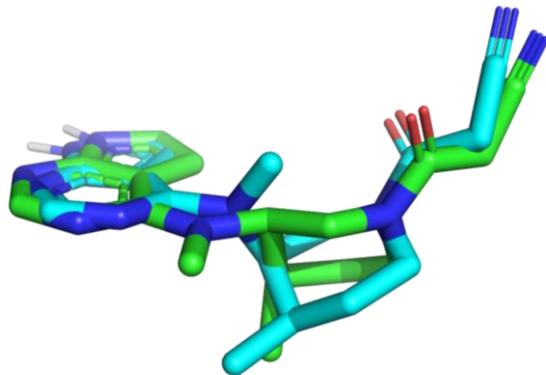
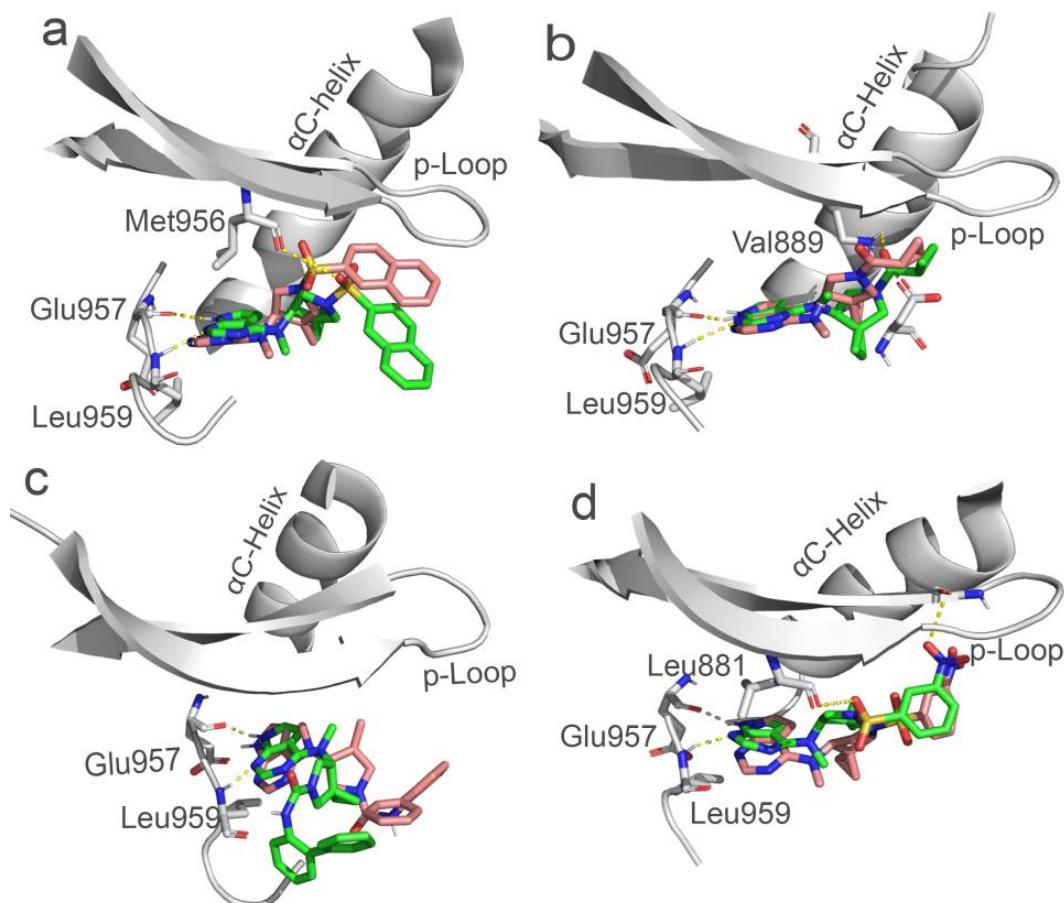


Molecular modeling studies of pyrrolo[2,3-d]pyrimidin-4-amine derivatives as JAK1 inhibitors based on 3D-QSAR, molecular docking, molecular dynamics (MD) and MM-PBSA calculations.


Seketoulie Keretsu^a, Swapnil P. Bhujbal^a, Seung Joo Cho^{a,b,*}

^a *Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea*


^b *Department of Cellular Molecular Medicine, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea*

Supplementary Material

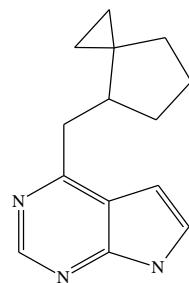
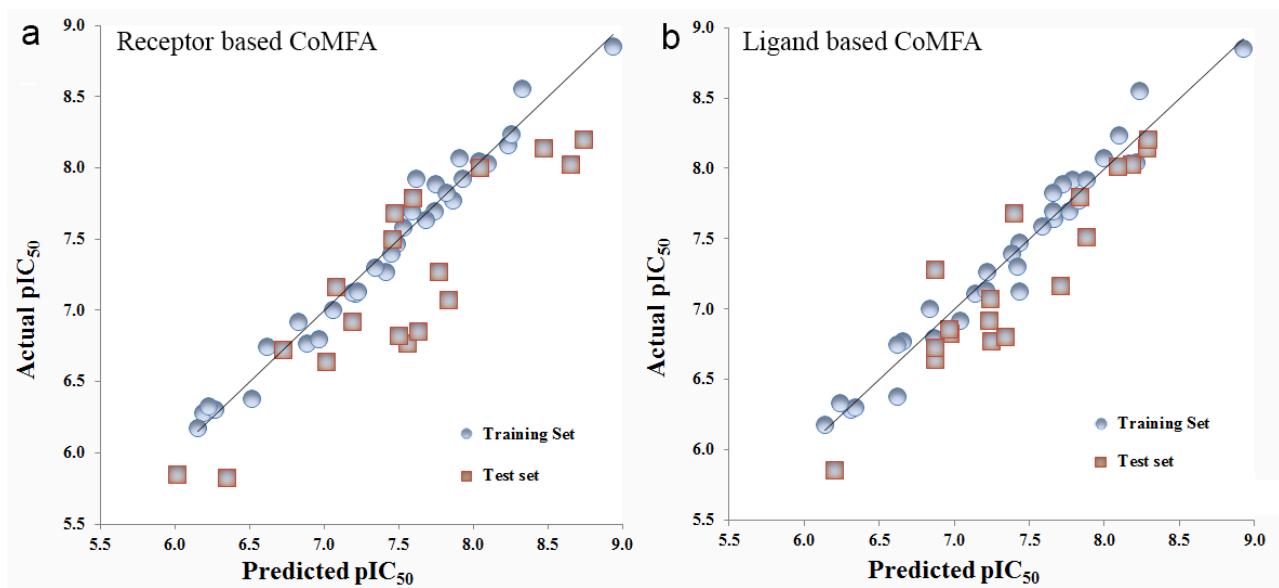
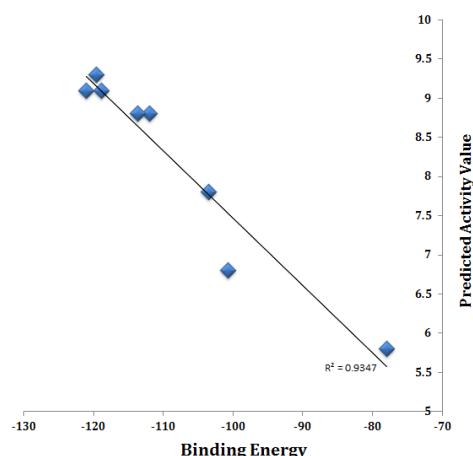
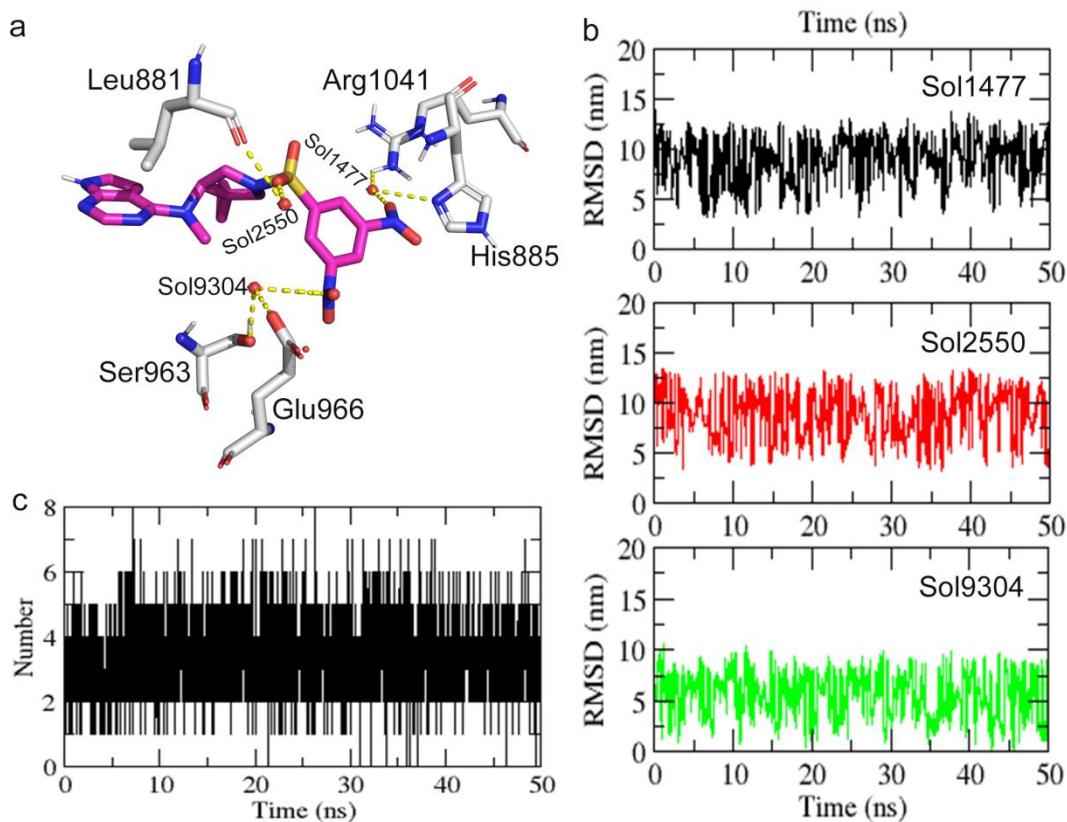
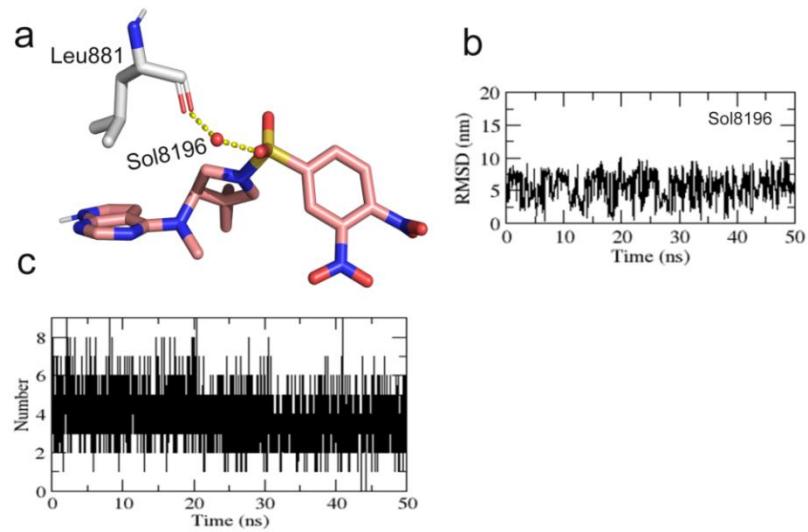

Figure S1: The crystal structure pose of **CP-690550** (PDB 3EYG) overlapped with the docked pose inside JAK1

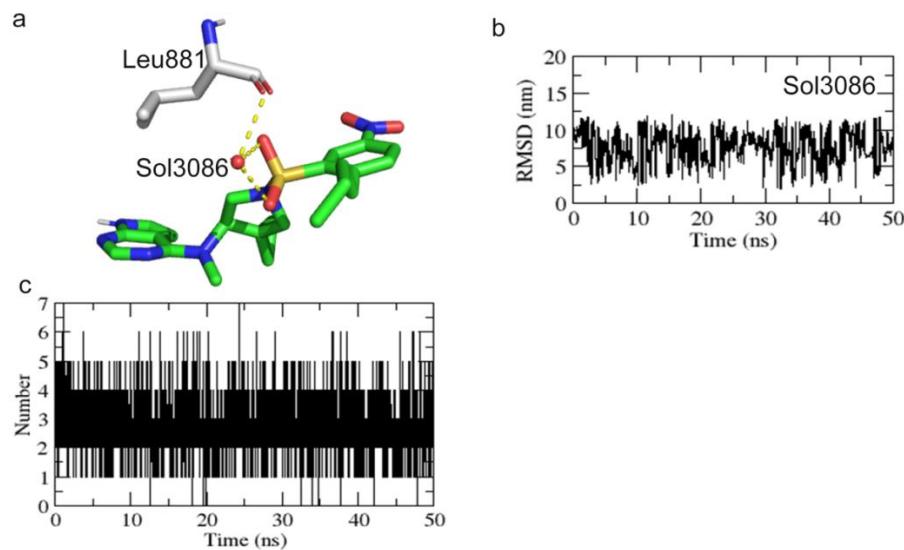
Figure S2. Comparison of the binding poses of the compounds **03**, **13**, **36** and **49** before (salmon) and after (green) the Molecular Dynamics simulations. a) Binding pose of compound **03** with JAK1 b) Binding pose of compound **13** with JAK1. (c) Binding pose of compound **36** with JAK1. (d) Binding pose of compound **49** with JAK1.

Figure S3. The common substructure used for the alignment of the dataset compounds.

Figure S4. Scatter plot for the receptor-based CoMFA model and the ligand-based CoMFA model. (a) Receptor-based CoMFA model for JAK1 (b) Ligand-based CoMFA model for JAK1. The values on x-axis and y-axis represent the predicted pIC_{50} value and the experimental/actual pIC_{50} values respectively.


Figure S5. The scatter plot of the predicted activity value and the binding energy value for compound **03, 13, 36, 49, D57, D58, D75** and **D98**.


Figure S6. Analysis of the water molecules that participated in water mediated H-bond interactions between compound **D57** and JAK1. (a) The water mediated interactions observed between compound **D57** and JAK1. (b) The root mean square deviation (RMSD) of the water molecules (c) The number of H-bond interactions with water molecules observed throughout the MD simulation.

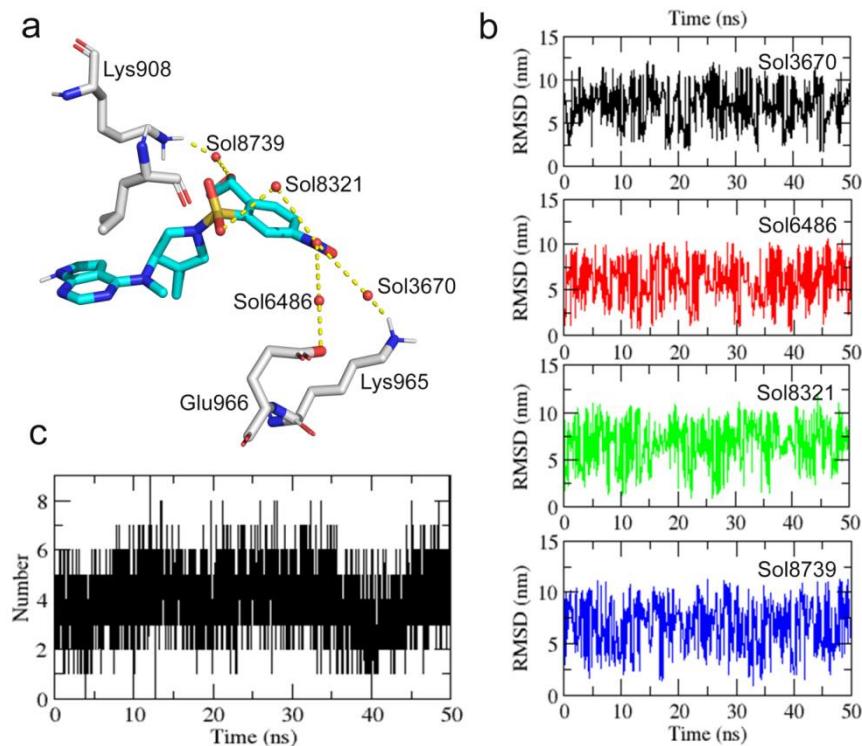
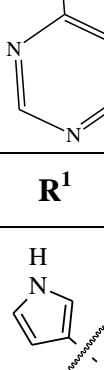
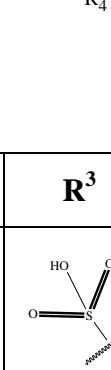
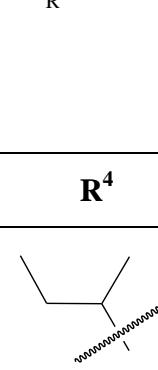
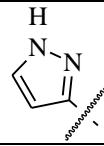
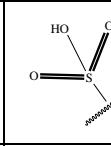
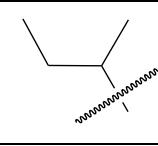
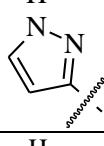
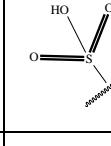
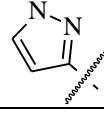
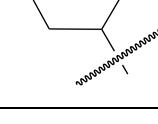

Figure S7. Analysis of the water molecules that participated in water mediated H-bond interactions between compound **D58** and JAK1. (a) The water mediated interactions observed between compound **D58** and JAK1. (b) The root mean square deviation (RMSD) of the water molecules (c) The number of H-bond interactions with water molecules observed throughout the MD simulation.

Figure S8. Analysis of the water molecules that participated in water mediated H-bond interactions between compound **D75** and JAK1. (a) The water mediated interactions observed between compound **D75** and JAK1. (b) The root mean square deviation (RMSD) of the water molecules (c) The number of H-bond interactions with water molecules observed throughout the MD simulation.

Figure S9. Analysis of the water molecules that participated in water mediated H-bond interactions between compound **D98** and JAK1. (a) The water mediated interactions observed between compound **D98** and JAK1. (b) The root mean square deviation (RMSD) of the water molecules (c) The number of H-bond interactions with water molecules observed throughout the MD simulation.











Table S1. The experimental/actual and predicted pIC₅₀ values with their residuals for the receptor-based CoMFA and the ligand-based CoMFA for JAK1.

Compound	Experimental pIC ₅₀	Receptor based model		Ligand-based model	
		Predicted pIC ₅₀	Residual	Predicted pIC ₅₀	Residual
1	8.03	8.10	-0.07	8.16	-0.13
2 [*]	7.79	7.60	0.19	7.84	-0.05
3	7.77	7.87	-0.10	7.83	-0.06
4 [*]	7.82	7.82	0.00	7.66	0.17
5	7.50	7.46	0.04	7.88	-0.38
6 [*]	8.07	7.91	0.16	8.00	0.07
7 [*]	5.85	6.02	-0.17	6.20	-0.35
8	6.64	7.02	-0.38	7.40	-0.76
9	6.92	6.83	0.09	7.04	-0.12
10 [*]	7.68	7.48	0.21	6.87	0.81
11	7.11	7.22	-0.10	7.14	-0.02
12	6.77	7.56	-0.79	7.25	-0.48
13	6.77	6.89	-0.12	6.66	0.11
14	6.28	6.20	0.09	6.31	-0.03
15 [*]	6.17	6.15	0.02	6.14	0.04
16	6.74	6.62	0.13	6.62	0.12
17 [*]	7.27	7.77	-0.50	6.87	0.40
18	6.82	7.50	-0.68	6.98	-0.15
19	6.80	6.96	-0.17	6.87	-0.07
20 [*]	6.85	7.64	-0.79	6.97	-0.12
21	7.00	7.06	-0.06	6.84	0.16
22	6.72	6.73	-0.01	6.88	-0.16
23 [*]	6.30	6.27	0.03	6.34	-0.04
24	6.38	6.52	-0.14	6.62	-0.25
25 [*]	7.70	7.75	-0.05	7.76	-0.07
26	7.47	7.49	-0.02	7.44	0.03
27	7.12	7.19	-0.07	7.44	-0.31
28	7.16	7.08	0.08	7.71	-0.55
29 [*]	7.92	7.62	0.30	7.79	0.14
30	7.64	7.69	-0.05	7.67	-0.03
31	6.92	7.19	-0.27	7.24	-0.32
32 [*]	7.40	7.45	-0.05	7.38	0.01
33	7.27	7.42	-0.15	7.22	0.05
34	7.13	7.23	-0.09	7.21	-0.08
35	7.07	7.84	-0.77	7.24	-0.17
36 [*]	5.82	6.35	-0.53	6.30	-0.48
37	6.33	6.23	0.10	6.24	0.09
38	8.14	8.47	-0.33	8.28	-0.14
39 [*]	7.70	7.59	0.11	7.66	0.04
40 [*]	8.16	8.23	-0.07	8.29	-0.13
41	8.05	8.04	0.00	8.21	-0.17

42	7.89	7.75	0.14	7.72	0.17
43	8.55	8.33	0.22	8.24	0.32
44	8.02	8.65	-0.63	8.18	-0.16
45	7.30	7.35	-0.04	7.42	-0.12
46	8.24	8.25	-0.02	8.10	0.14
47[*]	8.00	8.05	-0.05	8.09	-0.09
48	7.59	7.54	0.05	7.59	0.00
49	8.85	8.84	0.01	8.92	-0.07
50[*]	8.20	8.74	-0.54	8.30	-0.10
51	7.92	7.93	-0.01	7.88	0.04

* Test set compounds

Table S2. The chemical structures and the predicted pIC_{50} values of some of the newly designed compounds that showed pIC_{50} values greater than 8.0.

Compounds	R¹	R²	R³	R⁴	X	Predicted pIC_{50}
D105		-			N	8.1
D106		-			N	8.2
D107		-		Cyclohexane	N	8.2
D108		-	NO ₂		N	8.4

D114	NO ₂	-			N	8.2
D115	COCH ₂ CH ₃	-	NO ₂	Cyclohexane	N	8.8
D116	NO ₂	-	NO ₂	Cyclohexane	N	8.6
D117	CONH ₂	-	NO ₂	Cyclohexane	N	8.6
D119	NO ₂	-	SO ₂ NH ₂	(CH ₂) ₃ CH ₃	N	8.0
D120	N ₃	-	SO ₂ NH ₂	(CH ₂) ₃ CH ₃	N	8.0