Hoffmann [26]). Noticing that
∥∥∥FFF−1/2

n

∥∥∥2
= 1/λmin(FFF ), it follows from (A1) that

L3 ≤
n∑

i=1
E

(∥∥∥uuuT
∥∥∥3 ∥∥∥FFF−1/2

n

∥∥∥3
∥sssni∥3

)

≤ C

n3/2

n∑
i=1

E ∥sssni∥3

≤ C√
n

max
i=1,...,n

E ∥sssni∥3 .

(52)

Using an extension of the cr-inequality given by

E

∣∣∣∣∣
n∑

i=1
ζi

∣∣∣∣∣
k

≤ nk−1
n∑

i=1
E |ζi|k (k > 1,k ∈ R), (53)
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to n arbitrary random variables ζ1, ..., ζn (see p.58, e.g., Petrov [27]) yields that

E ∥sssni∥3 ≤ (p+ q)2 (
E|s1,i|3 +E|s2,i|3 + ...+E|sp+q,i|3

)
≤ C

(
E|s1,i|3 +E|s2,i|3 + ...+E|sp+q,i|3

)
.

(54)

Thus, it remains to establish that maxi=1,...,nE|sp,i| is uniformly bounded in n for r= 1, ...,p+q. This will be shown
for case r = 1, ...,p and r = p+1, ...,p+ q. The remaining cases can be treated similarly. Without loss of generality, set
r = p and r = p+ q respectively. Using Lemma 2 and formula (53), we have

max
i=1,...,n

E|sp,i|3

= max
i=1,...,n

E
∣∣xip (αi logβi −ψ0(αi)αi +αi logZi)

∣∣3

= max
i=1,...,n

E
(

|xip|3
∣∣αi logβi −ψ0(αi)αi +αi logZi

∣∣3
)

≤ C max
xxx∈Kx,yyy∈Ky

∥xxx∥3
[
E

∣∣∣exp(xxxTaaa)yyyTbbb
∣∣∣3

+E
∣∣∣ψ0(exp(xxxTaaa))exp(xxxTaaa)

∣∣∣3
+E

∣∣∣exp(xxxTaaa) logZi

∣∣∣3
]

≤ C1(θθθ0)+C2(θθθ0) max
xxx∈Kx,yyy∈Ky

E |logZi|3

≤ C1(θθθ0)+C2(θθθ0) max
xxx∈Kx,yyy∈Ky

√
E(logZi)6

≤ C3(θθθ0),

(55)

where Zi ∼Ga(αi,βi) for i= 1, ...,n and Z ∼Ga(exp(xxxTaaa),exp(yyyTbbb)), and

max
i=1,...,n

E|sp+q,i|3

= max
i=1,...,n

E (yiq(αi −βiZi))

≤ max
i=1,...,n

E
(
|yiq|3 · |αi −βiZi|3

)
≤ max

xxx∈Kx,yyy∈Ky

∥yyy∥3E|exp(xxxT
i aaa)− exp(yyyT

i bbb)Zi|3

≤ C max
xxx∈Kx,yyy∈Ky

∥yyy∥3
(
E|exp(xxxT

i aaa)|3 +E|exp(yyyT
i bbb)Zi|3

)
≤ C1(θθθ0)+C2(θθθ0) max

xxx∈Kx,yyy∈Ky

EY 3
i

≤ C3(θθθ0).

(56)

We can get

L3
n→∞−−−−→ 0, (57)

then

FFF−T/2
n sssn

D−→NP (000, IIIp+q) (58)

■
Lemma 5: Under the assumptions (A1)–(A3)

max
θ∈Nn(ε)

∥VVV n(θθθ)− IIIp+q∥ P−→ 0, ∀ ε > 0, (59)

where VVV n(θθθ) := FFF−1/2
n HHHn(θθθ)FFF−T/2

n for n= 1,2, ...
Proof Lemma 5: We have a.s.

∥VVV n(θθθ)− IIIp+q∥ =
∥∥∥FFF−1/2

n (HHHn(θθθ)−FFFn)FFF−T/2
n

∥∥∥
≤ 1
λmin(FFFn)

∥HHHn(θθθ)−FFFn∥

≤ C

n
∥HHHn(θθθ)−FFFn∥

(60)

Thus, conditions
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max
θ∈Nn(ε)

∥∥∥∥ 1
n

(HHHn(θθθ)−EHHHn(θθθ))
∥∥∥∥ p−→ 0 (61)

and

max
θ∈Nn(ε)

∥∥∥∥ 1
n

(EHHHn(θθθ)−FFFn)
∥∥∥∥ p−→ 0 (62)

imply (59).
To prove (61), it is sufficient to establish that the (j,k)-element of the random matrix (HHHn(θθθ)−EHHHn(θθθ))/n converges

to zero in probability, i.e.

max
θ∈Nn(ε)

∣∣∣∣hj,k(θθθ)−Ehj,k(θθθ)
n

∣∣∣∣ p−→ 0 (63)

There are three different types of entries (14), (15) and (16) in the Hessian matrix. We will show the convergence
of formula (63) in the cases of 1 ≤ j,k ≤ p. It is similar to treat the remaining cases. In order to avoid generality, let
j = p and k = p, then

max
θ∈Nn(ε)

1
n

|hp,p(θθθ)−Ehp,p(θθθ)| p−→ 0. (64)

We have the following bounds:

max
θ∈Nn(ε)

1
n

|hp,p(θθθ)−Ehp,p(θθθ)|

= max
θ∈Nn(ε)

1
n

∣∣∣∣∣
n∑

i=1
xipxipe

xxxT
i aaa(log(Zi)−E log(Zi))

∣∣∣∣∣
≤ max

θ∈Nn(ε)
max

xxx∈Kx,yyy∈Ky

C

n∑
i=1

∣∣∣∣ log(Zi)−E log(Zi)
n

∣∣∣∣
= max

θ∈Nn(ε)
max

xxx∈Kx,yyy∈Ky

CGn

(65)

From the law of large numbers and standard arguments, we can get Gn → 0 in probability as n→ ∞. It remains to
show, we will show

max
θ∈Nn(ε)

∣∣∣∣ 1
n

(fp,p(θθθ)−fp,p(θθθ0))
∣∣∣∣

= max
θ∈Nn(ε)

∣∣∣∣∣ 1
n

n∑
i=1

xipxip

(
e2xxxT

i aaaψ1(exxxT
i aaa)−e2xxxT

i aaa0ψ1(exxxT
i aaa0)

)∣∣∣∣∣
≤ max

θ∈Nn(ε)

1
n

n∑
i=1

|xipxip| ·
∣∣∣e2xxxT

i aaaψ1(exxxT
i aaa)−e2xxxT

i aaa0ψ1(exxxT
i aaa0)

∣∣∣
≤ C

n

n∑
i=1

|xipxip| max
θ∈Nn(ε)

max
xxx∈Kx,yyy∈Ky

∣∣∣e2xxxTaaaψ1(exxxTaaa)−e2xxxTaaa0ψ1(exxxTaaa0)
∣∣∣

≤ C1 max
θ∈Nn(ε)

max
xxx∈Kx,yyy∈Ky

∣∣∣e2xxxTaaaψ1(exxxTaaa)−e2xxxTaaa0ψ1(exxxTaaa0)
∣∣∣

=: CG2n

(66)

As the continuity in θθθ of the function maxxxx∈Kx,yyy∈Ky

∣∣∣e2xxxTaaaψ1(exxxTaaa)−e2xxxTaaa0ψ1(exxxTaaa0)
∣∣∣ with value zero at θθθ = θθθ0

yield that G2n converges to 0 in probability as n→ ∞
■

Theorem 2: Under the assumptions (A1)–(A3), the asymptotic normality of θ̂θθ can be obtained as the following

FFFT/2
n · (θ̂θθ−θθθ0) D−→NP (000, IIIp+q) (67)
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Proof Theorem 2: With the mean value theorem, we have

sssn(θ̂θθ−θθθ0) = FFFn(θθθ0 + τ(θ̂θθ−θθθ0)) · (θ̂θθ−θθθ0) (68)

for 0< τ < 1 and sn(θ̂θθ) = 0. By pre-multiplying FFFT/2
n and integrating with respect to τ on [0,1], we have

FFF−1/2
n sssn =

[∫ 1

0
VVV n(θθθ0 + τ(θ̂θθ−θθθ0))dτ

]
·FFFT/2

n (θ̂θθ−θθθ0) (69)

Meanwhile, Lemma 5 implies that ∫ 1

0
VVV n(θθθ0 + τ(θ̂θθ−θθθ0))dτ p−→ IIIp+q (70)

By using Lemma 4 and the continuous mapping theorem [28], the asymptotic normality of θ̂θθ can be prove.
■

V. Simulation study
In this section, we will provide some simulation experiments to illustrate our asymptotic theory and stability results.

A. Fisher’s scoring method
The FS method is an efficient iterative algorithm for attempting to find the roots of a function sssn(θθθ) by choosing a

starting value θ̂θθ(0). The method for the score function is finding an iterative solution to the likelihood equations. As
the modification of the NR method, the FS algorithm is an iterative method for finding the roots of a differentiable
function that generates a sequence of estimates which usually come increasingly close to the optimal solution. The
iteration is

θ̂θθ(j+1) = θ̂θθ(j) +FFF−1
n (θ̂θθ(j))sssn(θ̂θθ(j)), (71)

which is the jth iteration of the FS algorithm based on the observed Fisher information (OFI) matrix for estimating
the parameters in the GaGLM.

B. Results for Asymptotic theory
The numerical simulation based on Theorem 2 was conducted for the verification of the asymptotic properties of MLE

of GaGLM. To this end, the coefficients of GaGLM were estimated from various data sets independently generated by
the same system. Then, the distributions of the estimated coefficients were compared with the normal distributions.
Such experiments were repeated for different numbers of measurements n sized as {50,100,200,500,1000,2000}. In this
way, the relation between the convergence and n can be investigated.

A simple model with intercept and covariate 1,x1, x2, y1 and y2 were considered for the linear predictors ηηηi(θθθ)′s,
i.e.ηαi(θθθ) = a0 + a1xi1 + a2xi2 and ηβi(θθθ) = b1yi1 + b2yi2 for i = 1, . . . ,n. The values of the covariate x1, x2, y1 and
y2 were chosen equally spaced between −1 and 1. Further, for distinguishing the effects of different size parameters
on the results, we examined set a0 = −1, a1 = 1, a2 = 3, b1 = 1 and b2 = 3. Since we are also interested in the case
when GaGLM does not satisfactorily fit the count regression data. For each combination of sample size n, setting, we
simulated 100 samples of responses Zi’s, i.e. Zi ∼Ga(exp(a0 +a1xi1 +a2xi2),exp(b1yi1 + b2yi2)) for i= 1, . . . ,n.

We computed the average estimate, the estimated mean squared error (MSE), the mean absolute error (MAE) and
the p-value [30] for univariate and multivariate normality test of the MLE â0, â1, â2, b̂1 and b̂2 respectively in 100
replications for each considered case, shown in table I. Simulation results reveal that the average estimate of each
parameter close to the true value roughly as the sample size n increases. With n increase, the truncation error in
the iterative process affects the estimation accuracy. The MSE and MAE decrease strictly as the number of samples
increasing, demonstrate similar patterns.

We also test the normality of each parameter with estimating result by 100 replications. Due to the same range of
randomly generated samples, when the number of samples is limited, i.e. n = 50,100 and 200, the estimation of the
smaller parameters will be affected by the bigger parameters. As the number of samples increases, when the number
of samples reaches n= 2000, the estimated value tends to be stable and presents a normal distribution.

A normal quantile-quantile (QQ) plots for the empirical distribution of multi-normal components are illustrated in
figure 1. When the sample size is n= 50 and 100, there are more outliers in the multivariate normal QQ plots. When
the sample size increases to n= 200 and 500, the QQ plots tend to be stable, when n= 1000 and 2000, the QQ plots
are normally distributed.
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TABLE I
Average estimate, standard deviation, estimated MSE, MAE and p-value of â0, â1, â2, b̂1 and b̂2 for a GaGLM model on the

basis of 100 replications.

Parameter True value n Mean MSE MAE p-value Normality test
50 -0.9868 0.2660 0.2158 0.0123 NO

100 -0.9798 0.1717 0.1344 0.2690 YES
a0 -1 200 -0.9972 0.1139 0.0902 0.9717 YES

500 -0.9975 0.0744 0.0577 0.0141 NO
1000 -0.9969 0.0507 0.0411 0.0064 NO
2000 -1.0011 0.0316 0.0249 0.8457 YES

50 0.9561 0.4433 0.3659 0.7720 YES
100 0.9446 0.2622 0.2095 0.6501 YES

a1 1 200 1.0040 0.1716 0.1346 0.0473 NO
500 0.9905 0.1354 0.1110 0.1552 YES

1000 1.0114 0.0844 0.0672 0.3956 YES
2000 1.0009 0.0635 0.0488 0.3657 YES

50 2.9553 0.4785 0.3861 0.8913 YES
100 2.9721 0.2598 0.2129 0.1981 YES

a2 3 200 3.0030 0.1837 0.1367 0.7403 YES
500 2.9869 0.1232 0.0997 0.5261 YES

1000 2.9869 0.0888 0.0689 0.7357 YES
2000 2.9785 0.0634 0.0520 0.0964 YES

50 1.0854 0.5467 0.4576 0.0487 NO
100 1.0024 0.3859 0.3081 0.0176 NO

b1 1 200 1.0014 0.2281 0.1828 0.3867 YES
500 0.9973 0.1647 0.1297 0.6182 YES

1000 0.9922 0.1122 0.0911 0.0717 YES
2000 0.9852 0.0748 0.0586 0.8467 YES

50 3.0246 0.5903 0.4588 0.7750 YES
100 3.0225 0.3148 0.2526 0.2990 YES

b2 3 200 3.0388 0.2618 0.2072 0.5040 YES
500 2.9603 0.1706 0.1345 0.2272 YES

1000 2.9592 0.1230 0.1006 0.4994 YES
2000 2.9848 0.0933 0.0715 0.4488 YES

Figure 2 illustrates the convergence of parameters estimation by different size of samples. With the increase of
samples, the mean value of each estimated parameter gradually approaches the real value, and the fluctuation range
gradually decreases, that is, the variance decreases. Therefore, it indicates that the parameter estimation value converges
to the actual value, and the maximum likelihood estimate is consistent. Among them, it can be seen from the figure
that due to the difference in parameter size, the bigger parameter is easier to converge to the real value, which has the
significance of estimation.

VI. Conclusion
GaGLM is now commonly used for investigating positive real data. In this paper, similar to the asymptotic theory of

MLE of natural exponential distribution family-based GLM, we establish the consistency and asymptotic normality of
MLE of GaGLM by proving the Lyapunov condition. We also discuss the range of the logarithmic k-order expectation
E(logZ)k as k = 1,2, ...,6 when Z obey the Gamma distribution. Moreover, the simulation study illustrates that the
normal approximation is satisfactory for moderate and large sample sizes. Finally, with the established asymptotic
theory, we can further benefit interval estimates, hypothesis tests and stochastic control design in a theoretical basis.
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