Electronic supplementary information for

Synthesis and Characterization of WO₃ and Ag₂O Nanoparticles and Their nanocomposite for Photocatalytic Degradation of dyes

Al-zoha Warsi⁵, Taloot Ahmad⁶, Fatima Aziz⁵, Muhammad Farooq Warsi*⁵, Sana Munir⁵, Philips O. Agboola⁶, Imran Shakir⁷

⁵Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan

⁶College of Engineering, Al-Muzahmia Branch, King Saud University, P.O. Box: 800, Riyadh, 11421, Saudi Arabia

⁷Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA

Corresponding author: farooq.warsi@iub.edu.pk
Figure 1(s): Degradation spectra of rhodamine-b with WO₃, Ag₂O and their hetero-junction Ag₂O/WO₃ respectively.

Figure 2(s): Degradation spectra of methylene blue with WO₃, Ag₂O and their hetero-junction Ag₂O/WO₃ respectively using ascorbic acid as scavenger.
Figure 3(s): Kinetic study of degradation of Methylene Blue with WO₃, Ag₂O and their hetero-junction Ag₂O/WO₃ respectively using ascorbic acid as scavenger.
Figure 4(s): Degradation spectra of methylene blue with WO$_3$, Ag$_2$O and their hetero-junction Ag$_2$O/WO$_3$ respectively using AgNO$_3$ as scavenger.
Figure 5(s): Kinetic study of degradation of Methylene Blue with WO$_3$, Ag$_2$O and their hetero-junction Ag$_2$O/WO$_3$ respectively using AgNO$_3$ as scavenger.