Appendix A: Calculation of the Isle of Wight’s Perceived Distance

In this Appendix, we calculate the ‘perceived’ distance of the Isle of Wight from the mainland.

For the case of a train journey, we compare the time and costs that it takes to get to London from a train station on the Isle of Wight that is located in close proximity to the shore (‘Ryde Esplanade’), using the fast catamaran to cross the Solent, and the time and costs that the same journey would take if it started at the first station in Portsmouth (‘Portsmouth Harbour’). The beeline distance between these stations is 5 miles. On a typical working day, the first journey is scheduled to take 144 minutes, whereas the latter only takes 94 minutes. Since the beeline distance between Portsmouth Harbour and London Waterloo Station is about 65 miles, our measure for the ‘perceived’ distance from the Isle of Wight to the mainland based on the travel time is about $65 \times \frac{50}{94} = 34.6$ miles.

Where the extra cost are concerned, the first trip costs £47.20 one-way, whereas exactly the same train from Portsmouth Harbour would cost £33.40. Based on this measure, the perceived distance is $65 \times \frac{13.8}{33.4} = 26.9$ miles. Taking the average of the time-based and the cost-based measure yields a perceived distance equal to 31.5 miles.

For a car journey, we compare a journey from Ryde to Portsmouth and an equally long and costly onward journey on the mainland. It takes about 10 minutes to get to the Ferry terminal in Fishbourne, drivers are required to be there 30 minutes ahead of the booked sailing, and the crossing itself takes about 40 minutes. 110 minutes by car will take a traveller from Portsmouth, for instance, to Eastbourne (beeline = 61.5 miles) or Poole (beeline = 39.1 miles). As for costs, a typical car ferry ticket for a normal passenger car costs about £45. Using the HMRC approved mileage rate of £0.45, this amount of money would get a traveller 100 miles on land by car. Hence, even the most conservative estimate of the perceived distance as the average of the time-based and the cost-based calculations would be $(39.1 + 100)/2 = 69.6$ miles.