A Comparison with Horowitz (1998)

It is possible to study Horowitz’s (1998) smoothed QR estimator using the same tools we employ to document the asymptotic behavior of our convolution-type kernel QR estimator. Let \(\tau \in (0, 1) \) and Assumptions X, Q and K hold. Let now \(\mathcal{R}_h^{(j)}(b; \tau) := \mathbb{E}[\tilde{R}_h^{(j)}(b; \tau)] \) for \(j = 0, 1, 2 \) and \(\mathbf{b}_h(\tau) := \text{arg min}_b \mathcal{R}_h(b; \tau) \). The latter corresponds to the unique solution of the first-order condition \(\mathcal{R}_h^{(1)}(\mathbf{b}_h(\tau); \tau) = 0 \) for \(h \) small enough. It turns out that \(\tilde{R}_h^{(2)}(b; \tau) = \frac{1}{n} \sum_{i=1}^n X_i \omega_i \alpha \left(e_i(b)/h \right) \), where \(\alpha(t) := 2k(t) + tk^{(1)}(t) \). Integrating by parts shows that \(\int \psi k^{(1)}(t) dt = -(j + 1) \int \psi k(t) dt \), so that \(\alpha(\cdot) \) is a kernel function with the same order than \(k(\cdot) \). Accordingly, Horowitz’s (1998) smoothed objective function also satisfies Lemma 1.

Along the same lines as in the proof of Theorem 1,

\[
\mathbf{b}_h(\tau) - \beta_h(\tau) = - \left[\mathcal{R}_h^{(2)}(\beta(\tau); \tau) + o(1) \right]^{-1} \mathcal{R}_h^{(1)}(\beta_h(\tau); \tau)
\]

\[
= \left[D^{-1}(\tau) + o(1) \right] \mathbb{E} \left[X \left(\frac{e(\beta_h(\tau))}{h} \right) k \left(\frac{e(\beta_h(\tau))}{h} \right) \right].
\]

Because \(k(\cdot) \) is symmetric and of order \(s + 1 \), Theorem 1 implies that

\[
\mathbb{E} \left[X \left(\frac{e(\beta_h(\tau))}{h} \right) k \left(\frac{e(\beta_h(\tau))}{h} \right) \right] = h \mathbb{E} \left[X \int z k(z) f \left(X' \beta_h(\tau) + h z \right) k(z) d z \right] = h^{s+1} \int z^{s+1} k(z) d z \mathbb{E} \left[Xf(s) \left(X' \beta(\tau) \right) | X \right] + o(h^{s+1})
\]

and that \(\mathbf{b}_h(\tau) = \beta_h(\tau) + (s + 1) h^{s+1} B(\tau) + o(h^{s+1}) = \beta(\tau) + s h^{s+1} B(\tau) + o(h^{s+1}) \). This means that \(\mathbf{b}_h(\tau) - \beta(\tau) = -s(\beta_h(\tau) - \beta(\tau)) + o(h^{s+1}) \), so that Horowitz’s (1998) smoothing approach amplifies the bias by a factor \(-s\) asymptotically.

We next consider the asymptotic covariance matrix of Horowitz’s smoothed QR estimator. Consider \(b_h(\tau) = \beta(\tau) + O(h^2) \) and let \(\Delta_h(\tau) := \tilde{R}_h^{(1)}(b_h(\tau); \tau) - \tilde{R}_h^{(1)}(\beta_h(\tau); \tau) \). We first observe that \(\mathbb{V} \left[\sqrt{n} \Delta_h(\tau) \right] = O(h) \), whereas using the fact \(y = X'b_h(\tau) - hu \) yields under Assumption Q2 that

\[
n \text{Cov} \left(\tilde{R}_h^{(1)}(b_h(\tau); \tau), \Delta_h(\tau) \right) = \mathbb{E} \left[\mathbb{E} \left[X X' \int \left[\tau - K \left(\frac{e(b_h(\tau))}{h} \right) \right] \frac{e(b_h(\tau))}{h} k \left(\frac{e(b_h(\tau))}{h} \right) f(y|X) d y \right] \right] = h \int [K(u) - \tau] u k(u) d u \mathbb{E} \left[X X' f \left(X' \beta_h(\tau) \right) | X \right] d y + O(h^2) = h \int_{0}^{\infty} [K(u) - K(-u)] u k(u) d u \mathbb{E} \left[X X' f \left(X' \beta(\tau) \right) | X \right] d y + O(h^2)
\]

for any symmetric kernel \(k(\cdot) \). Because \(\int_{0}^{\infty} [K(u) - K(-u)] u k(u) d u > 0 \) for second-order and \(\text{bona fide} \) higher-order kernels, there exists a symmetric positive \(M_\tau \) such that

\[
\mathbb{V} \left[\sqrt{n} \tilde{R}_h^{(1)}(\beta(\tau); \tau) \right] = \mathbb{V} \left[\sqrt{n} \tilde{R}_h^{(1)}(\beta(\tau); \tau) \right] + h[M_\tau + o(1)].
\]
It then follows from Lemma 1 that $\mathcal{R}_h^{(2)}(b_h(\tau); \tau) = D(\tau) + o(1)$, and hence
\[
\mathbb{V}[\mathcal{R}_h^{(2)}(b_h(\tau); \tau)^{-1} \mathcal{R}_h^{(1)}(b_h(\tau); \tau)] = \mathbb{V}\left[R_h^{(2)}(b_h(\tau); \tau)^{-1} R_h^{(1)}(b_h(\tau); \tau) \right] + h D^{-1}(\tau) M_r D^{-1}(\tau) + o(h).
\]

Horowitz’s estimator has a Bahadur-Kiefer representation as in Theorem 2, ergo the above equality shows that the asymptotic covariance matrix of Horowitz’s estimator is larger than ours at the second order.

B Technical proofs

Proof of Lemma 1 Under Assumption Q2, a Taylor expansion with integral remainder yields
\[
f(v + hz | x) = \sum_{\ell=0}^{s} f^{(\ell)}(v | x) \frac{(hz)^{\ell}}{\ell!} + \frac{(hz)^{s}}{(s-1)!} \int_{0}^{1} (1-w)^{s-1} \left[f^{(s)}(v + whz | x) - f^{(s)}(v | x) \right] \, dw.
\]

(i) Assumption K1 ensures that
\[
\mathbb{E}[k_h(v - Y) | x] - f(v | x) = \int k_h(v - y) f(y | x) \, dy - f(v | x)
\]
\[
= \int k(z) \left[f(v + hz | x) - f(v | x) \right] \, dz
\]
\[
= \int_{0}^{1} (1-w)^{s-1} \int \frac{(hz)^{s}}{(s-1)!} k(z) \left[f^{(s)}(v + whz | x) - f^{(s)}(v | x) \right] \, dz \, dw \quad (23)
\]
through a change of variables $y = v + hz$. Now, the check function is such that
\[
\int \rho_\tau(v) \, dG(v) = (1 - \tau) \int_{-\infty}^{0} G(v) \, dv + \tau \int_{0}^{\infty} [1 - G(v)] \, dv
\]
for any arbitrary cdf G, and hence
\[
R(b; \tau) = \int \left\{ (1 - \tau) \int_{-\infty}^{0} \int_{-\infty}^{t+x'b} f(v | x) \, dv \, dt + \tau \int_{0}^{\infty} f(v | x) \, dv \, dt \right\} dF_X(x),
\]
where $F_X(x)$ is the cdf of X. Similarly,
\[
R_h(b; \tau) = \int \left\{ (1 - \tau) \int_{-\infty}^{0} \int_{-\infty}^{t+x'b} \mathbb{E}[k_h(v - Y) | x] \, dv \, dt + \tau \int_{0}^{\infty} \int_{t+x'b}^{\infty} \mathbb{E}[k_h(v - Y) | x] \, dv \, dt \right\} dF_X(x).
\]
It follows from (23) that
\[
L_1 := \left| \int_{-\infty}^{0} \int_{-\infty}^{t+x'b} \left\{ \mathbb{E}[k_h(v - Y) | x] - f(v | x) \right\} \, dv \, dt \right|
\]
\[
= \left| \int_{0}^{1} (1-w)^{s-1} \int \frac{(hz)^{s}}{(s-1)!} k(z) \int_{-\infty}^{0} \int_{-\infty}^{t+x'b} \left[f^{(s)}(v + whz | x) - f^{(s)}(v | x) \right] \, dv \, dt \, dz \, dw \right|
\]
\[
= \left| \int_{0}^{1} (1-w)^{s-1} \int \frac{(hz)^{s}}{(s-1)!} k(z) \left[f^{(s-2)}(x'b + whz | x) - f^{(s-2)}(x'b | x) \right] \, dz \, dw \right|
\]
given that $\int |z^{s+1} k(z)| \, dz < \infty$ by Assumption K1 and that $f^{(s-2)}(\cdot | \cdot)$ is Lipschitz. Analogously,
\[
\left| \int_{0}^{\infty} \int_{t+x'b}^{\infty} \mathbb{E}[k_h(v - Y) | x] - f(v | x) \, dv \, dt \right| \leq C h^{s+1},
\]
establishing the result.
(ii) By the definitions of $R(b; \tau)$ and $R_h(b; \tau)$, it follows from the Lebesgue dominated convergence theorem that

\begin{equation}
R^{(1)}(b; \tau) = \mathbb{E} \left[X \left(F(X'b \mid X) - \tau \right) \right] = \int x \left[\int_{-\infty}^{x^b} f(y \mid x) \, dy - \tau \right] \, dF_X(x),
\end{equation}

and that

\begin{equation}
R^{(1)}_h(b; \tau) = \mathbb{E} \left\{ X \left[K \left(\frac{X'b - Y}{h} \right) - \tau \right] \right\} = \int x \left\{ \int_{-\infty}^{x^b} \mathbb{E} \left[k_h(v - Y) \mid x \right] \, dv - \tau \right\} \, dF_X(x). \tag{24}
\end{equation}

In view that $\int z^s k(z) \, dz = 0$ and $\int |z^{s+1} k(z)| \, dz < \infty$, integrating (23) yields

\begin{equation}
L_2 := \int_{-\infty}^{x^b} \mathbb{E} \left[k_h(v - Y) \mid x \right] - f(v \mid x) \, dv \begin{align*}
&= \int_0^1 (1 - w)^{s-1} \int \left(\frac{h^s z}{(s-1)!} \right) k(z) \int_{-\infty}^{x^b} \left[f^{(s)}(v + wz \mid x) - f^{(s)}(v \mid x) \right] \, dv \, dz \, dw \\
&= \int_0^1 (1 - w)^{s-1} \int \left(\frac{h^s z}{(s-1)!} \right) k(z) \left[f^{(s)}(z' + wz \mid x) - f^{(s-1)}(z' \mid x) \right] \, dz \, dw \\
&= \int_0^1 w(1 - w)^{-1} \int \left(\frac{h^s z}{(s-1)!} \right) k(z) \int_0^1 f^{(s)}(z' + twz \mid x) \, dt \, dz \, dw \leq C h^{s+1}, \tag{25}
\end{align*}
\end{equation}

uniformly given that $f^{(s)}$ is bounded. The result then readily follows from Assumption X.

(iii) Differentiating $R^{(1)}(b; \tau)$ with respect to b results in

\begin{equation}
R^{(2)}(b; \tau) = \mathbb{E} \left[XX' f(X'b \mid X) \right] = \int xx' f(x'b \mid x) \, dF_X(x)
\end{equation}

and, likewise,

\begin{equation}
R^{(2)}_h(b; \tau) = \mathbb{E} \left[XX' k_h(X'b - Y) \right] = \int xx' \mathbb{E} \left[k_h(x'b - Y) \mid x \right] \, dF_X(x).
\end{equation}

Setting $v = x'b$ in (23) then yields

\begin{equation}
\left\| R^{(2)}_h(b; \tau) - R^{(2)}_h(b; \tau) \right\| \leq C \left\| \mathbb{E} \left[k_h(v - Y) \mid x \right] - f(v \mid x) \right\|
\end{equation}

\begin{equation}
\leq C h^{s} \int |z^s K(z)| \sup_{(x,y) \in \mathbb{R}^{d+1}} \sup_{|t| \leq hz} \left| f^{(s)}(y + t \mid x) - f^{(s)}(y \mid x) \right| \, dz = o(h^s),
\end{equation}

under Assumptions X and Q2 by the Lebesgue dominated convergence theorem, as stated.

(iv) Recall that

\begin{equation}
R^{(2)}_h(b; \tau) = \mathbb{E} \left[XX' k_h(X'b - Y) \right] = \int k(z) \int xx' f(x'b + hz \mid x) \, dF_X(x) \, dz.
\end{equation}

Under Assumption Q2, it ensues from $f(\cdot \mid \cdot)$ being Lipschitz that

\begin{equation}
\left\| R^{(2)}_h(b + \delta; \tau) - R^{(2)}_h(b; \tau) \right\| \leq C \int |k(z)| \int \|xx'\| \|x'\delta\| \, dF_X(x) \, dz \leq C \|\delta\|,
\end{equation}

uniformly in (b, h, δ, τ), completing the proof. \hfill \blacksquare
Proof of Lemma 3 For $\eta > 0$,
\[
\left\{ \sup_{(\tau, h)} \| \hat{b}_h(\tau) - b_h(\tau) \| \geq 2\eta \right\} \subseteq \bigcup_{(\tau, h)} \left\{ \inf_{\{b : \|b - b_h(\tau)\| \geq 2\eta\}} \hat{R}_h(b; \tau) \leq \inf_{\{b : \|b - b_h(\tau)\| \leq 2\eta\}} \hat{R}_h(b; \tau) \right\}
\subseteq \bigcup_{(\tau, h)} \left\{ \inf_{\{b : \|b - b_h(\tau)\| \geq 2\eta\}} \hat{R}_h(b; \tau) \leq \hat{R}_h(b_h(\tau); \tau) \right\}
\subseteq \bigcup_{(\tau, h)} \left\{ \inf_{\{b : \|b - b_h(\tau)\| \geq 2\eta\}} \hat{R}_h(b; \tau) \leq 0 \right\}.
\]
given that $\hat{R}_h(b_h(\tau); \tau) = 0$. Theorem 1 ensures that
\[
\left\{ b : \|b - b_h(\tau)\| \geq 2\eta \right\} \subseteq \left\{ b : \|b - \beta(\tau)\| + \sup_{(\tau, h)} \|\hat{b}_h(\tau) - \beta(\tau)\| \geq 2\eta \right\}
\subseteq \left\{ b : \|b - \beta(\tau)\| + O(\bar{h}^{-1}) \geq 2\eta \right\}
\subseteq \left\{ b : \|b - \beta(\tau)\| \geq \eta \right\}
\]
for all (τ, h) provided that n is large enough. This means that
\[
\left\{ \sup_{(\tau, h)} \| \hat{b}_h(\tau) - b_h(\tau) \| \geq 2\eta \right\} \subseteq \bigcup_{(\tau, h)} \left\{ \inf_{\{b : \|b - \beta(\tau)\| \geq \eta\}} \hat{R}_h(b; \tau) \leq 0 \right\}.
\]
As $t \mapsto \rho_t(t)$ is 1-Lipschitz, it follows from
\[
\hat{R}_h(b; \tau) = \frac{1}{n h} \sum_{i=1}^{n} \int \rho_t(t) k \left(\frac{t - (Y_i - X_i'b)}{h} \right) dt = \frac{1}{n} \sum_{i=1}^{n} \int \rho_t(Y_i - X_i'b + h z) k(z) dz
\]
that
\[
\left| \hat{R}_h(b; \tau) - \hat{R}(b; \tau) \right| = \frac{1}{n} \sum_{i=1}^{n} \left| \int \rho_t(Y_i - X_i'b + h z) - \rho_t(Y_i - X_i'b) \right| k(z) dz \leq h \int |z k(z)| dz < \infty,
\]
for all b, τ and h by Assumption K1. Theorem 1 and the Lipschitz property of $b \mapsto \hat{R}(b; \tau)$ then ensures that $\hat{R}_h(b; \tau) \geq \hat{R}(b; \tau) - C h$ uniformly in b and τ, so that
\[
\left\{ \sup_{(\tau, h)} \| \hat{b}_h(\tau) - b_h(\tau) \| \geq 2\eta \right\} \subseteq \bigcup_{(\tau, h)} \left\{ \inf_{\{b : \|b - \beta(\tau)\| \geq \eta\}} \hat{R}_h(b; \tau) \leq C h \right\}.
\]
The next step is a convexity argument. We first perform the change of variables $b = \beta(\tau) + \rho u$ with $\|u\| = 1$ and $\rho \geq \eta$. In view that $b \mapsto \hat{R}(b; \tau)$ is convex with $\hat{R}(\beta(\tau); \tau) = 0$,
\[
\frac{\eta}{\rho} \hat{R}(\beta(\tau) + \rho u; \tau) = \frac{\eta}{\rho} \hat{R}(\beta(\tau) + \rho u; \tau) + \left(1 - \frac{\eta}{\rho} \right) \hat{R}(\beta(\tau); \tau) \geq \hat{R}(\beta(\tau) + \eta u; \tau).
\]
It follows from the above inequality that
\[
\left\{ \inf_{\{b : \|b - \beta(\tau)\| \geq \eta\}} \hat{R}(b; \tau) \leq C h \right\} \subseteq \left\{ \inf_{\{b : \|b - \beta(\tau)\| = \eta\}} \hat{R}(b; \tau) \leq C h \right\},
\]
for all (τ, h) provided that n is large enough.
and hence
\[
\bigcup_{(\tau, h)} \left\{ \left\| \beta_h(\tau) - \beta_h(\psi) \right\| \geq 2\eta \right\} \subset \bigcup_{\tau} \left\{ \inf_{(b, \|b - \beta(\psi)\| = \eta)} \hat{R}(b; \tau) \leq C \tilde{h}_n \right\}
\]
\[
\subset \left\{ \inf_{\tau} \left\{ \inf_{(b, \|b - \beta(\psi)\| = \eta)} \left[\hat{R}(b; \tau) - R(b; \tau) \right] \right\} \leq C \tilde{h}_n - \inf_{\tau} \left\{ \inf_{(b, \|b - \beta(\psi)\| = \eta)} R(b; \tau) \right\} \right\}.
\]

We next establish an upper bound for \(C \tilde{h}_n - \inf_{\tau \in [T, \bar{T}]} \inf_{(b, \|b - \beta(\psi)\| = \eta)} R(b; \tau)\) using the fact that the eigenvalues of \(R^{(1)}(b; \tau)\) are bounded away from 0 uniformly in \(b\), for \(\|b - \beta(\psi)\| \leq 1\) and \(\tau \in [T, \bar{T}]\).

Given that \(R^{(1)}(\beta(\psi), \tau) = 0\), a second-order Taylor expansion of \(R(b; \tau) = R(b; \tau) - R(\beta(\psi); \tau)\) gives way to
\[
R(b; \tau) = 0 + (b - \beta(\psi))' \left[\int_0^1 (1 - t) R^{(2)}(\beta(\psi) + t[b - \beta(\psi)]; \tau) \, dt \right] (b - \beta(\psi)) \geq C \eta^2
\]
for all \(b\) such that \(\|b - \beta(\psi)\| = \eta\). This means that, for any \(\eta_2 = \eta - \epsilon_2 < \eta\) with conformable \(\epsilon_2\) and \(\tilde{h}_n\) small enough,
\[
\bigcup_{(\tau, h)} \left\{ \left\| \beta_h(\tau) - \beta_h(\psi) \right\| \geq 2\eta \right\} \subset \left\{ \sup_{\tau \in [T, \bar{T}]} \sup_{(b, \|b - \beta(\psi)\| = \eta)} \left| \hat{R}(b; \tau) - R(b; \tau) \right| \geq C \eta_2^2 \right\}.
\]

Now, let \(Z_i = (Y_i, X_i')\), \(\theta = (\tau, b')\) and \(g_1(Z_i, \theta) = \rho_\tau(Y_i - X_i'b) - \rho_\tau(Y_i - X_i'\beta(\psi))\), so that
\[
\hat{R}(b; \tau) - R(b; \tau) = \frac{1}{n} \sum_{i=1}^n \left\{ g_1(Z_i, \theta) - \mathbb{E}[g_1(Z_i, \theta)] \right\}.
\]

Under Assumption X, it follows from \(\eta \leq 1\) that, for all \(b\) such that \(\|b - \beta(\psi)\| = \eta\) and \(\tau \in [T, \bar{T}]\),
\[
|g_1(Z_i, \theta)| \leq \|X_i\| \|b - \beta(\psi)\| \leq C,
\]
implying that \(\mathbb{V}(g_1(Z_i, \theta)) \leq \sigma^2 \leq C\). Observe also that pairing Assumption X with the Lipschitz conditions on \(\tau \mapsto \beta(\psi)\) in Assumption Q1 and on \(\tau \mapsto \rho_\tau(u)\) entails, for all admissible \(z\),
\[
|g_1(z, \theta_1 - g_1(z, \theta_2)| \leq C \|\theta_1 - \theta_2\|, \tag{26}
\]
where \(\|\theta\|^2 = \|b\|^2 + |\tau|^2\). Next, for \(\delta > 0\), let \(\Theta_j\), with \(j = 1, \ldots, J(\delta) \leq C \delta^{-(d+1)}\), be such that
\[
\Theta = \left\{ \theta = (b, \tau): \tau \in [T, \bar{T}], \|b - \beta(\psi)\| = \eta_1 \right\} \subset \bigcup_{j=1}^{J(\delta)} \mathcal{B}(\Theta_j, \delta),
\]
where \(\mathcal{B}(\Theta_j, \delta)\) is the \(\|\cdot\|\)-ball with center \(\Theta_j\) and radius \(\delta\). Define \(\bar{g}_{1,j}(\cdot)\) and \(\bar{g}_{1,j}(\cdot)\) respectively as \(\bar{g}_{1,j}(z) := \inf_{\theta \in \mathcal{B}(\Theta_j, \delta)} g_1(z, \theta)\) and \(\bar{g}_{1,j}(z) := \sup_{\theta \in \mathcal{B}(\Theta_j, \delta)} g_1(z, \theta)\), so that \(\{g_1(\cdot, \theta): \theta \in \mathcal{B}(\Theta_j, \delta)\} \subset \{g_{1,j}, \bar{g}_{1,j}\}\). Let \(G_{1,j, \Theta} := \{g_1(\cdot, \theta): \theta \in \Theta\} \subset \bigcup_{j=1}^{J(\delta)} \{g_{1,j}, \bar{g}_{1,j}\}\). It follows from (26) that \(\bar{g}_{1,j}(z) - g_{1,j}(z) \leq C \delta \leq C\) and \(\mathbb{E} \left[\left| g_{1,j}(Z_i) - \bar{g}_{1,j}(Z_i) \right|^2 \right] \leq C \delta^2\). By conditions (i) and (ii) in Lemma 2, it follows from (18) that setting \(H(\delta) = -(d + 1) \ln \delta + C\) leads to
\[
\Pr \left(\sup_{\delta \in \Theta} \left| \hat{R}(b; \tau) - R(b; \tau) \right| \geq C \frac{1 + \sqrt{\tau} + r/\sqrt{n}}{\sqrt{n}} \right) \leq \exp(-r).
\]
This means that, for \(n \) large enough with respect to \(\eta_2 \),

\[
\Pr \left(\sup_{\mathcal{R}} \sup_{\{ b : \| b - \beta(\tau) \| = \eta_2 \}} \left| \hat{R}(b, \tau) - \mathcal{R}(b, \tau) \right| \geq C \eta_2^2 \right) \leq C \exp \left(-n C \eta_2^2 \right),
\]

and hence

\[
\Pr \left(\sup_{(\tau, h)} \left\| \hat{\beta}_h(\tau) - \beta_h(\tau) \right\| \geq 2\eta \right) \leq C \exp \left(-n C \eta_2^2 \right),
\]

completing the proof.

Proof of Lemma 4 We start with the first deviation probability. As \(\tilde{R}_h^{(1)}(\beta_h(\tau), \tau) = 0 \),

\[
\sup_{(\tau, h)} \left\| \sqrt{n} \tilde{R}_h^{(1)}[\beta_h(\tau), \tau] \right\| \leq \sup_{(\tau, h)} \sup_{\{ b : \| b - \beta_h(\tau) \| \leq \eta \}} \left\| \sqrt{n} \left(\tilde{R}_h^{(1)}(b, \tau) - \tilde{R}_h^{(1)}(b, \tau) \right) \right\|.
\]

However,

\[
\tilde{R}_h^{(1)}(b, \tau) = \frac{\partial}{\partial b} \left[\frac{1}{n} \sum_{i=1}^{n} \int_{\mathbb{Z}} \rho_{\tau}(Y_i - X_i'b + b h z) k(z) \, dz \right] = \frac{1}{n} \sum_{i=1}^{n} X_i \left[\int \mathbb{I}(Y_i - X_i'b + b h z < 0) k(z) \, dz - \tau \right],
\]

implying that \(\tilde{R}_h^{(1)}(b, \tau) = \sum_{i=1}^{n} g_2(Z_i, \theta) / n \), with

\[
g_2(Z_i, \theta) = X_i \left[\int \mathbb{I}(Y_i - X_i'b + h z < 0) k(z) \, dz - \tau \right],
\]

for \(Z_i = (Y_i, X_i)' \) and \(\theta \in \Theta := \{ (\tau, h) : (\tau, h) \in [\mathbb{Z}, \tau] \times [b_n, \bar{h}_n], \| b - \beta_h(\tau) \| \leq \eta \} \). We bound each of the entries of \(\tilde{R}_h^{(1)}(b, \tau) \), so that there is no loss of generality in assuming that \(X_i \) is univariate. Note that \(|g_2(Z_i, \theta)| \leq C, \mathbb{V}(g_2(Z_i, \theta)) \leq \sigma^2 \leq C \), and \(|g_2(Z_i, \theta_2) - g_2(Z_i, \theta_1)| \leq C \) for all \(\theta_1 \) and \(\theta_2 \). Let \(\| \theta \| = \| b \|^2 + |h|^2 + |\tau|^2 \) and let \(B(\theta, \delta^2) \) denote the \(\| - \| - \) ball with center \(\theta \) and radius \(\delta^2 \). Assumption X ensures that, for any \(\theta_1 \) and \(\theta_2 \) in \(B(\theta, \delta^2) \),

\[
|g_2(Z_i, \theta_2) - g_2(Z_i, \theta_1)| \leq C \left[\int \mathbb{I}(Y_i - X_i'b + h z \in [-C \delta^2, C \delta^2]) |k(z)| \, dz + \delta^2 \right]. \tag{27}
\]

Consider a covering of \(\Theta \) with \(J(\delta^2) \leq C \delta^{-2(d+1)} \) balls \(B(\theta_j, \delta^2) \). Letting \(g_{2,j}(z) := \inf_{\theta \in B(\theta_j, \delta^2)} g_2(z, \theta) \) and \(\bar{g}_{2,j}(z) = \sup_{\theta \in B(\theta_j, \delta^2)} g_2(z, \theta) \) implies not only that \(\{ g_{2,j}(\cdot, \theta) : \theta \in B(\theta_j, \delta^2) \} \subset [g_{2,j}, \bar{g}_{2,j}] \), but also that \(G_{2,\delta} := \{ g_2(\cdot, \theta) : \theta \in \Theta \} \subset \bigcup_{j=1}^{J(\delta^2)} [g_{2,j}, \bar{g}_{2,j}] \). Equation (27) ensures that, uniformly in \(j \) and \(\delta^2 \leq \sigma^2 \),

\[
\mathbb{E} \left[\left| \bar{g}_{2,j}(Z_i) - g_{2,j}(Z_i) \right|^2 \right] \leq C \delta^4 + C \mathbb{E} \left[\int \mathbb{I}(Y_i - X_i'b + h z \in [-C \delta^2, C \delta^2]) |k(z)| \, dz \right]^2.
\]

Applying the Cauchy-Schwarz inequality under Assumptions K and Q2 then gives way to

\[
L_4 := \mathbb{E} \left[\int \mathbb{I}(Y_i - X_i'b - h z \in [-C \delta^2, C \delta^2]) k(z) \, dz \right]^2 \leq \mathbb{E} \left[\int \mathbb{I}(Y_i - X_i'b - h z \in [-C \delta^2, C \delta^2]) |k(z)| \, dz \right] \times \int |k(z)| \, dz \leq \mathbb{E} \left\{ \Pr \left(Y_i - X_i'b - h z \in [-C \delta^2, C \delta^2] \mid X_i \right) \right\} |k(z)| \, dz \times \int |k(z)| \, dz \leq C \delta^2,
\]

The proof is complete.
implying that $\mathbb{E} \left[\left| \tilde{g}_{2j}(Z_i) - g_{2j}(Z_i) \right|^2 \right] \leq C(\delta^4 + \delta^2) \leq C\delta^2$, uniformly in j and $\delta^2 \leq \sigma^2$. As a result, conditions (i) and (ii) in Lemma 2 hold for $\ln H(\delta) = -2(d + 1) \ln \delta + C$, so that (18) gives

$$\Pr \left(\sup_{\delta \in \Theta} \left\| \frac{1}{\sqrt{n}} \left(\tilde{R}_{h}^{(1)}(b, \tau) - R_{h}^{(1)}(b, \tau) \right) \right\| \geq C \left(\sqrt{\tau + 1 + \tau / \sqrt{n}} \right) \right) \leq 2 \exp(-r).$$

Accordingly, the first bound holds for n large enough. As for the second bound, there is no loss of generality to assume that X_i is unidimensional. Note that $\sqrt{n}h / \ln n \tilde{R}_{h}^{(2)}(b, \tau) = \sum_{i=1}^{n} g_{3}(Z_i, \theta) / \sqrt{n}$, with

$$g_{3}(Z_i, \theta) := \frac{1}{h \ln n} X_{i}^{2} k \left(\frac{X_{i} b - Y_{i}}{h} \right).$$

Assumptions K and X ensure that, uniformly for $\theta \in \Theta$,

$$|g_{3}(Z_i, \theta)| \leq C \frac{1}{h \ln n} \leq C \frac{O(\sqrt{n})}{\ln^{2} n}.$$

It also follows from Assumption Q2 that, uniformly for $\theta \in \Theta$,

$$\mathbb{V}(g_{3}(Z_i, \theta)) \leq C \frac{C}{\ln n} \int \int k \left(\frac{x' b - y}{h} \right) f(y | x) \, dy \, dF_{X}(x)$$

$$= C \frac{1}{\ln n} \int \int k(v) f(x' b + h v | x) \, dv \, dF_{X}(x) \leq C \frac{1}{\ln n} = \sigma^2.$$

Assumption K posits that, for any θ_1 and θ_2 in Θ, $|g_{3}(Z_i, \theta_1) - g_{3}(Z_i, \theta_2)| \leq C n^{-\gamma} \| \theta_1 - \theta_2 \|. $ Consider a covering of Θ with $J(\delta / n^{\gamma}) \leq C(\delta / n^{\gamma})^{-\gamma(d+1)}$ balls $B(\theta, \delta / n^{\gamma})$ and let $g_{3j}(z) := \inf_{\theta \in B(\theta, \delta)} g_{3}(z, \theta)$ and $\bar{g}_{3j}(z) := \sup_{\theta \in B(\theta, \delta)} g_{3}(z, \theta)$. It then turns out that $\{g_{3j}(z, \theta) : \theta \in B(\theta_j, \delta) \} \subset [g_{3j}, \bar{g}_{3j}]$ and hence $\mathcal{G}_{3,\Theta} = \{g_{3} (\cdot, \theta) : \theta \in \Theta \} \subset \bigcup_{j=1}^{J(\delta / n^{\gamma})} [g_{3j}, \bar{g}_{3j}]$, with $\mathbb{E} \left[\left| g_{3}(Z_i) - g_{3}(Z_i) \right|^2 \right] \leq C \delta^2$. Conditions (i) and (ii) in Lemma 2 thus hold for $\ln H(\delta) = -2(d + 1) (\ln \delta - C \ln n) + C$, so that (18) results for any $u > 0$ in

$$\Pr \left(\sup_{\delta \in \Theta} \left\| \frac{\sqrt{n}h}{\ln n} \left(\tilde{R}_{h}^{(2)}(b, \tau) - R_{h}^{(2)}(b, \tau) \right) \right\| \geq C \left(1 + \frac{\sqrt{u}}{\sqrt{\ln n}} + \frac{u}{\ln n} \right) \right) \leq 2 \exp(-u).$$

Setting $u = r \ln n$ then yields the exponential inequality.

Suppose now, without loss of generality, that \mathcal{B} is convex. Recall that

$$\tilde{R}_{h}^{(2)}(b, \tau) - R_{h}^{(2)}(b, \tau) = \frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}' (b_{i} - b_{0}) \int_{0}^{1} \frac{1}{h^2} k^{(1)} \left(\frac{Y_{i} - X_{i}' [b_{1} + t(b_{1} - b_{0})]}{h} \right) \, dt$$

and that the variance of $h^{-2} k^{(1)} ((Y_{i} - X_{i}' b) / h)$ is of order $h^{-3} = o(n / \ln n)$ under Assumption K. Applying now the same arguments as in the proof of the exponential inequality yields

$$\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}' (b_{i} - b_{0}) \frac{1}{h^2} k^{(1)} \left(\frac{Y_{i} - X_{i}' [b_{1} + t(b_{1} - b_{0})]}{h} \right)$$

$$= \mathbb{E} \left[X X' X (b_{1} - b_{0}) \int_{-\infty}^{\infty} \frac{1}{h} k \left(\frac{y - X [b_{1} + t(b_{1} - b_{0})]}{h} \right) f^{(1)}(y | X) \, dy \right] + O_{P} \left(\sqrt{\ln n / nh^3} \right),$$

uniformly in (τ, h, b_{0}, b_{1}) for $t \in [0, 1]$. The proofs of the remaining results follow similarly.
Proof of Proposition 3 Let
\[\mathcal{E}_{n}^{3}(\varepsilon) := \left\{ \sup_{(\tau, h)} \left\| \hat{\beta}_{h}(\tau) - \beta_{h}(\tau) \right\| \geq \varepsilon^{1/4} \right\}, \]
which is such that \(\Pr(\mathcal{E}_{n}^{3}(\varepsilon)) \leq C \exp(-C n \varepsilon) \) by Lemma 3. The bounds for \(\Pr(\mathcal{E}_{n}^{1}(r)) \) and \(\Pr(\mathcal{E}_{n}^{2}(r)) \) follow from Lemma 4. In particular, \(\lim_{n \to \infty} \Pr(\mathcal{E}_{n}^{2}(r)) = 0 \), whereas Lemma 1 ensures under Assumption X that \(b \to \hat{R}_{h}(b; \tau) \) is strictly convex for \(b \) in a vicinity of \(\beta_{h}(\tau) \), for all \(\tau \) in \([\tau, \bar{\tau}] \) with probability at least \(1 - \Pr(\mathcal{E}_{n}^{1}(r)) - \Pr(\mathcal{E}_{n}^{2}(r)) \). But, by Lemma 3 and Theorem 1, all minimizers of \(\hat{R}_{h}(b; \tau) \) lie in such a vicinity with a probability tending to 1. This means that we can make \(1 - \Pr(\mathcal{E}_{n}^{1}(r)) - \Pr(\mathcal{E}_{n}^{2}(r)) \) arbitrarily close to 1 by increasing \(r \), and hence \(\hat{\beta}_{h}(\tau) \) is unique with a probability going to 1 as \(n \) increases. It also follows that, in case \(\hat{\mathcal{E}}_{n}^{1}(r), \hat{\mathcal{E}}_{n}^{2}(r) \) and \(\hat{\mathcal{E}}_{n}^{3}(\varepsilon) \) are all true and \(n \) is large enough, \(\hat{\beta}_{h}(\tau) \) satisfies the first-order condition \(\hat{R}_{h}^{(1)}(\hat{\beta}_{h}(\tau); \tau) = 0 \). Recall from the proof of Theorem 1 that \(\hat{R}_{h}^{(2)}(\cdot; \tau) \) has an inverse in the vicinity of \(\beta_{h}(\tau) \) for \(n \) large enough on \(\mathcal{E}^{2}(r) \). Applying the implicit function theorem then yields \(\hat{\beta}_{h}(\tau) \) continuous over the admissible \((\tau, h)\). Accordingly,
\[
-\hat{R}_{h}^{(1)}(\hat{\beta}_{h}(\tau); \tau) = \hat{R}_{h}^{(1)}(\hat{\beta}_{h}(\tau); \tau) - \hat{R}_{h}^{(1)}(\beta_{h}(\tau); \tau)
= [\hat{\beta}_{h}(\tau) - \beta_{h}(\tau)] \int_{0}^{1} \hat{R}_{h}^{(2)}(\beta_{h}(\tau) + t[\hat{\beta}_{h}(\tau) - \beta_{h}(\tau)]; \tau) \, dt.
\]
Now, if \(\varepsilon \) in \(\mathcal{E}_{n}^{3}(\varepsilon) \) is small enough, the eigenvalues of the above matrix are in \([1/C, C]\) for a large \(C \) provided that \(n \) is large enough, uniformly in \(\tau \) and \(h \). This means that
\[
\hat{\beta}_{h}(\tau) - \beta_{h}(\tau) = -\left[\int_{0}^{1} \hat{R}_{h}^{(2)}(\beta_{h}(\tau) + u[\hat{\beta}_{h}(\tau) - \beta_{h}(\tau)]; \tau) \, du \right]^{-1} \hat{R}_{h}^{(1)}(\beta_{h}(\tau); \tau).
\]
Lemma 1(iv) then implies that, for a generic constant \(C \) coming from Bernstein-type inequalities,
\[
P_{2} := \left\| \sqrt{n} (\hat{\beta}_{h}(\tau) - \beta_{h}(\tau)) + \left[R_{h}^{(2)}(\beta_{h}(\tau); \tau) \right]^{-1} \sqrt{n} \hat{R}_{h}^{(1)}(\beta_{h}(\tau); \tau) \right\|
\leq C \left\| \int_{0}^{1} \left[\hat{R}_{h}^{(2)}(\beta_{h}(\tau) + u[\hat{\beta}_{h}(\tau) - \beta_{h}(\tau)]; \tau) - R_{h}^{(2)}(\beta_{h}(\tau) + u[\hat{\beta}_{h}(\tau) - \beta_{h}(\tau)]; \tau) \right] \, du \left\| \sqrt{n} \hat{R}_{h}^{(1)}(\beta_{h}(\tau); \tau) \right\| \right. \\
+ C \left\| \int_{0}^{1} \left[\hat{R}_{h}^{(2)}(\beta_{h}(\tau) + u[\hat{\beta}_{h}(\tau) - \beta_{h}(\tau)]; \tau) - R_{h}^{(2)}(\beta_{h}(\tau); \tau) \right] \, du \left\| \sqrt{n} \hat{R}_{h}^{(1)}(\beta_{h}(\tau); \tau) \right\| \right. \\
\leq C \left\{ \sqrt{\frac{\ln n}{nh}} r^{2} + \left\| \hat{\beta}_{h}(\tau) - \beta_{h}(\tau) \right\| \sqrt{n} \hat{R}_{h}^{(1)}(\beta_{h}(\tau); \tau) \right\} \\
\leq C \left\{ \sqrt{\frac{\ln n}{nh}} r^{2} + n^{-1/2} \left\| \sqrt{n} \hat{R}_{h}^{(1)}(\beta_{h}(\tau); \tau) \right\|^{2} \right\} \\
\leq C \left\{ \sqrt{\frac{\ln n}{nh}} + \frac{1}{\sqrt{n}} \right\} r^{2}
\]
on \(\mathcal{E}_{n}^{1}(r) \) and \(\mathcal{E}_{n}^{2}(r) \), implying that \(\mathcal{E}_{n}(r) \) holds as long as \(C_{0} \) of the Proposition is large enough. ■

Proof of Lemma 5 Let \(h = h_{n} \) to simplify notation. We first note that \(\mathbb{E}(\sqrt{n} \hat{S}_{h}(\tau)) = 0 \). In addition, for any \(\alpha, \tau \in [\tau, \bar{\tau}] \), it follows that
\[
\mathbb{V}(\sqrt{n} \hat{S}_{h}(\tau), \sqrt{n} \hat{S}_{h}(\tau)) = \mathbb{E} \left\{ XX' \left[K \left(-\frac{e(\beta_{h}(\tau))}{h} \right) - \tau \right] \left[K \left(-\frac{e(\beta_{h}(\tau))}{h} \right) - \tau \right] \right\}
\]
8
converges to \(\mathbb{E}\{XX'(I[X^\prime \beta(\cdot) \geq Y] - \tau)(I[X^\prime \beta(\cdot) \geq Y] - \tau)\} \) as \(n \to \infty \). A simple computation using iterated expectations then yields the limiting covariance structure in (22).

By the Cramér-Wold device, in order to obtain weak convergence for the \(d \)-dimensional process \(\{\sqrt{n} \hat{S}_h : \tau \in [\bar{\tau}, \bar{\tau}]\} \), it suffices to consider the convergence in distribution of the linear form \(\{\sqrt{n} \lambda' \hat{S}_h : \tau \in [\bar{\tau}, \bar{\tau}]\} \), where \(\lambda \) is an arbitrary (fixed) vector in \(\mathbb{R}^d \). Assume without loss of generality that \(\|X\| \leq 1 \) and \(\|\lambda\| \leq 1 \), and let \(Z = (Y, X) \in \mathbb{R} \times \mathbb{R}^d \) and, similarly, \(Z_i = (Y_i, X_i) \). Define now \(g_{n,\tau} : \mathbb{R} \times \text{supp}X \to \mathbb{R} \) for \(x = (y, x) \) as

\[
g_{n,\tau}(x) := x \lambda \left\{ K \left(\frac{x' \beta_h(\tau) - y}{\hat{h}} \right) - \tau \right\},
\]

where \(x_\lambda = \lambda' x \) and \(X_\lambda = \lambda' X \), and consider the class of functions \(\mathcal{G}_n = \{g_{n,\tau} : \tau \in [\bar{\tau}, \bar{\tau}]\} \). Letting \(\mathbb{P} \) and \(\mathbb{P}_n \) respectively denote the distribution of \(Z \) and the empirical distribution of the sample \((Z_1, \ldots, Z_n) \) yields

\[
\sqrt{n} \lambda' \hat{S}_h(\tau) = \sqrt{n}(\mathbb{P}_n g_{n,\tau} - \mathbb{P} g_{n,\tau}).
\]

In other words, the process \(\{\sqrt{n} \lambda' \hat{S}_h : \tau \in [\bar{\tau}, \bar{\tau}]\} \) is an empirical process indexed by a (changing) class of functions \(\mathcal{G}_n \). By Theorem 19.28 in van der Vaart (1998), it suffices to establish that

\[
\sup_{|\tau - \varsigma| < \delta(n)} \mathbb{E}|g_{n,\tau}(Z) - g_{n,\varsigma}(Z)|^2 \to 0 \tag{30}
\]

and that, for any \(\delta(n) \downarrow 0 \),

\[
\int_0^{\delta(n)} \sqrt{\ln N_{\|\|}(\epsilon, \mathcal{G}_n, L^2(\mathbb{P}))} \, d\epsilon \to 0 \tag{31}
\]

with \(N_{\|\|}(\epsilon, \mathcal{G}_n, L^2(\mathbb{P})) \) denoting the minimum number of \(\epsilon \)-brackets in \(L^2(\mathbb{P}) \) required to cover \(\mathcal{G}_n \). The remaining requirements of Theorem 19.28 indeed hold trivially in view that the index set \([\bar{\tau}, \bar{\tau}] \) is a compact—and so, totally bounded—metric space, and that the changing classes \(\mathcal{G}_n \) admit envelope functions \(G_n \equiv 1 \) for all \(n \) that satisfy the Lindeberg condition \(\mathbb{E}_2(G_n^2 \mathbb{E}[G_n > \sqrt{n}\epsilon]) \to 0 \).

Let \(\partial_\tau := \frac{\partial}{\partial \tau} \). By Lemma 1 and Theorem 1, applying twice the implicit function theorem yields

\[
\partial_\tau \beta_h(\tau) = -D_h(\tau)^{-1} \partial_\tau R_h^{(1)}(\beta_h(\tau); \tau) = D_h(\tau)^{-1} \mathbb{E}(X) = (D(\tau) + o(1))^{-1} \mathbb{E}(X) = \partial_\tau \beta(\tau) + o(1)
\]

uniformly for \((\tau, h) \in [\bar{\tau}, \bar{\tau}] \times [\bar{h}, \bar{h}] \). This implies, by Assumption Q1, that \(\sup \|\partial_\tau \beta_h(\tau)\| \leq C \) for \(n \) large enough, with supremum taken over \((\tau, h) \in [\bar{\tau}, \bar{\tau}] \times [\bar{h}, \bar{h}] \), and so \(\|\beta_h(\tau) - \beta_h(\varsigma)\| \leq C|\tau - \varsigma| \). It also follows from the inverse function theorem and Assumption Q1 that \(\tau \mapsto x' \beta_h(\tau) \) is strictly increasing in \(\tau \), for any \(x \in \text{supp}X \) and \(n \) large enough. In what follows, we assume that \(n \) is large enough, so that the above holds.

Now, let \(\tau_L \leq \tau_U \leq \bar{\tau} \) and consider two random elements (possibly degenerate) \(\bar{\tau} \) and \(\bar{\varsigma} \) in \([\tau_L, \tau_U] \). The mean value theorem and Assumption Q2 then ensure that

\[
\Pr\left(x' \beta_h(\bar{\tau} \wedge \bar{\varsigma}) - hu \leq Y \leq x' \beta_h(\bar{\tau} \vee \bar{\varsigma}) - hu \mid X = x \right) \leq C |\tau_U - \tau_L|, \tag{32}
\]

uniformly for \(u \in \mathbb{R} \) and \(x \in \text{supp}X \), given that \([x' \beta_h(\bar{\tau} \wedge \bar{\varsigma}), x' \beta_h(\bar{\tau} \vee \bar{\varsigma})] \subset [x' \beta_h(\tau_L), x' \beta_h(\tau_U)] \) and \(|x' \beta_h(\tau_U) - x' \beta_h(\tau_L)| \leq C|\tau_U - \tau_L| \). Define \(\Upsilon_u = \{X' \beta_h(\bar{\tau} \wedge \bar{\varsigma}) - Y \leq hu \leq X' \beta_h(\bar{\tau} \vee \bar{\varsigma}) - Y\} \).
It follows from \(|g_{n,\tau}(Z) - g_{n,\zeta}(Z)| \leq \int \mathbb{I}(\mathcal{Y}_u) \, |k(u)| \, du + |\tau - \zeta| \) that

\[
\mathbb{E}|g_{n,\tau}(Z) - g_{n,\zeta}(Z)|^2 \leq \mathbb{E}|\tau - \zeta|^2 + 2\mathbb{E}\left[|\tau - \zeta| \int \mathbb{I}(\mathcal{Y}_u) \, |k(u)| \, du \right] + \mathbb{E}\left[\int \mathbb{I}(\mathcal{Y}_u) \, |k(u)| \, du \right]^2 \\
\leq |\tau_U - \tau_L|^2 + 2 |\tau_U - \tau_L| \int \Pr(\mathcal{Y}_u) \, |k(u)| \, du + C \int \Pr(\mathcal{Y}_u) \, |k(u)| \, du \\
\leq C |\tau_U - \tau_L|, \tag{33}
\]

(34) given that the Cauchy-Schwarz inequality implies that \(\int \mathbb{I}(\mathcal{Y}_u) \, |k(u)| \, du \int |k(u)| \, du \) is an upper bound for \(\left(\int \mathbb{I}(\mathcal{Y}_u) \, |k(u)|^{1/2} \, |k(u)|^{1/2} \, du \right)^2 \), \(\int |k(u)| \, du < \infty \) by Assumption K1, and \(\Pr(\mathcal{Y}_u) = \mathbb{E}\left[\Pr(\mathcal{Y}_u | X) \right] \leq C |\tau_U - \tau_L| \) by iterated expectations and (32). Taking \(\tau \) and \(\zeta \) to be deterministic shows that (30) holds, for all \(\delta(n) \downarrow 0 \).

We now obtain a set of brackets whose bracketing number is of order \(1/\epsilon \). For \(\epsilon > 0 \) small enough, we cover the interval \([\tau, \tau]\) with \(J(\epsilon) \leq \lfloor (\tau - \tau) / \epsilon + 1 \rfloor \leq 2/\epsilon \) open intervals \(B_i = (\tau_i - \epsilon, \tau_i + \epsilon) \), and let \(\tilde{g}_i^i(z) = \sup_{r \in B_i} g_{n,\tau}(z) \) and \(g_i^i(z) = \inf_{r \in B_i} g_{n,\tau}(z) \). It is straightforward to appreciate that the collection formed by the brackets \([g_i^i, \tilde{g}_i^i]\), with \(i = 1, \ldots, J(\epsilon) \), covers \(\mathcal{G}_n \) and that these suprema and infima are attained in the closure of \(B_i \).\(^6\) In particular, \(\tilde{g}_i^i(Z) = g_{n,\tau_i}(Z) \) and \(g_i^i(Z) = g_{n,\zeta_i}(Z) \), where \(\tau_i \) and \(\zeta_i \) are random elements in \([\tau_i - \epsilon, \tau_i + \epsilon]\). Resorting to (34) once more then gives

\[
\mathbb{E}|\tilde{g}_i^i(Z) - g_i^i(Z)|^2 \leq C\epsilon,
\]

and, as a result, \(N_{\|/(\epsilon, \mathcal{G}_n, L^2(P)) \leq C/\epsilon \). This ensures that (31) holds for all \(\delta(n) \downarrow 0 \).

\(^6\) For \(n = 1 \) and \(n = J(\epsilon) \), the intervals are actually \([\tau, \tau_i + \epsilon]\) and \([\tau_i - \epsilon, \tau]\), respectively. For simplicity of exposition, we keep the notation as above.