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Antisparsity as a Prior in Blind Separation of
Correlated Sources

Renan D. B. Brotto, Kenji Nose-Filho, João M. T. Romano

Abstract—This letter introduces the concept of antisparse Blind
Source Separation (BSS), proposing a suitable criterion based on
the `∞ norm to explore the antisparsity feature. The effectiveness
of the criterion is theoretically demonstrated and it is also
evaluated by computational simulations, which consider up to
ten distinct sources with different correlation levels. Moreover,
we simulated a scenario in wireless communication with binary
sources, comparing our approach to the Constant Modulus algo-
rithm. Both the theoretical and the simulation results highlight
the potentiality of using antisparsity as a prior in BSS.

Index Terms—Antisparsity, Blind Source Separation, Corre-
lated Sources, Unsupervised Signal Processing.

I. INTRODUCTION

The problem of Blind Source Separation (BSS) [1], [2]
consists in recovering a set of signals, called sources, which
have been combined by a mixing system. The separation
process is usually based on recovering some prior information
about the signals, i.e., a feature that precisely describes the
sources. Two important priors that have been extensively stud-
ied in the literature are the statistical independence between
the sources, which is related to the classical Independent
Component Analysis (ICA) [3], [4], and the sources sparsity,
which inaugurated the Sparse Component Analysis (SCA) [5],
[6], [7].

This letter presents and analyzes an alternative prior in-
formation that, to the best of our knowledge, has not been
explored in BSS: the antisparsity. In a dual way to the case of
sparse sources, the notion of antisparsity is associated with the
democratic or equitable distribution. So, an antisparse signal
tends to spread its energy uniformly among its samples and
such property can be evaluated by means of the signal `∞
norm [8].

The next section presents the main contribution of this
work: the proposition of an antisparsity-based criterion for
BSS and the demonstration of its effectiveness. It is worth
pointing out that it does not depend on the sources correlation
level. Section III provides several simulation results, varying
the number of sources and the correlation level, in order to
assess the performance of the proposed approach. We also
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consider in our simulations the recovery of binary sources in
a wireless communication system, highlighting the potentiality
of the antispasity application in real scenarios. Finally, Section
IV briefly sets out our conclusions and perspectives of future
works.

II. THE PROPOSED ANTISPARSITY-BASED CRITERION FOR
BSS

The process of linear and instantaneous mixing, considering
the case of determined mixtures (number of mixtures equal to
the number of sources), is given by:

X = HS, (1)

where

S =


s1(0) s1(1) · · · s1(T − 1)
s2(0) s2(1) · · · s2(T − 1)

...
...

. . .
...

sN (0) sN (1) · · · sN (T − 1)

 =


s1
s2
...
sN

 (2)

and

X =


x1(0) x1(1) · · · x1(T − 1)
x2(0) x2(1) · · · x2(T − 1)

...
...

. . .
...

xN (0) xN (1) · · · xN (T − 1)

 =


x1

x2

...
xN

 (3)

denote, respectively, the matrices containing all of the sources
and mixtures data, considering T available samples. The
matrix H ∈ RN x N performs the mixing process.

In order to appropriately estimate the sources, we look for
a separating system W ∈ RN x N, leading to:

Ŝ = WX, (4)

where the estimates data matrix Ŝ is defined in a similar way
as expressed in equations (2) and (3) for matrices S and X.

For statistical independent sources the process of source
separation is usually done in two steps. In the first one,
we perform a whitening pre-processing, by multiplying the
mixtures X with a whitening matrix P typically obtained
by a PCA related technique [1] [3]. With the decorrelated
sources X′ = PX, the second step consists in optimizing a
rotation matrix U with a suitable criterion, intrinsically related
to the prior information. So that we can write the estimated
sources as Ŝ = UX′. In this work, we explore the antisparsity
and evaluate it with the `∞ norm, leading to the following
optimization problem:
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max
U

1

||UX′||2∞
, (5)

where the associated matrix norm is defined by

||UX′||∞ =

N∑
i=1

||uiX
′||∞ =

N∑
i=1

||̂si||∞ =

N∑
i=1

maxn(|ŝi(n)|).

(6)
In (6), ui denotes the i-th row of the rotation matrix, and

|| · ||∞ is the `∞ norm. Hence, for our purposes here, the
norm taken over the estimates matrix Ŝ = UX′ corresponds
to the sum of the `∞ norms over each source estimate ŝi =
uiX

′, i = 1, 2, · · · , N .
Since P is the PCA matrix, we can write the result of the

whitening step as

PH = VΛ, (7)

where Λ ∈ RN x N is a diagonal matrix and V ∈ RN x N is
another rotation matrix.

So, from equations (1) and (7), we can rewrite the estimates
as follows:

Ŝ = UVΛS, (8)

which corresponds to the global process of mixing and sepa-
ration.

Since the BSS problem admits a scale ambiguity, we can
neglect the effect of Λ. Then, because the product of rotation
matrices is another rotation matrix, we can combine U and V
into a equivalent rotation matrix UG:

Ŝ = UGS. (9)

For the sake of simplicity, let us first consider the case of
two sources, s1(n) and s2(n), with the associated estimates
ŝ1(n), ŝ2(n). Let us also consider antisparse sources, with
uniform distribution, zero mean and supports [−A1, A1] and
[−A2, A2], respectively. Therefore, we have:

maxn(|s1(n)|) = A1, maxn(|s2(n)|) = A2. (10)

Particularly for the case of two sources, we can write UG

as:

UG =

[
cosθG sinθG
-sinθG cosθG

]
. (11)

Then, from (9) and (11) we can explicitly relate the esti-
mates and the sources:

ŝ1(n) = cosθGs1(n) + sinθGs2(n),
ŝ2(n) = −sinθGs1(n) + cosθGs2(n). (12)

To optimize the separation matrix, we employ the proposed
criterion in (5), leading to

J(θG) =
1

||ŝ1||2∞ + ||ŝ2||2∞
, (13)

where

||ŝ1||2∞ =
(

max
(
|cosθGs1(n) + sinθGs2(n)|

))2
= A2

1cos2θG + 2A1A2|cosθGsinθG|+A2
2sin2θG,

(14)
and

||ŝ2||2∞ = A2
1sin2θG+2A1A2|cosθGsinθG|+A2

2cos2θG. (15)

Combining (14) and (15) we have:

||ŝ1||2∞ + ||ŝ2||2∞ = A2
1 + 4A1A2|sinθGcosθG|+A2

2, (16)

which can be rewritten as

||ŝ1||2∞ + ||ŝ2||2∞ = A2
1 + 2A1A2|sin2θG|+A2

2. (17)

Therefore, J(θG) becomes:

J(θG) =
1

A2
1 +A2

2 + 2A1A2|sin2θG|
. (18)

Since |sin2θG| ∈ [0, 1], the maximum of J(θG) occurs for
sin2θG = 0. So, we have two possible solutions for θ ∈ [0, π[:

1) θG = 0, which leads to ŝ1(n) = s1(n) and ŝ2(n) =
s2(n),

2) θG =
π

2
, where we have ŝ1(n) = s2(n) and ŝ2(n) =

−s1(n).

In 1) and 2), we can verify that the maximum points of
J(θG) correspond to the sources separation, possibly with
a permutation and a sign inversion. Thus, the antisparsity,
measured here by the `∞ norm, can be used as a prior in
the BSS problem.

It is interesting to note that if H is just a rotation matrix,
then the algebraic development made from (9) still holds not
only for statistical independent sources but also for correlated
ones, indicating the potential use of the antisparsity in this
scenario.

Generalizing the Proposed Criterion to N Sources

So far, we have demonstrated that our criterion is sufficient
for two sources and now we are going to extend it to the case
of N signals, by decomposing a multidimensional rotation as
the combination of two-dimensional ones. To better clarify this
point, let us consider the case of three sources, just for visual
purposes. Once the mixtures have been whitened, we must
align the estimates directions with those of the sources. This
is carried out by a rotation process, as previously discussed
and illustrated in Fig. 1a.
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Fig. 1: Visual representation of the separation process, with
sources already decorrelated.

Let us consider the estimate ŝ1. To align it with the source
s1 (and here we are assuming that there is no permutation)
we must perform a rotation in the 3D space. This rotation can
be decomposed in three successive two-dimensional ones: the
first one performed in the s1-s2 plane; the second one in the
s1-s3 plane; and the last one in the s2-s3 plane. Therefore,
for the case of three sources, we can proceed with the same
analysis as previously done, but repeated three times, one for
each plane. Once all the rotations were performed, the sources
will be recovered, as shown in Fig. 1b.

The generalization to the case of N sources is straightfor-
ward: we carry out N(N − 1)/2 two-dimensional rotations,
one for each si-sj plane, i = 1, 2, · · · N , j = i+ 1, · · · N .
Such procedure can be achieved by means of the Givens
rotations method [9], [10].

With the generalization of our previous analysis from 2 to
N sources made, in the next section we present the simulation
results about the use of the antisparsity as a prior in BSS.

III. SIMULATION RESULTS

In this section we present the simulation results with an-
tisparse sources, including the case of correlated signals. For
that we consider a random mixing system H that only rotates
the sources. For statistical independent sources it is equivalent
to assume that the whitening step has been previously done.
We adjust W with the Givens rotations method, so we can
decompose a rotation effect in a multidimensional space into
the combination of rotations in two-dimensional spaces.

For N sources, we obtain the optimal rotation angle βi,
i = 1, 2, .., N(N − 1)/2 for each considered plane, using
the golden section method [11] in the interval [0, π/2], to
maximize (5).

To evaluate the proposed method performance, we use the
signal-to-interference ratio (SIR) between the estimates ŝi(n)
and sources si(n):

SIRdB(̂sj) = max
i

(
10log

(
||si||2

||si − ŝj ||2

))
. (19)

Since in the Blind Source Separation problem we may have
a sign ambiguity in the estimates, we must evaluate SIRdB (̂sj)
and SIRdB(−ŝj), and take the maximum value between them.

In all the simulations, we consider zero mean sources,
with unitary variance and uniform distribution. To introduce

dependence among the sources, we apply a correlation level
α to any pair of signals, such that:

E[si(n)sj(n)] =

{
1 if i = j,

α if i 6= j.
(20)

In the first simulation, we considered independent sources
and compared the proposed method with the Fast ICA [12]
algorithm, without a previous whitening pre-processing. We
show the results in Figure 2.
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Fig. 2: Comparative of average SIR for decorrelated sources.

In Fig. 2 we can observe the average SIR level, taken from
500 Monte Carlo simulations, as a function of N . The blue
bars represent the SIR level of the estimates obtained by the
proposed method, while the green ones depict the SIR level
using Fast ICA algorithm. For comparative purposes, we have
also presented the SIR level of the mixtures, in red.

We observe that the proposed method outperforms the Fast
ICA algorithm for N = 2, 3, · · · , 10 sources, reaching a SIR
level above 35 dB level in all cases. It is worth pointing
out that when we assume both independence and antisparsity
priors, the proposed method provides better results than an
ICA-based one.

In our second simulation, we considered sources with
correlation level α = 0.51, with the results shown in Fig.
3. From these results, we can observe the robustness of the
proposed method, since it is able to recover up to 10 correlated
sources, outperforming, again, the Fast ICA method for all
N evaluated. Also, it is important to note that the Fast ICA
algorithm had an inferior performance (in terms of SIR) than
that obtained by the mixtures, indicating, as expected, that this
method is not suitable for correlated signals.

Finally, we evaluated the antisparsity in the recovery of
binary sources2, which are very common in the context of
wireless communications [13]. We compared the proposed
method with the Constant Modulus Algorithm, precisely the
Cross-Correlation Multi-Modulus Algorithm (CC-βMMA),
with β = 1, presented in [14], a very suitable one for

1To generate correlated antisparse sources we first generated correlated
Gaussian ones. Then we applied the Cumulative Distribution Function (CDF)
to obtain uniform sources with the desired correlation level. Finally we
extracted the mean and appropriately scaled the sources.

2In this case, we repeated the same process used to generate uniform sources
and then we applied a decision rule in order to obtain symbols ±1.
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Fig. 3: Comparative of average SIR for correlated sources
(α = 0.5).

this kind of sources. Again, we generated random rotation
mixing systems and used the Symbol Error Rate (SER) as a
performance measure. In the first case, depicted in Fig. 4, we
have considered independent signals, hence α = 0, varied the
number of sources (N = 2 in blue lines, N = 5 in orange
lines and N = 7 in red lines) and the Signal-to-noise ratio
(SNR) in the range [30 dB, 20 dB, 10 dB], with Gaussian
noise. The performance of our approach, i.e., the mean SER
taken from 500 Monte Carlo simulations, is represented by
filled squares and that of CC-βMMA algorithm is represented
by filled circles.
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Fig. 4: SER obtained with the proposed method (PM) and
Constant Modulus (CM) algorithm for independent sources,
considering different noise levels.

From Fig. 4, we can observe that for two sources our
approach presented a performance very close to that of the
CM, with a little higher SER when SNR = 10 dB. For
N = 5, 7, our method has led to a better performance, and
the proposed method has obtained a SER of at most 10%
for all SNRs considered. Besides, our method presented a
performance very similar for 5 and 7 sources (especially in low
SNR scenarios), which suggests a robustness of our approach
with respect to the number of signals to be recovered. We also
note some abnormal behaviors, since we can observe little
improvements in the SER level even when we reduced the
SNR ratio; this is due to the statistical variability, caused by
the limited number of simulations, and does not compromise
the previous analysis.

We repeated the experiment for correlated binary sources
(α = 0.5), as shown in Fig. 5.
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Fig. 5: SER obtained with the proposed method (PM) and
Constant Modulus (CM) algorithm for correlated sources (α =
0.5), considering different noise levels.

As occurred in the case of independent sources, our ap-
proach had a close performance to the CM method for N = 2.
For the other cases, we can observe the robustness of our
approach with respect to the number of sources: for N = 5
and N = 7 the antisparsity outperformed the CM method and
our approach led to a very similar SER level for these number
of sources, both limited by a 10% rate. As we stated in the
previous simulation, the statistical variability observed does
not compromise the analysis made.

IV. CONCLUSION

In this work we have introduced the antisparsity as a prior
information to Blind Source Separaion. We have developed a
criterion, based on the `∞ norm, and provided a theoretical
demonstration of its effectiveness. The proposed method is
capable of recovering up to 10 sources, even when they are
correlated.

We evaluated our approach in a wireless communication
scenario, recovering binary sources with low SER level for
different SNRs. As we can observe, our approach outper-
formed the Constant Modulus algorithm in most of the sce-
narios highlighting the potential use of the antisparsity in
telecommunication problems. Since CM algorithm is related
to the techniques of Bounded Component Analysis (BCA)
[15], a relatively recent and very interesting topic in the
Blind Source Separation area, the results presented in this
letter open the possibility of exploring, in future works, the
relationship between the antisparsity and the BCA techniques,
both theoretically and in real world applications.

We are also interested in investigating the development of
a more general framework, able to handle correlated sources
for general mixing systems.
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