SUPPLEMENTARY MATERIAL

Flavonoids from the leaves of *Epimedium koreanum* Nakai and their potential

cytotoxic activities

Huaran Zhang^a, Xuewei Wu^a, Jinxia Wang^a, Miaomiao Wang^a, Xiaoning Wang^a, Tao

Shen^a, Shuqi Wang^a, Dongmei Ren^{a, *}

^aDepartment of Natural Product Chemistry, Key Laboratory of Chemical Biology

(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44

West Wenhua Road, Jinan 250012, P. R. China

*Corresponding author. E-mail: rendom@sdu.edu.cn.

Abstract

Phytochemical studies on the leaves of Epimedium koreanum Nakai have resulted in

the discovery of two new flavonol glycosides, koreanoside F (1) and koreanoside G

(2), along with six known flavonoids. Their structures were elucidated on the basis of

HRESIMS, UV, IR, 1D NMR and 2D NMR data. Absolute configurations of 1 and 2

was further determined by ¹³C-NMR spectra with gate decoupling (GD). All of the

compounds were evaluated for cytotoxic activities by

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazoliumbromide (MTT) assay. The

results indicated that compounds 3, 5, 6, 7 and 8 inhibited the proliferation of A549

and NCI-292 cells with IC₅₀ values of 5.7-23.5 µM. Real-time monitoring in three

kinds of lung cancer cells and a kind of human bronchial epithelial cells treated with

compound 6 was also assessed.

Key words: Epimedium koreanum Nakai; flavonoids; cytotoxicity; flavonol glycoside

Contents

Figure S1 Key HMBC (H \rightarrow C) and 1 H $^{-1}$ H COSY (\longrightarrow) correlations of 1 and 2
Figure S2 UV spectrum of compound 1 in methanol
Figure S3 1 H-NMR (600 MHz, methanol- d_4) spectrum of compound 1
Figure S4 13 C-NMR (150 MHz, methanol- d_4) spectrum of compound 1
Figure S5 HSQC spectrum of compound 1
Figure S6 HMBC spectrum of compound 1
Figure S7 ¹ H- ¹ H COSY spectrum of compound 1
Figure S8 13 C-NMR (150 MHz, pyridine- d_5) spectrum with gate decoupling o
compound 1
Figure S9 13 C-NMR (150 MHz, pyridine- d_5) spectrum of compound 1
Figure S10 HRESIMS of compound 1
Figure S11 IR of compound 1 (KBr disc)
Figure S12 UV spectrum of compound 2 in methanol
Figure S13 1 H-NMR (600 MHz, DMSO- d_{6}) spectrum of compound 2
Figure S14 ¹³ C-NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of compound 2
Figure S15 HSQC spectrum of compound 2
Figure S16 HMBC spectrum of compound 2
Figure S17 ¹ H- ¹ H COSY spectrum of compound 2
Figure S18 13 C-NMR (150 MHz, pyridine- d_5) spectrum with gate decoupling o
compound 215
Figure S19 HRESIMS of compound 2
Figure S20 IR of compound 2 (KBr disc)

Figure S21 Real-time monitoring of cell viability treated with compound 6 16	
Table S1 1 H and 13 C NMR data of compounds 1 and 2 a (δ in ppm, J in Hz)17	
Table S2 The effects of compounds on the proliferation of A549 and NCI-H292 cells	

Figure S1 Key HMBC (H \rightarrow C) and 1 H $^{-1}$ H COSY (\longrightarrow) correlations of 1 and 2

Figure S2 UV spectrum of compound 1 in methanol

Figure S3 1 H-NMR (600 MHz, methanol- d_{4}) spectrum of compound **1**

Figure S4 13 C-NMR (150 MHz, methanol- d_4) spectrum of compound **1**

Figure S5 HSQC spectrum of compound 1

Figure S6 HMBC spectrum of compound 1

Figure S7 ¹H-¹H COSY spectrum of compound **1**

Figure S8 13 C-NMR (150 MHz, pyridine- d_5) spectrum with gate decoupling of compound **1**

Figure S9 13 C-NMR (150 MHz, pyridine- d_5) spectrum of compound **1**

Figure S10 HRESIMS of compound 1

Figure S11 IR of compound 1 (KBr disc)

Figure S12 UV spectrum of compound 2 in methanol

Figure S13 1 H-NMR (600 MHz, DMSO- d_{6}) spectrum of compound **2**

Figure S14 13 C-NMR (150 MHz, DMSO- d_6) spectrum of compound **2**

Figure S15 HSQC spectrum of compound 2

Figure S16 HMBC spectrum of compound 2

Figure S17 ¹H-¹H COSY spectrum of compound 2

Figure S18 13 C-NMR (150 MHz, pyridine- d_5) spectrum with gate decoupling of compound **2**

Figure S19 HRESIMS of compound ${\bf 2}$

Figure S20 IR of compound 2 (KBr disc)

Figure S21 Real-time monitoring of cell viability treated with compound 6

Table S1 1 H and 13 C NMR data of compounds **1** and **2** a (δ in ppm, J in Hz).

Position	1		2	
Position	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$
2		158.9		156.3
3		137.2		134.2
4		180.5		177.7
5	6.87, s	98.3		159.1
6		110.6	6.25, s	98.6
7		159.3		163.3
8	6.85, s	95.6		103.9
9		150.3		154.3
10		108.7		103.6
11		160.4	2.88, m	26.2
12		164.9	3.54, m	60.1
13		69.6		
14, 15	1.64, s	28.9		
1′		123.6		122.6
2'	7.95, d (8.5)	131.9	7.90, d (8.9)	130.4
3'	7.13, d (8.5)	115.3	7.13, d (8.9)	114.1
4′		163.6		161.2
5'	7.13, d (8.5)	115.3	7.13, d (8.9)	114.1
6′	7.95, d (8.5)	131.9	7.90, d (8.9)	130.4
4'-OMe	3.91, s	56.0	3.85, s	55.4

	5-OH			12.57, s	
	Rha				
	1"	5.46 d (0.8)	103.5	5.27, d (0.9)	101.9
	2"	4.26, s	72.1	3.98, s	70.1
3"	2"	3.74, dd (9.2,	72.1	3.48, dd (9.2,	70.3
	3	3.2)		3.1)	
	4"	3.36, m	73.1	3.17, m	71.1
	5"	3.32, m	71.9	3.08, m	70.6
	6"	0.92, d (6.0)	17.7	0.78, d (6.1)	17.4

^a NMR data (δ) were recorded for **1** at 600 MHz for ¹H and 150 MHz for ¹³C in methanol- d_4 , and for **2** in DMSO- d_6 .

Table S2 The effects of compounds on the proliferation of A549 and NCI-H292 cells

Compound	IC ₅₀ (μM) for 48 h		
Compound	A549	NCI-H292	
1	>50	>50	
2	>50	>50	
3	18.75	17.17	
4	>50	33.96	
5	>50	6.439	
6	7.901	5.689	
7	13.89	14.75	
8	18.31	23.53	

CDDP 11.43 6.956