Stochastic search variable selection for split-plot and blocked screening designs (supplementary material)

To perform the Gibbs sampling, we use WinBUGS (Spiegelhalter et al., 2003) software to construct our code. Table S1 provides a general code for the Gibbs sampling algorithm, which can be used to analyze data from any $n \times m$ SPDS design with w whole plots and $n \times m$ BDS design with w blocks. A list of the variables in the code and their corresponding model notations is given in Table S2. Let β_i be the ith element in β, where $i = 0, 1, \cdots, q$; δ_i be the ith element in δ, where $i = 1, \cdots, q$; γ_i be the ith element in γ, where $i = 1, \cdots, w$; and y_i be the ith element in y, where $i = 1, \cdots, n$. Table S1 consists of three main parts. The first part (lines 2–15) sets the probability for $\delta_i = 1$, where variables p, p_0, p_1, p_{00}, p_{01}, p_{10}, and p_{11} in the code correspond to the tuning parameters p, p_0, p_1, p_{00}, p_{01}, p_{10}, and p_{11}, respectively; variable m corresponds to the number of factors m; variable delta is a $1 \times q$ vector used for storing the values of δ_i’s; and variable pi is a $1 \times q$ vector used for storing the probabilities for $\delta_i = 1$. The second part (lines 16–17) sets variances for β_i’s, where variables c and τ correspond to the tuning parameters c and τ, respectively. Variable sig2.b is a 1×2 vector, where sig2.b[1] stores the variance of the main effect or two-factor interaction β_i ($i = 1, \cdots, q - m$) when $\delta_i = 0$, that is, τ^2, and sig2.b[2] stores the variance of β_i when $\delta_i = 1$, that is, $c^2\tau^2$. As mentioned in Section 3.1 (also shown in
Table S1: WinBUGS code of Gibbs sampling for three-level or definitive screening designs.

```plaintext
model{
  for(i in 1:m){
    pi[i]<-p
  }
  for(i in 1:(m-1)){
    for(j in (i+1): m){
      pi[m+(i-1)*(m-i)+(i-1)*i/2+(j-i)]<-p00*(1-delta[i])*(1-delta[j])
      +p01*(1-delta[i])*delta[j]
      +p10*delta[i]*(1-delta[j])
      +p11*delta[i]*delta[j]
    }
  }
  for(i in 1:m){
    pi[m+m*(m-1)/2+i]<-p0*(1-delta[i])+p1*delta[i]
  }
  sig2.b[1]<-pow(tau,2)
  sig2.b[2]<-pow(tau,2)*pow(c,2)
  b0~dnorm(0,1.0E-6)
  for(i in 1:(q-m)){
    inv.sig2.b[i]<-1/sig2.b[ind.b[i]]
    b[i]~dnorm(0,inv.sig2.b[i])
  }
  for(i in (q-m+1):q){
    inv.sig2.b[i]<-1/(sig2.b[ind.b[i]]*4)
    b[i]~dnorm(0,inv.sig2.b[i])
  }
  for(i in 1:q){
    delta[i]~dbern(pi[i]); ind.b[i]<-delta[i]+1
  }
  for(i in 1:w){
    gam[i]~dnorm(0,inv.sig2.gam)
  }
  sig.eps~dunif(1,100); inv.sig2.eps<-1/pow(sig.eps,2)
  sig.gam~dunif(1,100); inv.sig2.gam<-1/pow(sig.gam,2)
  for(i in 1:n){
    y[i]~dnorm(mu[i],inv.sig2.eps)
    mu[i]<-b0+inprod(b[],x[i])+gam[wp[i]]
  }
}
```
Table S2: Names of variables for the code in Table S1 and their corresponding model notations.

<table>
<thead>
<tr>
<th>Names of variables</th>
<th>Model notations</th>
<th>Names of variables</th>
<th>Model notations</th>
</tr>
</thead>
<tbody>
<tr>
<td>b[i]</td>
<td>$\beta_i \ (i \neq 0)$</td>
<td>p10</td>
<td>p_{10}</td>
</tr>
<tr>
<td>b0</td>
<td>β_0</td>
<td>p11</td>
<td>p_{11}</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>pi[i]</td>
<td>(conditional) probability of $\delta_i = 1$</td>
</tr>
<tr>
<td>delta[i]</td>
<td>δ_i</td>
<td>q</td>
<td>q</td>
</tr>
<tr>
<td>gam[i]</td>
<td>γ_i</td>
<td>sig. eps</td>
<td>σ_ϵ</td>
</tr>
<tr>
<td>ind.b[i]</td>
<td>$\delta_i + 1$</td>
<td>sig. gam</td>
<td>σ_γ</td>
</tr>
<tr>
<td>inv.sig2.b[1]</td>
<td>$1/\tau^2$</td>
<td>sig2.b[1]</td>
<td>τ^2</td>
</tr>
<tr>
<td>inv.sig2.eps</td>
<td>$1/\sigma_\epsilon^2$</td>
<td>tau</td>
<td>τ</td>
</tr>
<tr>
<td>inv.sig2.gam</td>
<td>$1/\sigma_\gamma^2$</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>m</td>
<td>m</td>
<td>wp[i]</td>
<td>index of the whole plot or block that y_i belongs to</td>
</tr>
<tr>
<td>mu[i]</td>
<td>mean of y_i</td>
<td>x[i,]</td>
<td>ith row of model matrix (excluding the intercept)</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>y[i]</td>
<td>y_i</td>
</tr>
<tr>
<td>p0</td>
<td>p_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p00</td>
<td>p_{00}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p01</td>
<td>p_{01}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p1</td>
<td>p_1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
levels of quadratic effects range from 0 to 1, which are different from those of main effects and two-factor interactions (ranging from \(-1\) to 1). To ensure that all effects are interpreted on the same scale, variances of quadratic effects should be four times those of main and two-factor interactions (Gilmour and Goos, 2009). Thus, the variance of quadratic effect \(\beta_i\) \((i = q - m + 1, \ldots, q)\) is \(4\times\text{sig2.b}[1]\) when \(\delta_i = 0\) and \(4\times\text{sig2.b}[2]\) when \(\delta_i = 1\) (lines 23–26). The third part (lines 18–38) conducts Gibbs sampling, where \(b_0\) corresponds to \(\beta_0\); \(q\) corresponds to \(q\); \(w\) corresponds to the number of whole plots or blocks \(w\); \(b\) is a \(1 \times q\) vector that stores values of \(\beta_1, \ldots, \beta_q\); \(\delta\) is a \(1 \times q\) vector that corresponds to \(\delta'\); \(\gamma\) is a \(1 \times q\) vector that corresponds to \(\gamma'\); \(y\) is a \(1 \times n\) vector that corresponds to \(y'\); and \(x\) is an \(n \times q\) matrix that corresponds to the model matrix \((x[,1], \ldots, x[,m])\) are associated with main effects \(\beta_1, \ldots, \beta_m\); \(x[,m+1], \ldots, x[,q-m]\) are associated with two-factor interactions \(\beta_{12}, \beta_{13}, \ldots, \beta_{1m}, \beta_{23}, \ldots, \beta_{(m-1)m}\); and \(x[,q-m+1], \ldots, x[,q]\) are associated with quadratic effects \(\beta_{11}, \ldots, \beta_{mm}\). The Gibbs sampling algorithm consists of the following processes:

1. a Normal draw for \(\beta_0|\{\beta_j\}_{j \neq 0}, \delta, \gamma, \sigma_\gamma, \sigma_\epsilon\) (line 18).

2. \(q\) Normal draws for \(\beta_i|\{\beta_j\}_{j \neq i}, \delta, \gamma, \sigma_\gamma, \sigma_\epsilon\), where \(i = 1, \ldots, q\) (lines 19–22 indicate the main effects and two-factor interactions, and lines 23–26 indicate the quadratic effects, where \(\text{inv.sigt2.b}\) stores the inverse of \(\text{sig2.b}\); and \(\text{ind.b}[i]\) indicates whether \(\beta_i\) is active \((\text{ind.b}[i] = 2)\) or not \((\text{ind.b}[i] = 1)\)).

3. \(q\) Bernoulli draws for \(\delta_i|\beta, \{\delta_j\}_{j \neq i}, \gamma, \sigma_\gamma, \sigma_\epsilon\), where \(i = 1, \ldots, q\) (lines 27–29).

4. \(w\) Normal draws for \(\gamma_i|\beta, \delta, \{\gamma_j\}_{j \neq i}, \sigma_\gamma, \sigma_\epsilon\), where \(i = 1, \ldots, w\) (lines 30–32, where \(\text{inv.sigt2.gam}\) corresponds to \(1/\sigma_\gamma^2\)).

5. a Uniform draw for \(\sigma_\epsilon|\beta, \delta, \gamma, \sigma_\gamma\) (line 33, where \(\text{sig.eps}\) corresponds to \(\sigma_\epsilon\), and \(\text{inv.sigt2.eps}\) corresponds to \(1/\sigma_\epsilon^2\)).
6. a Uniform draw for $\sigma_\gamma | \beta, \delta, \gamma, \sigma_\varepsilon$ (line 34, where sig.gam corresponds to σ_γ).

7. n Normal draws for $y_i | \beta, \delta, \gamma, \sigma_\gamma, \sigma_\varepsilon$, where $i = 1, \cdots, n$ (lines 35–38, where mu stores means of y and wp[i] indicates which whole plot or block y_i belongs to).

To perform Gibbs sampling using WinBUGS, we have to add sections DATA and INITS. In the DATA section, the following should be provided: $n \times 1$ vector of responses (y), $n \times q$ model matrix (x, excluding the column for the intercept), $n \times 1$ vector of the whole plot or block indexes (wp), number of runs (n), number of factors (m), number of whole plots or blocks (w), number of latent variables (q), and tuning parameters (p, $p0$, $p1$, $p00$, $p01$, $p10$, $p11$, c, and tau). In the INITS section, a list of initial values for the following variables should be specified: $b0$, b, delta, gam, sig.gam, and sig.eps. In the event the screening design is a two-level design rather than a definitive screening design, quadratic effects can be dropped from the winBUGS code (see Table S3).

References

Table S3: WinBUGS code of Gibbs sampling for two-level screening designs.

```plaintext
model{
  for(i in 1:m){
    pi[i]<-p
  }
  for(i in 1:(m-1)){
    for(j in (i+1): m){
      pi[m+(i-1)*(m-i)+(i-1)*i/2+(j-i)]<-p00*(1-delta[i])*(1-delta[j])
      +p01*(1-delta[i])*delta[j]
      +p10*delta[i]*(1-delta[j])
      +p11*delta[i]*delta[j]
    }
  }
  sig2.b[1]<-pow(tau,2)
  sig2.b[2]<-pow(tau,2)*pow(c,2)
  b0~dnorm(0,1.0E-6)
  for(i in 1:q){
    inv.sig2.b[i]<-1/sig2.b[ind.b[i]]
    b[i]~dnorm(0,inv.sig2.b[i])
  }
  for(i in 1:w){
    delta[i]~dbern(pi[i]); ind.b[i]<-delta[i]+1
  }
  for(i in 1:w){
    gam[i]~dnorm(0,inv.sig2.gam)
  }
  sig.eps~dunif(1,100); inv.sig2.eps<-1/pow(sig.eps,2)
  sig.gam~dunif(1,100); inv.sig2.gam<-1/pow(sig.gam,2)
  for(i in 1:n){
    y[i]~dnorm(mu[i],inv.sig2.eps)
    mu[i]<-b0+inprod(b[],x[i,])+gam[wp[i]]
  }
}
```