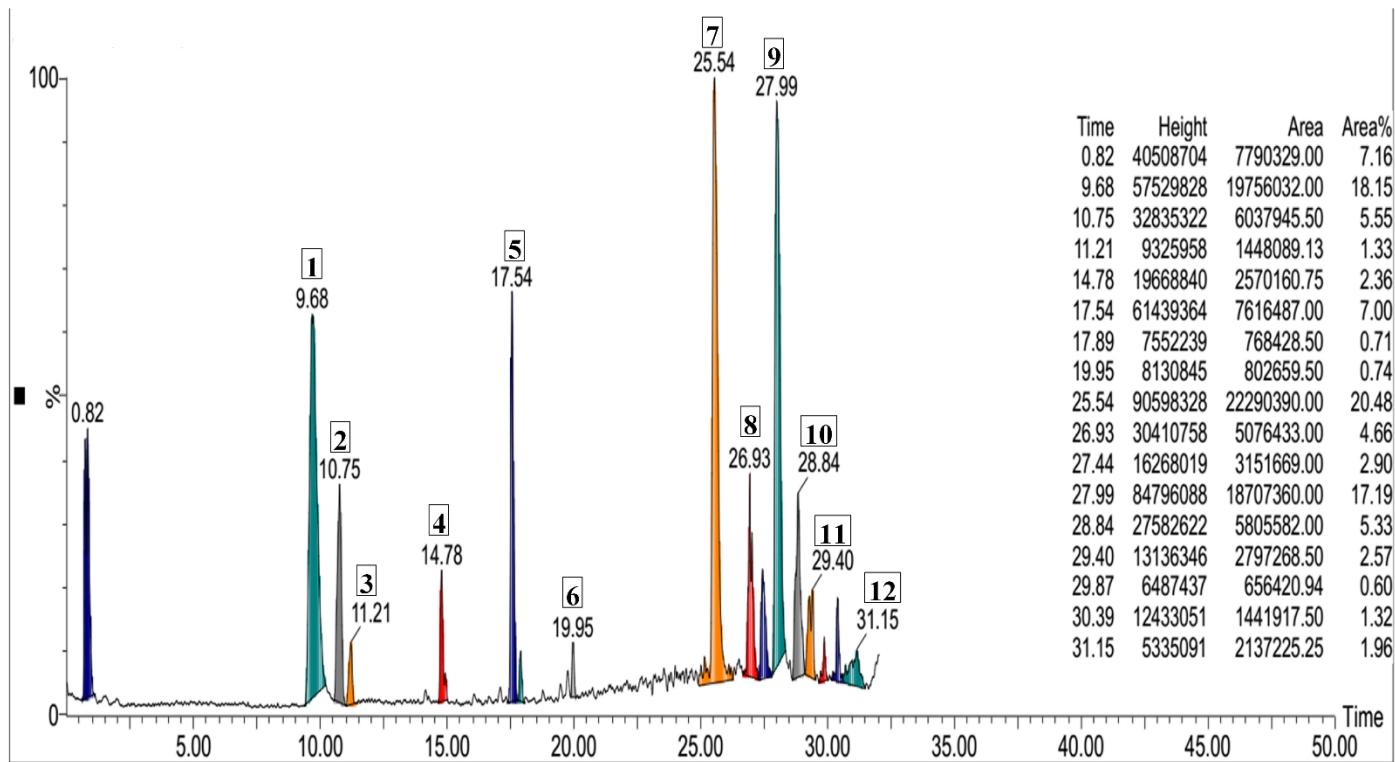


LC-ESI-MS/MS detecting conditions and results of pomegranate extract (PE)

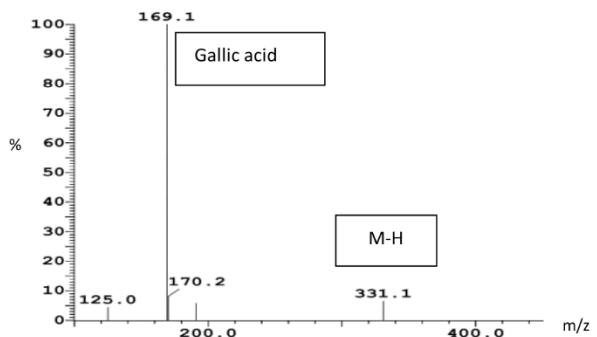
Liquid chromatography–electrospray ionization–mass spectrometry (LC-ESI-MS/MS) conditions and apparatus:

10 μ l sample was injected into ultra-performance liquid chromatography (UPLC) instrument equipped with reverse phase C-18 column (ACQUITY UPLC - BEH C18, 1.7 μ m particle size - 2.1 \times 50 mm Column). Sample mobile phase was prepared by 0.2 μ m filter membrane disc and degassed by sonication before injection. Mobile phase elution was made using gradient mobile phase comprising two eluents: eluent A is 0.1% formic acid in water and eluent B is 0.1% formic acid in methanol. Elution was performed using the following gradient: 0-2 min (90%) A: (10%) B, 2-5 min (70%) A: (30%) B, 5-10 min. (30%) A: (70%) B, 15-25 min (10%) A: (90%) B, 25-29 min (100%) B, finally, 29-32 min (90%) A: (10%) B. The flow rate of the mobile phase was 0.2 ml/min, and the injection volume was 10 μ l.

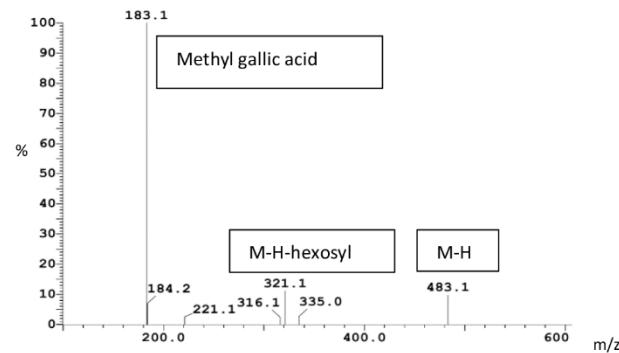
The LC-ESI-MS/MS analysis was carried out using a triple quadrupole mass spectrometer (Xevo TQ-D, Waters Corp., Milford, MA, USA) with an electrospray ionization (ESI) source. The mass spectrometer was operated in negative ion mode with the following conditions: source temperature 150 $^{\circ}$ C, cone voltage 30 eV, capillary voltage 3 kV, de-solvation temperature 440 $^{\circ}$ C, cone gas flow 50 L/h, and de-solvation gas flow 900 L/h. Mass spectra were detected in the ESI between 100–1000 m/z. The peaks and spectra were processed using the Masslynx 4.1 software and tentatively identified by comparing their retention times (R_t), mass spectra, and MS/MS fragmentation of the peaks with those of reported data.

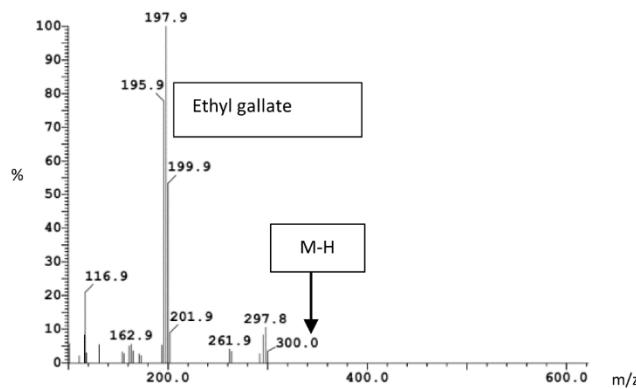

Results

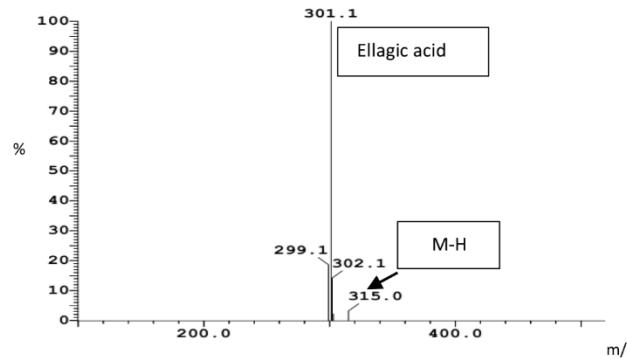
Identification of major phytoconstituents in PE using LC-ESI-MS/MS

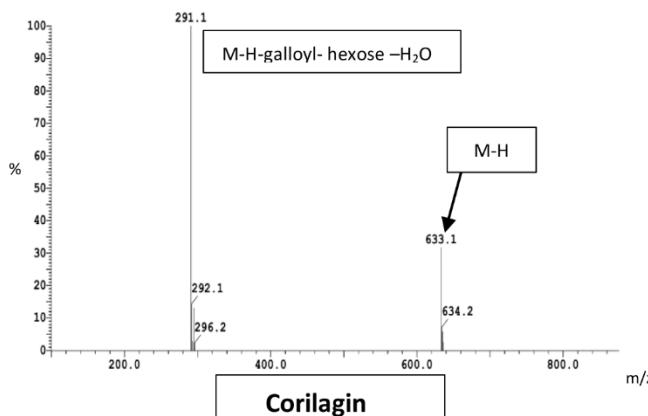

LC-ESI/MS/MS of PE revealed that twelve compounds were detected in the negative mode, of which nine were tentatively identified. The identified compounds were: Ellagic acid and its derivative (methyl ellagic acid), gallic acid, digalloyl hexoside, galloyl-hexoside, punicalin, pedunculagin, corilagin, and quercetin. Among them, ellagic acid and its derivative were the major identified compounds, accounting for 37.67 %, as depicted in **Supplementary Table 1** and **Supplementary Figure 1** and **Figure 2**.

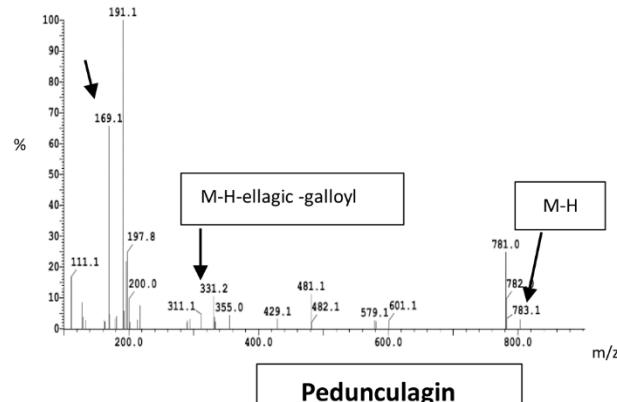
Supplementary Table 1. Major phytoconstituents in PE identified by LC-ESI-MS/MS.

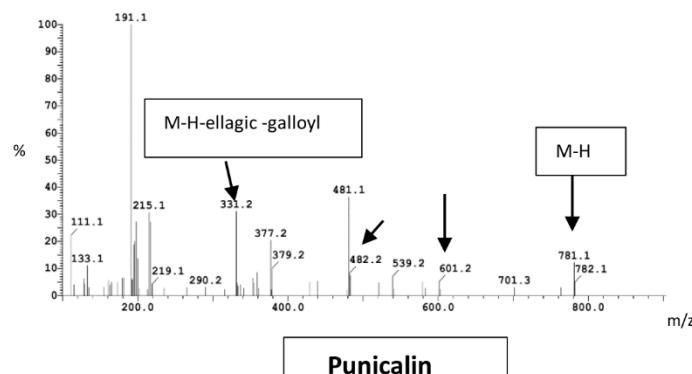

Peak number	Retention time (R_t) (min)	M-H	Fragmentation MS ²	Tentative assignment of the peaks	Chemical class	% Area	Reference
1	9.68	169	169, 125	Gallic acid	Phenolic acid	18.15	(Mena et al. 2012)
2	10.75	483	183, 184, 221, 316 321, 335, 483	Digalloyl hexoside	Phenolic acid derivative	5.55	(Gan et al. 2018)
3	11.21	519	358, 303, 195	Unidentified		1.33	
4	14.78	331	169, 125	Galloyl-hexoside	Phenolic acid derivative	2.36	(Liu and Seeram 2018)
5	17.54	781	601, 482, 331, 191	Punicalin	Ellagitannin	7.00	(Yan et al. 2017)
6	19.95	473	274 (100%), 256	Unidentified		0.74	
7	25.54	300	300	Ellagic acid	Phenolic acid	20.48	(Singh et al. 2016; Abid et al. 2017)
8	26.93	783	601, 481, 169	Pedunculagin	Ellagitannin	4.66	(Abid et al. 2017)
9	27.99	315	300, 299	Methyl Ellagic acid	Phenolic acid derivative	17.19	(Singh et al. 2016)
10	28.84	633	291 (100%)	Corilagin (Galloyl HHDP –hexoside)	Ellagitannin	5.33	(Salih et al. 2017; Radenkovs et al. 2018)
11	29.40	365	203, 133, 119	Unidentified		0.6	
12	31.15	302	301 (100%), 255, 144, 106	Quercetin	Flavonoid	1.96	(Li et al. 2016)


Supplementary Figure 1. Total ion chromatogram (TIC) for PE with Area % for each compound


Galloyl hexoside


Digalloyl hexoside


Ellagic acid


Methyl ellagic acid

Corilagin

Pedunculagin

Punicalin

Supplementary Figure 2. MS^2 fragmentation for the major identified compounds in PE.

References

Abid M, Yaich H, Cheikhrouhou S, Khemakhem, I, Bouaziz M, Attia H, Ayadi MA. 2017. Antioxidant properties and phenolic profile characterization by LC-MS/MS of selected Tunisian pomegranate peels. *J Food Sci Technol.* 54: 2890-2901.

Gan RY, Kong KW, Li HB, Wu K, Ge YY, Chan, CL, Shi XM, Corke H. 2018. Separation, identification, and bioactivities of the main gallotannins of red sword bean (*Canavalia gladiata*) coats. *Front Chem.* 6:39.

Li ZH, Guo H, Xu WB, Ge J, Li X, Alimu M, He DJ. 2016. Rapid identification of flavonoid constituents directly from PTP1B inhibitive extract of raspberry (*Rubus idaeus L.*) leaves by HPLC-ESI-QTOF-MS-MS. *J Chromatograph Sci.* 54: 805-810.

Liu Y, Seeram NP. 2018. Liquid chromatography coupled with time-of-flight tandem mass spectrometry for comprehensive phenolic characterization of pomegranate fruit and flower extracts used as ingredients in botanical dietary supplements. *J Sep Sci.* 41: 3022-3033.

Mena P, Calani L, Dall'Asta C, Galaverna G, García-Viguera C, Bruni R, Crozier A, Del Rio D. 2012. Rapid and comprehensive evaluation of (poly) phenolic compounds in pomegranate (*Punica granatum L.*) juice by UHPLC-MSn. *Molecules.* 17: 14821-14840.

Radenkova V, Püssa T, Juhnevica-Radenkova K, Anton D, Seglina D. 2018. Phytochemical characterization and antimicrobial evaluation of young leaf/shoot and press cake extracts from *Hippophae rhamnoides L.* *Food Biosci.* 24: 56-66.

Salih E, Fyhrquist P, Abdalla A, Abdelgadir A, Kanninen M, Sipi M, Luukkanen O, Fahmi M, Elamin M, Ali HA. 2017. LC-MS/MS tandem mass spectrometry for analysis of phenolic compounds and pentacyclic triterpenes in antifungal extracts of *Terminalia brownii* (Fresen). *Antibiotics (Basel).* 6: 37.

Singh A, Bajpai V, Kumar S, Sharma KR, Kumar B. 2016. Profiling of gallic and ellagic acid derivatives in different plant parts of *Terminalia arjuna* by HPLC-ESI-QTOF-MS/MS. *Nat Prod Comm.* 11: 1934578X1601100227.

Yan L, Zhou X, Shi L, Shalimu D, Ma C, Liu Y. 2017. Phenolic profiles and antioxidant activities of six Chinese pomegranate (*Punica granatum L.*) cultivars. *Int J Food Prop.* 20: S94-S107.