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Summary

This thesis investigates connections between model theory and extremal combinatorics. These two

fields seem quite far apart in their subject matter and approach to mathematics. Model theory largely

deals with infinite objects and uses very general tools, while extremal combinatorics largely deals

with finite objects and uses tools tailored to specific structures. In spite of these differences, many

important problems in both fields can be seen as versions of the same thematic question: how does

infinite structure arise as a “limit” of finite structure? Existing work suggests that bridges between

the two fields can be built by focusing on problems which address this question. Such bridges often

lead to important theorems. One example is Ramsey’s theorem, which was first proved to answer

a question in logic [91]. A question about logical zero-one laws motivated the important results

of Kolaitis, Prömel, and Rothschild in [66]. More recent work [38, 74, 75, 96] demonstrates that

dividing lines from infinite model theory can retain significance in the finite setting, reflected through

strong versions of Ramsey’s theorem and Szemerédi’s regularity lemma. This thesis furthers this

type of investigation in two ways: first by proving new theorems in extremal combinatorics which

are directly related to model theoretic questions, and second, by applying the model theoretic

perspective to existing theorems in combinatorics which address the shared thematic question. The

motivation for this work is that the model theoretic viewpoint often formalizes intuitive similarities

among results in different settings. We believe this type of organization could be especially useful

in finite combinatorics, where the search for examples and counterexamples is often ad hoc, and

where results about specific structures are hard to transfer to new settings. Further, the model

theoretic perspective naturally leads to problems which are interesting purely from the perspective

of combinatorics, and vice versa. We now give a brief summary of the contents of each chapter.

Chapter 2 contains background and motivation from the perspective of extremal combinatorics for

the work contained in Chapters 4, 5, and 6. Chapter 3 contains background and motivation from

the perspective of model theory for the work contained in Chapters 4, 5, and 6.

Chapter 4 gives an analysis, from the point of view of extremal combinatorics, of the family of finite

metric spaces with underlying set [n] and distance set [r], where r ≥ 3 is a fixed integer and n →
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SUMMARY vi

∞. Specifically, it provides asymptotic enumerations of the metric spaces and proves approximate

structure results about them. In the case when r is even, exact structural and enumeration results

are obtained, which imply the existence of a zero-one law. In this case we give an axiomatization of

the almost sure theory and show it differs from the theory of the Fräıssé limit of finite metric spaces

with distances in [r]. The work in this chapter is joint with D. Mubayi.

Chapter 5 investigates certain families of multigraphs from the perspective of extremal combinatorics.

An (n, s, q)-graph is an n-vertex multigraph where every set of s vertices spans at most q edges. In

Chapter 5, we study the problem of determining the maximum product of the edge multiplicities in

(n, s, q)-graphs. We prove sharp results if the congruence class of q modulo
(
s
2

)
is at most s− 2 and

at least
(
s
2

)
−s/2. One of the smallest case that falls outside this range is (s, q) = (4, 15), and here we

prove that the maximum product of the edge multiplicities is 2γn
2+O(n), where, assuming Schanuel’s

Conjecture, 2γ is transcendental. This could indicate the difficulty of solving the problem in full

generality. We also prove a variety of other results for (n, s, q)-graphs, including stability theorems

for the maximum product of edge multiplicities. Many of these results can be seen as extending

work by Bondy-Tuza and Füredi-Kündgen about sums of edge multiplicities to the product setting.

These results will also be used in Chapter 7 to prove enumeration theorems for (n, s, q)-graphs. The

work in this chapter is joint with D. Mubayi.

Chapter 6 uses model theory to unify under a general framework, a collection of approximate enu-

meration and structure theorems from extremal combinatorics. Given a finite relational language

L, a hereditary L-property is a class of L-structures which is closed under isomorphism and has

the model theoretic hereditary property. Given a hereditary L-property P, let Pn denote the set of

elements in P with underlying set [n]. There is a long line of research in extremal combinatorics

investigating asymptotic structure and enumeration results for Pn in the setting of graphs. For

instance in [3, 27], an asymptotic formula for |Pn| is determined in terms of a parameter related to

P called the coloring number of P. In Chapter 6, we define a generalization of the coloring number

to the setting of hereditary L-properties for arbitrary finite relational L. We use this parameter to

prove an enumeration theorem generalizing [3, 27]. We also generalize other notions from extremal

combinatorics, such as extremal graphs and graph stability theorems. Our techniques include a new

application of the hypergraph containers theorem to the setting of L-structures, and a generalization

of the graph removal lemma to the setting L-structures which was proved by Aroskar and Cum-

mings in [6]. This chapter generalizes a pattern of proof appearing in many papers from extremal

combinatorics including [14, 18, 22, 73, 81, 92].
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In Chapter 7 we demonstrate how the main theorems in Chapter 6 reduce to known enumeration

and/or structure theorems in the settings of graphs, hypergraphs, colored hypergraphs, directed

graphs, metric spaces, and multigraphs. In particular, we consider results from the following papers:

[66] for graphs; [20], [24], [45], and [62] for hypergraphs; [61] for colored hypergraphs; [39] for

digraphs; Chapter 4 of this thesis for metric spaces; and Chapter 5 of this thesis for multigraphs.

In Chapter 8, we consider a theorem in graph theory from the perspective of model theory. Chud-

novsky, Kim, Oum, and Seymour established in [39] that any prime graph contains one of a short list

of induced prime subgraphs. In Chapter 8, we reprove their theorem using many of the same ideas,

but with the key model-theoretic ingredient of first determining the so-called amount of stability of

the graph. This approach changes the applicable Ramsey theorem, improves the bounds and offers a

different structural perspective on the graphs in question. Complementing this, we give an infinitary

proof which implies the finite result. The work in this chapter is joint with M. Mallliaris.



CHAPTER 1

Index of Notations

In this chapter we give notation and definitions in list form for easy reference.

Sets and tuples. Suppose X, V are sets, s ≥ 2, n ≥ 1 are integers, and v̄ = (v1, . . . , vs) ∈ V s.

•
(
X
s

)
= {Y ⊆ X : |Y | = s}.

• [n] = {1, . . . , n}.

• An equipartition of X is a partition U1, . . . , Um of X such that for all i 6= j, ||Ui| − |Uj || ≤ 1.

• Xs = {(x1, . . . , xs) ∈ Xs : xi 6= xj for each i 6= j}.

• ∪v̄ = {v1, . . . , vs}.

• |v̄| = s is the length of v.

• An enumeration of X is a tuple x̄ = (x1, . . . , x|X|) such that ∪x̄ = X.

• P(X) = {Y : Y ⊆ X} is the power set of X. We will also denote this by 2X .

Basic Combinatorial Structures.

• A graph a pair G = (V,E) where V is a set of vertices and E ⊆
(
V
2

)
is a set of edges.

• Given an integer k ≥ 2, a k-uniform hypergraph is a pair (V,E) where where V is a set of vertices

and E ⊆
(
V
k

)
is a set of edges.

• An multigraph is a pair (V,w) where V is a set of vertices and w :
(
V
2

)
→ N is a function.

• Given s ≥ 2 and q ≥ 0, an (s, q)-graph is a multigraph G = (V,w) such that for all X ∈
(
V
s

)
,∑

xy∈(X2 ) w(xy) ≤ q. An (n, s, q)-graph is an (s, q)-graph with vertex set of size n.

• Given r ≥ 2, an r-graph is a pair (V,w) where V is a set of vertices and w :
(
V
2

)
→ 2[r] is a

function.

• A directed graph or digraph is a pair (V,E) where V is a set of vertices and E ⊆ V 2 is a set of

directed edges.

• An oriented graph is a pair (V,E) where V is a set of vertices and E ⊆ V 2 is a set of directed

edges with the property that that for each xy ∈
(
V
2

)
at most one of (x, y) or (y, x) are in E.

• Given a set C and k ≥ 2, a C-colored k-uniform hypergraph or (k,C)-graph, is a pair (V,H) where

V is a set of vertices and H :
(
V
k

)
→ C is a function.

1



1. INDEX OF NOTATIONS 2

Graphs. Suppose G = (V,E) and H = (V ′, E′), are graphs, H is a collection of finite graphs,

{x, y} ∈
(
V
2

)
, X ⊆ V , and s ≥ 2, n ≥ 1 are integers.

• The size of G is |V |.

• G is complete if E =
(
V
2

)
.

• G is independent if E = ∅.

• G[X] is the graph (X,
(
X
2

)
∩ E).

• X is independent in G if G[X] is independent.

• X is complete in G if G[X] is complete.

• Ks is the complete graph on s vertices.

• xy = {x, y}.

• V (G) is the vertex set of G.

• E(G) is the edge set of G.

• e(G) = |E(G)|.

• N(x) = {w : xw ∈ E(G)} is the neighborhood of x in G.

• d(x) = |N(x)| is the degree of x in G.

• G is s-colorable if there is a partition U1, . . . , Us of V such that for all xy ∈ E, there is i 6= j such

that x ∈ Ui and y ∈ Uj .

• G is s-partite if and only if G is s-colorable.

• H is a non-induced subgraph of G, written H ⊆ G, if V ′ ⊆ V and E′ ⊆ E.

• H is an induced subgraph of G, written H ⊆ind G, if V ′ ⊆ V and E′ = E ∩
(
V ′

2

)
.

• H is isomorphic to G, written H ∼= G, if there is a bijection f : V → V ′ such that xy ∈ E if and

only if f(x)f(y) ∈ E′.

• G omits H as a (induced) subgraph if there is no (induced) subgraph of G isomorphic to H.

• G is H-free if G omits H as a subgraph (note: this will mean something else in Chapter 6).

• Forb(H) is the class of all finite H-free graphs.

• Forbind(H) is the class of all finite graphs omitting H as an induced subgraph.

• Forb(n,H) is the set of graphs in Forb(H) with vertex set [n].

• Forbind(n,H) is set of graphs in Forbind(H) with vertex set [n].

• G is H-free if G is H ′-free for all H ′ ∈ H.

• Forb(H) is the class of all finite H-free graphs.

• Forbind(H) is the class of all finite graphs omitting every H ′ ∈ H as an induced subgraph.

• Forb(n,H) is the set of graphs in Forb(H) with vertex set [n].
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• Forbind(n,H) is set of graphs in Forbind(H) with vertex set [n].

• H is a hereditary graph property if it is closed under isomorphism and induced subgraphs.

• H(n) is the collection of all elements in H of size n.

• Hn is the set of all elements in H with vertex set [n].

Hypergraphs. Suppose k ≥ 2 and G = (V,E) is a k-uniform hypergraph and X ⊆ V .

• The size of G is |V |.

• G is complete if E =
(
V
k

)
.

• G is independent if E = ∅.

• G[X] is the graph (X,
(
X
k

)
∩ E).

• X is independent in G if G[X] is independent.

• X is complete in G if G[X] is complete.

• V (G) is the vertex set of G.

• E(G) is the edge set of G.

• If V is finite, the average degree of G is d =
(|V |k )|E|
|V | .

Languages.

• LG = {R} is the language of graphs consisting of a single binary relation symbol R(x, y).

• Lkhg = {R(x1, . . . , xk)} is the language of k-uniform hypergraphs consisting of a single k-ary

relation symbol R(x1, . . . , xk).

• Given r ≥ 2, Lr = {R1(x, y), . . . , Rr(x, y)} consists of r binary relation symbols.

• Given q ≥ 1, Lqmg = {R0(x, y), . . . , Rq(x, y)} is the language of multigraphs of multiplicity at most

q consisting of q + 1 binary relation symbols.

Chapter 6 Notation. This notation appears in Chapter 6. We include a list here for easy reference.

Suppose L = {R1, . . . , Rt} is a finite relational language, M is a finite L-structure. As usual dom(M)

denotes the domain of M . Let H be a class of finite L-structures, N an L-structure, A ⊆ dom(M),

` ∈ N, b̄ = (b1, . . . , b`) ∈ dom(M)`, and C a set of constant symbols.

• ar(Ri) is the arity of Ri.

• rL = max{ar(Ri) : 1 ≤ i ≤ t}.

• The size of M is |dom(M)|.

• N ⊆L M means N is a model theoretic substructure of M .

• N ∼=L M means M and N are isomorphic as L-structures.
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• M is N -free if for all M ′ ⊆L M , M ′ �L N .

• M is H-free if it is H-free for all H in H.

• qftpML (ā) is the quantifier-free type of ā in M .

• A type p(x1, . . . , x`) is proper if it contain xi 6= xj for each i 6= j.

• If L′ ⊆ L, M �L′ is the reduct of M to L′.

• M [A] is the L-structure induced on A by M .

• CA = {ca : a ∈ A} is a new set of constant symbols, one for each element of A.

• cb̄ = (cb1 , . . . , cb`).

• The diagram of M is Diag(M) = {φ(cā) : φ(x̄) is quantifier-free and M |= φ(ā)}.

• The diagram of A in M is DiagM (A) = {φ(cā) : φ(x̄) is quantifier-free, ∪ā ⊆ A, and M |= φ(ā)}.

• S`(L) is the set of complete, proper, quantifier-free types in ` free variables.

• S`(H) is the set of complete, proper, quantifier-free types in ` free variables which are realized in

some H ∈ H.

• S`(C) = {p(c̄) : p(x̄) ∈ S`(L) and c̄ ∈ C`}.

• S`(C,H) = {p(c̄) : p(x̄) ∈ S`(H) and c̄ ∈ C`}.

• H(n) is the class of structures in H of size n.

• Hn is the set of structures in H with underlying set [n].

• H is trivial if H(n) = ∅ for all sufficiently large n. Otherwise, H is non-trivial.



CHAPTER 2

A Combinatorial Introduction

In this chapter, we provide the specific background and the general historical context needed to

understand the combinatorial aspects of Chapters 4, 5, 6, and 7. Chapter 8 requires slightly different

background and motivation, which is included in the introduction there. Our goals for this section

are to show the following.

• Theorems which concern the number and structure of hereditary properties of graphs, and exten-

sions of such results to other combinatorial structures, has been a major line of research within

the field of extremal combinatorics.

• Precise structure and enumeration theorems in such settings are often proved by way of approxi-

mate structure and enumeration theorems.

• Major tools for proving approximate structure and enumeration theorems include Szemerédi’s

regularity lemma, the hypergraph containers theorem, graph removal lemmas, and supersaturation

results.

• A general strategy has emerged for how to prove approximate structure and enumeration theorems

using these tools.

• Whether this strategy can be made formal is an interesting question from the perspective of

extremal combinatorics.

2.1. Hereditary Properties of Combinatorial Structures

In this section we show that theorems which concern the number and structure of hereditary prop-

erties of graphs, and extensions of such results to other combinatorial structures, is a major line of

research within the field of extremal combinatorics.

2.1.1. Hereditary Graph Properties. A nonempty class of graphs P is called a hereditary

graph property if it is closed under isomorphism and induced subgraphs. Given a hereditary graph

property P, let Pn denote the set of elements of P with vertex set [n]. The speed of P is the function

which sends n 7→ |Pn|. There has been extensive investigation into the speed and asymptotic

structure of hereditary properties of graphs, including [2, 3, 11, 12, 13, 26, 27, 93]. Independent

5



2.2. A PATTERN 6

work of Alekseev in [3] and by Bollobás-Thomason in [27] focuses on the fastest growing P, that is,

where |Pn| grows exponentially in n2. For such P, they show there is a discrete set of possibilities

for the speed of P. Moreover, they determe the speed of P in terms of an integer-valued parameter

called the coloring number of P (see [27] for the precise definitions).

Theorem 2.1.1 (Alekseev, Bollobás-Thomason [3, 27]). Suppose r ∈ N and P is a hereditary

graph property with coloring number r. Then

|Pn| = 2(1− 1
r+o(1))n

2

2 .

Examples of hereditary graph properties include Forb(H) and Forbind(H) for any set of finite graphs

H. Theorem 2.1.1 can be seen as a generalization of the many enumeration results about graph

properties of these forms, for instance those appearing in [60, 66, 87, 88, 90].

2.1.2. Hereditary Properties of Other Combinatorial Structures. There are many re-

sults which extend the investigation of hereditary graph properties to other combinatorial structures.

For instance, [9] studies hereditary properties of tournaments, [8] studies hereditary properties of

oriented graphs and posets, and [45, 61, 65] study hereditary properties of k-uniform hypergraphs.

In [61] and [45], a version of the coloring number for graphs properties is defined for k-uniform

hypergraph properties and a corresponding version of Theorem 2.1.1 is proved. In fact, [61] proves

these results for a more general class of structures, namely colored k-uniform hypergraphs. The re-

sults in [19, 20, 89, 83] investigate asymptotic enumeration and structure results for specific classes

of H-free hypergraphs, which are examples of hereditary properties of hypergraphs. Similarly, the

results in [73] concern specific classes of H-free digraphs, which are examples of hereditary proper-

ties of digraphs. The results in [22, 82] for metric spaces are similar in flavor, although they have

not been studied explicitly as instances of hereditary properties. Thus, extending the investigation

of hereditary graph properties to other combinatorial structures has been an active area of research

for many years within extremal combinatorics. Our work in Chapters 4 and 5 continue this line of

research in the setting of discrete metric spaces and of multigraphs.

2.2. A Pattern

We showed in the previous section that there has been many years of research which have successively

extended and generalized results about hereditary graph properties to other combinatorial structures.
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In this section, we demonstrate that as a result, a pattern of proof has emerged for how to prove

approximate structure and enumeration theorems in these settings.

2.2.1. Tools and Techniques. In this subsection we give a brief outline of some of the tools

and techniques which appear in the proofs we are interested in. We include this information here

to facilitate our outline of the proof strategies in the next subsection. In most cases, we will merely

provide an example of the tool we are introducing, usually in the setting of graphs.

Extremal Structures.

Given graphs H and G, we say that G is H-free if it does not contain a copy of H as a subgraph

(not necessarily induced). A major theme in extremal combinatorics is the investigation of H-

free graphs, beginning with Turán’s Theorem [101]. The extremal number of H, ex(n,H), is the

maximum number of edges in any H-free graph with n vertices, and an H-free graph with n vertices

is called extremal if it has ex(n,H) edges. The Turán graph, Ts(n), is the complete s-partite graph

on n vertices with no two part sizes differing by more than one. Let ts(n) be the number of edges

in Ts(n).

Theorem 2.2.1. [Turán’s theorem [101]] For n > s ≥ 2, we have ex(n,Ks) = ts−1(n) and

equality holds only for Ts−1(n).

There exist in the literature many notions of extremal structures in other settings, see for example

[73] for digraphs, [29, 53] for multigraphs, and [24] for hypergraphs. We will consider versions of

extremal structures in the setting of metric spaces in Chapter 4 and in the setting of multigraphs in

Chapter 5.

Stability Theorems.

In [47] and [97], Erdős and Simonovits proved the following stability theorem, which intuitively says

that if a Ks-free graph has “almost” the maximal number of possible edges, then it looks “almost”

like an extremal Ks-free graph.

Theorem 2.2.2 (Erdős-Simonovits [46, 97]). For all δ > 0 and s ≥ 2, there is an ε > 0 such

that if H is a Ks-free graph with n vertices and ts−1(n) − εn2 edges, then H can be made to be

isomorphic to Ts−1(n) by adding or removing at most δn2 edges.

In fact [97] contains versions of this theorem for F -free graphs for any finite graph F with at least one

edge. Stability theorems have been proven for other types of structures as well, including directed
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graphs in [73] and hypergraphs [62, 85]. We will prove stability theorems in the setting of metric

spaces in Chapter 4 and for multigraphs in Chapter 5.

Supersaturation.

The following supersaturation result follows from more general theorems for hypergraphs proved by

Erdős and Simonovits in [50].

Theorem 2.2.3 (Erdős-Simonovits [50]). Suppose H is a graph with t vertices. Then for every

c > 0 there is c′ > 0 such that any graph on n vertices with at least ex(n,H) + cn2 edges contains at

least c′nt copies of H.

Supersaturation theorems have also appeared for other combinatorial structures. Examples can be

found for instance in [73] for digraphs and in [22] for metric spaces.

Szemerédi’s Regularity Lemma.

In this section we discuss Szemerédi’s regularity lemma and one of its corollaries, the triangle removal

lemma. We will not directly use these results, but we include them for reference as we will be using

more general versions of them. Specifically, we will use a multicolor version of the regularity lemma

in Chapter 4, a multicolor version of the triangle removal lemma in Chapter 5, and general version

of the triangle removal lemma for finite relational languages (see [6]) in Chapter 6. The following

definitions and results are quoted from [67]. We direct the reader there for a more extensive survey.

Definition 2.2.4. Fix a finite graph G and disjoint subsets X,Y ⊆ V (G).

(1) Set e(X,Y ) = |{xy ∈ E(X,Y )}|.

(2) The density of (X,Y ) in G is d(X,Y ) = e(X,Y )
|X||Y | .

(3) (X,Y ) is ε-regular for G if for all X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |,

|d(X,Y )− d(X ′, Y ′)| ≤ ε.

We now state Szemerédi’s Regularity Lemma.

Theorem 2.2.5 (Szemerédi [99]). For every ε > 0 and positive integer m, there are integers

M = M(m, ε) and N = N(m, ε) such that if G is a finite graph with at least N(m, ε) vertices, then

there is a partition V0, V1, . . . , Vk of V (G) with the following properties.

• m ≤ k ≤M .

• |V0| ≤ εn.
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• |V1| = . . . = |Vk|.

• All but at most εk2 pairs (Vi, Vj) where 1 ≤ i 6= j ≤ k are ε-regular.

Given two graphs G = (V,E) and G′ = (V,E′) and δ > 0, we say G and G′ are δ-close if

|{xy ∈
(
V

2

)
: xy ∈ E \ E′ or xy ∈ E′ \ E}| ≤ δn2.

In other words, G is δ-close to G′ if we can obtain G′ from G by adding or removing at most δn2

edges. We now state the triangle removal lemma.

Theorem 2.2.6 (Erdős-Frankl-Rödl [48]). Fix s ≥ 3. For all 0 < ε < 1, there is 0 < δ < 1 and

M such that for all n > M the following holds. If |{X ∈
(
V (G)
s

)
: G[X] ∼= Ks}| ≤ δ

(
n
s

)
, then G is

ε-close to a Ks-free graph with the same vertex set.

Hypergraph Containers Theorem.

In this section we state a version of the hypergraph containers theorem, Theorem 2.2.7 below. The

hypergraph containers theorem was independently developed by Balogh-Morris-Samotij in [18] and

by Saxton-Thomason in [92]. Theorem 2.2.7 will be used in Chapter 6.

We begin with some definitions. Suppose ` > 1 is an integer and H is an `-uniform hypergraph with

average degree d and vertex set of size n. Fix τ > 0. Then for every σ ⊆ V (H), set

d(σ) = |{e ∈ E(H) : σ ⊆ e}|.

Given v ∈ V (H) and j ∈ [`], set

d(j)(v) = max{d(σ) : v ∈ σ ⊆ V (H), |σ| = j}.

If d > 0, then for each j ∈ [`], define δj = δj(τ) to satisfy the equation

δjτ
j−1nd =

∑
v∈V (H)

d(j)(v)

and set

δ(H, τ) = 2(`2)−1
∑̀
j=2

2−(j−1
2 )δj .

If d = 0, set δ(H, τ) = 0. The following is a simplified version of Corollary 3.6 from [92] and is

the version of the hypergraph contains theorem which we use in Chapter 6. Recall that given a

k-uniform hypergraph G = (V,E), e(G) is the number of edges in G and given a set X ⊆ V , G[X]

is the hypergraph (X,E ∩
(
V
k

)
).
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Theorem 2.2.7 (Saxton-Thomason [92]). Let H be an `-uniform hyptergraph with a vertex set

V of size n. Suppose 0 < ε, τ < 1
2 and τ satisfies δ(H, τ) ≤ ε/12`!. Then there exists a constant

c = c(`) and a collection C ⊆ P(V ) such that the following hold.

(i) For every independent set I in H, there exists C ∈ C such that I ⊆ C.

(ii) For all C ∈ C, we have e(H[C]) ≤ εe(G), and

(iii) log |C| ≤ c log(1/ε)nτ log(1/τ).

2.2.2. Combining the Tools: Patterns and a Question. In this subsection we summarize

general proof strategies which have been developed for proving approximate structure and enumer-

ation theorems. These strategies involve various combinations of the tools in Subsection 2.2.1. Our

focus will be on the strategies which make appearances later in this thesis. We will give citations

where the reader can find examples of these strategies, however we have not attempted to give an

exhaustive list of the many papers which have used these techniques.

Regularity. Szemerédi’s Regularity Lemma and its corollaries are often combined with stability

theorems to prove approximate structure and/or enumeration theorems.

Stability Theorem + Regularity and Corollaries ⇒ Approximate structure and/or enumeration.

Examples of papers which use this strategy include [4, 10, 88] in the setting of graphs, [5] in the

setting of oriented graphs, and [19, 20, 85] in the setting of hypergraphs. We will use a version

of this strategy to prove approximate structure and enumeration theorems in the setting of discrete

metric spaces in Chapter 4. The regularity lemma is also often used without a stability theorem to

prove enumeration results. Examples of this include [45, 61, 65, 83].

Containers. Many new structure and enumeration results have been proved using the hypergraph

containers theorem along with a stability and/or supersaturation theorem. In particular, the hy-

pergraph containers theorem can be combined with a supersaturation result to prove approximate

enumeration theorems.

Supersaturation + Containers ⇒ Approximate enumeration.

Papers which use this strategy to produce enumeration theorems include the two original papers

on the hypergraph containers theorem [18, 92] for H-free graphs, [73] for digraphs, [22] for metric

spaces, [21, 80, 81] for other specific families of graphs, and [17] for sum-free sets of integers. The

containers theorem can also be combined with stability theorems (and other tools including graph
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removal lemmas and superaturation results) to produce structure results.

Containers

+

Stability and Graph Removal and/or Supersaturation

⇓

Approximate Structure and/or Enumeration

Papers which employ this strategy to prove structure and enumeration theorems include [14, 16, 63]

for graphs, [73] for directed graphs, and [15] for hypergraphs, vector spaces over finite fields, and

permutations.

In this section we have shown there are many structure and enumeration results for combinatorial

structures which employ similar tools and similar proof strategies. This pattern naturally raises the

following question.

Question 2.2.8. Is there a way to view these results (and their proofs) as examples of a general

theorem (and its proof)?

Chapter 6 shows the answer is yes (for many cases), by formalizing the pattern of proof described in

this section. We will use generalizations of some of the tools and techniques from Subsection 2.2.1.

The precise statements of these theorems require preliminaries, so we leave them to Chapter 6

2.3. Conclusion

The study of hereditary properties of combinatorial structures has been a continual source of inter-

esting research within the field of extremal combinatorics. Chapters 4 and 5 of this thesis contribute

new examples to this line of research in the settings of discrete metric spaces and multigraphs.

Out of the many results in this line of research has emerged an pattern of proof for approximate

structure and enumeration results. Chapter 6 formalizes this pattern, proving for instance, a gen-

eral theorem in the setting of arbitrary finite relational languages which encompasses many known

approximate enumeration theorems.



CHAPTER 3

A Logical Introduction

In this chapter, we explain the model theoretic motivation behind the results in Chapters 4, 5, 6

and 7. Chapter 8 does not fit directly into this narrative, and contains its own introduction. Our

goal in this chapter is to demonstrate that the combinatorial results described in Chapter 2 are of

direct importance to interesting model theoretic questions.

3.1. Logical 0-1 Laws.

In this section we give background on logical 0-1 laws.

Definition 3.1.1. Suppose L is a finite first-order language and F =
⋃
n∈N F (n), where for each n,

F (n) is a set of L-structures with underlying set [n].

(1) For each L-sentence ψ, let µn(ψ) to be the proportion of elements in F (n) which satisfy

ψ, that is,

µn(ψ) =
|{G ∈ F (n) : G |= ψ}|

|F (n)|
.

(2) When it exists, the asymptotic probability of ψ is µ(ψ) = limn→∞ µn(ψ).

(3) F has a labeled first-order limit law if for each L-sentence ψ, µ(ψ) exists.

(4) F has a labeled first-order 0-1 law if for each L-sentence ψ, µ(ψ) ∈ {0, 1}.

(5) The almost sure theory of F is Tas(F ) = {ψ : ψ is a first-order L-sentences and µ(ψ) = 1}.

While there are other kinds of logical 0-1 laws (e.g. monadic second-order), in this thesis, we will

be restricting our attention to the first-order, labelled cases as described in Definition 3.1.1. Unless

otherwise stated, 0-1 law (limit law) will always mean first-order labeled 0-1 law (first-order labelled

limit law). Similarly, all languages and theories are first-order. The following is a standard fact (see

for instance [103]).

Remark 3.1.2. Suppose F is as in Definition 3.1.1. If F has a 0-1 law, then Tas(F ) is a complete,

consistent theory.

12
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We will be interested in the case when F has a 0-1 law and Tas(F ) has infinite models. When this

happens, we can think of the models of Tas(F ) as infinite structures whose first-order properties

arise as the probabilistic “limit” of the finite structures in F . We now state some basic questions

about 0-1 laws which form part of the motivation for this thesis. Assume L is a finite language and

F =
⋃
n∈N F (n), where for each n, F (n) is a set of L-structures with underlying set [n].

Question 3.1.3. How can we tell if F has a 0-1 law?

Question 3.1.4. If F has a 0-1 law, what model theoretic properties must Tas(F ) have?

Question 3.1.5. If F has a 0-1 law, how does Tas(F ) compare to theories which can be built as

“limits” of F using other methods (e.g. Fräıssé limits, ultraproducts)?

While progress has been made on all these questions in various settings, there is one class of examples

which are not well understood from a model theoretic perspective, and which are the focus of this

thesis. We explain some of this progress and introduce this class of examples in the next section.

3.2. Nontrivial, Fast-growing Families

In this section we define nontrivial, fast-growing families of first-order structures and give a list of

our main examples, Example 3.2.5. We will show that while there exist general sufficient conditions

for when when a family of first-order structures has a 0-1 law, these do not apply to the families in

Example 3.2.5. Further, we show these families generate interesting model theoretic questions.

3.2.1. Definition and Main Examples. In this subsection we define non-trivial, fast growing

families and give our main list of examples in Example 3.2.5. Given a finite first-order language L

and a class of L-structures K, we say an L-structure F is a minimal forbidden configuration for K

if for all A in K, F *L A and for all F ′ (L F , there is A in K such that F ′ ⊆L A. Recall that if

L′ ⊆ L and M is an L-structure, then M �L′ denotes the reduct of M to L′.

Definition 3.2.1. Let L be a finite relational language and let r ≥ 2 be the maximum arity of

its relation symbols. For each n, suppose K(n) is a set of L-structures with domain [n] and let

K =
⋃
n∈NK(n).

(a) Given 1 ≤ ` ≤ r, let L(`) = {R ∈ L : the arity of R is at most `}.

(b) K �`= {G �L(`) such that G ∈ K} is the reduct of K to L(`).
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(c) K is trivial if the following holds for each 1 ≤ ` ≤ r. If F is a minimal forbidden configuration

for K �`, then |dom(F )| ≤ `. Otherwise, K is non-trivial.

(d) K is fast-growing if |K(n)| ≥ Ω(nr).

The above definition of triviality in part (c) of Definition 3.2.1 comes from a definition of Koponen

in [70], where it is called randomness. We have decided to change the name here to avoid confusion

with terminology in Chapter 6.

Observation 3.2.2. In the notation of Definition 3.2.1, if all the relation symbols in L have the

same arity r, then K is trivial if and only if all its minimal forbidden configurations have size at

most r.

In all of the examples we will consider, L and K will be as in Observation 3.2.2. The following are

examples of K which are not non-trivial, fast-growing families.

Example 3.2.3. Suppose for each n, K(n) is the set of graphs with vertex set [n] and K =⋃
n∈NK(n). Then K is trivial because all its minimal forbidden configurations have size at most 2.

Example 3.2.4. Suppose k ∈ N is a fixed positive integer. For each n, let K(n) be the set of graphs

with vertex set [n] which have VC-dimension at most k, and let K =
⋃
n∈NK(n). Clearly K is

nontrivial. However, Theorem 2 in [4] implies there is an ε = ε(k) > 0 such that |K(n)| ≤ 2n
2−ε

.

Thus K is not fast-growing.

We now give the main list of examples which form the focus of this thesis.

Example 3.2.5. In the following list, K =
⋃
n∈NK(n) are non-trivial fast growing families. See the

citations listed for enumeration theorems showing the families are fast-growing.

(1) K(n) is the set of Ks-free graphs with vertex set [n], where s ≥ 3 is an integer. See [66].

(2) K(n) is the set of H-free graphs with vertex set [n], where H is a fixed edge-critical graph of

chromatic number at least 3 (H is edge-critical if there is an edge in H such that removing

the edge results in a graph of strictly smaller chromatic number than H). See [89, 60].

(3) K(n) is the set of directed graphs with vertex set [n] omitting transitive tournaments of

size k, where k ≥ 3 is a fixed integer. See [73].

(4) K(n) is the set of triangle-free 3-uniform hypergraphs with vertex set [n]. See [20].

(5) K(n) is the set of Fano-free 3-uniform hypergraphs with vertex set [n]. See [85].



3.2. NONTRIVIAL, FAST-GROWING FAMILIES 15

(6) K(n) is the set of metric spaces with underlying set [n] and distances in [r], where r ≥ 2

is a fixed even integer. See [82] or Chapter 4 of this thesis.

We will see later in this chapter that for all the K in Example 3.2.5, K has a 0-1 law. These are the

0-1 laws this thesis is focused on understanding from a more general perspective. We would like to

point out that the multigraphs investigated in Chapter 5 are also fast-growing non-trivial families.

3.2.2. Existing General Theorems Do Not Cover Example 3.2.5. In this section we

show that while there exist some general sufficient conditions for when a family has a logical 0-1

law, they do not apply to the families in Example 3.2.5. We begin with a bit of history.

The first major theorem concerning logical 0-1 laws is the following result, which was proved inde-

pendently by Fagin in [51] and by Glebskĭı et. al in [55].

Theorem 3.2.6 (Fagin [51], Glebskĭı et. al [55]). Suppose L is a finite language and for each

n, F (n) is the set of all L-structures with underlying set [n]. Then F =
⋃
n∈N F (n) has a 0-1 law

and Tas(F ) has infinite models.

Thus, for every finite first-order language L, the family of all L-structures with universe [n] for

n ∈ N has a 0-1 law. The same arguments used in [51] and [55] also show that the family of all finite

graphs has a 0-1 law (see [103] for the full argument). However, for nontrivial families of first-order

structures, questions about 0-1 laws cannot be answered using the techniques from Theorem 3.2.6

exclusively.

The most general sufficient conditions for the existence of 0-1 laws consider families where the

number of structures of size n does not grow too quickly as n → ∞. For these families, algebraic

techniques are often used. The first results of this type were introduced by Compton in [40, 41].

Further results of this flavor appear in [23, 36, 40, 41] and provide a large number of examples

of logical limit laws. Other results employing algebraic techniques to prove logical limit laws for

relatively slow growing families include [58] for minor-closed classes of graphs and [69] for graphs

of bounded degree.

Fast-growing families grow too quickly for the types of algebraic arguments used in the Comtpon-

style results of the previous paragraph. In particular, for any F =
⋃
n∈N F (n) from Example 3.2.5,

|F (n)| grows at least exponentially in n2. The results in [23, 36, 40, 41] all require growth rates

which are subexponential in n2, and therefore tell us nothing about the families from Example 3.2.5.
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In [68], Koponen proves a general theorem which shows that for any ` ≥ 2, the family of `-colorable

structures in any finite relational language has a 0-1 law. We will discuss in Section 3.3 how this

result contributes to some of the 0-1 laws in Example 3.2.5. However, the results in [68] alone do

not tell us any of these families have 0-1 laws.

We have shown that while there has been progress in finding sufficient conditions for when a family

of structures in a finite relaitonal language has a 0-1 law, none of these results apply directly to the

set of examples in Example 3.2.5.

3.3. Fast Growing Families and Extremal Combinatorics

In this section we show that the 0-1 laws for the structures in Example 3.2.5 rely on precise structure

and enumeration results from extremal combinatorics. The outline of how these results work is the

following.

Precise Asymptotic Structure and Enumeration + Model Theoretic Arguments⇒ New 0-1 Law.

For example, let s ≥ 3 and consider the family Forb(Ks) =
⋃
n∈N Forb(n,Ks), where for each

n, Forb(n,Ks) is the set of Ks-free graphs with vertex set [n] (this is (1) in Example 3.2.5). Let

Cols−1(n) be the set of (s−1)-colorable graphs with vertex set [n] and let Cols−1 =
⋃
n∈N Cols−1(n).

Recall for all n, Cols−1(n) ⊆ Forb(n,Ks). The argument proving Forb(Ks) has a 0-1 law in [66]

proceeds as follows.

Almost all elements in Forb(n,Ks) are in Cols−1(n) (Precise Asymptotic Structure and Enumeration)

+

Cols−1 has a 0-1 law (Model Theoretic Arguments)

⇓

Forb(n,Ks) has a 0-1 law and Tas(Forb(Ks)) = Tas(Cols−1) (New 0-1-Law).

The 0-1 law for number (2) of Example 3.2.5 is proved by Patel in [84] by combining model theoretic

arguments from [66] with combinatorial results from [89, 60]. In [68], Koponen proves a general

theorem for `-colorable structures in an arbitrary finite relational language. This result can be

combined (following the recipe above) with the combinatorial results in [73], [20], and [85] to yield
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new 0-1 laws for the families of structures in numbers (3), (4), and (5) of Example 3.2.5 respectively.

In Chapter 4 we prove the existence of a new 0-1 law for certain discrete metric spaces (number (6) of

Example 3.2.5) using this strategy of first proving precise structure and enumeration theorems. Thus

we have shown all the 0-1 laws for Example 3.2.5 rely crucially on precise structure and enumeration

results from extremal combinatorics. There exists almost no work on understanding these structure

and enumeration results from a model theoretic perspective. This is a main goal of this thesis.

3.4. The Role of Approximate Structure

We have established in the previous section that precise structure and enumeration results play key

roles in proving 0-1 laws for many nontrivial, fast-growing families. In this section we show that

approximate structure and enumeration theorems play key roles in proving these precise results.

For example, the precise structure and enumeration results in [20, 73, 85] and Chapter 4 (used

for numbers (3)-(6) of Example 3.2.5 respectively) all explicitly use approximate structure and

enumeration theorems as preliminary steps. Further, the precise structure and enumeration results

required for the 0-1 laws in parts (1) and (2) of Example 3.2.5 can also be proved using this strategy.

Thus, the following is a more complete outline of how the 0-1 laws in Example 3.2.5 can be proven.

Approximate Structure and Enumeration + Ad Hoc Arguments

⇓

Precise Structure and Enumeration

+

Model Theoretic Arguments

⇓

New 0-1 Law.

This shows that Question 2.2.8 from Chapter 2, and Chapter 6 which answers it, contribute to our

understanding the logical 0-1 laws in Example 3.2.5 from a model theoretic point of view.

3.4.1. Model Theoretic Motivation. In this section we discuss some model theoretic ques-

tions related to the 0-1 laws in Example 3.2.5.

Questions about how finite structure interacts with the infinite structure are recurring themes within

model theory. One such question concerns the relationship between pseudofinite structures and
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Fräıssé limits, two types of infinite structures which are “limits” of finite structures. Specifically, a

well-known open question of Cherlin [17] asks: is the Fräıssé limit of triangle-free graphs, called the

Henson graph, also a limit in the pseudofinite sense?

The investigation of Ks-free graphs by Kolaitis, Prömel, and Rothschild in [66] can be seen as

addressing the “almost sure” version of Cherlin’s question: is the Henson graph also the limit of

triangle-free graphs in the almost sure sense? The authors show the answer is no, proving that

triangle-free graphs have a zero-one law, with almost sure theory differing from the theory of the

Henson graph, Thg. They in fact show much more, proving analogous results for Kl+1-free graphs

for all l ≥ 2. Later investigation demonstrated that for triangle-free graphs, the almost sure theory

and Thg fall into different classes of model theoretic complexity. In particular, the almost sure theory

is simple, while Thg has SOP3 (which implies it is non-simple, see [95]). This is a pattern which

repeats in many examples. For instance, we will show in Chapter 4 that an analogous phenomenon

occurs in the case of discrete metric spaces (i.e. number (6) in Example 3.2.5).

In [1], Ahlman proves a general theorem (Theorem 5.7 there) which implies the almost sure theories

arising from all the examples in Example 3.2.5 are supersimple with SU -rank 1. The application of

this theorem to these examples relies crucially on having an explicit understanding their asymptotic

structure, which comes from extremal combinatorics.

We end with a conjecture which arises naturally from what is known about Example 3.2.5. Given

a finite relational language, a class K of L-structures is a hereditary L-property if it is closed under

isomorphism and has the model-theoretic hereditary property. Given K a hereditary L-property, let

Kn be the set of elements from K with universe [n]. Observe that for each K in Example 3.2.5,

there is an appropriate finite relational language L and a hereditary L-property K such that for all

n ∈ N, K(n) = Kn. Thus hereditary L-properties are an appropriate setting in which to generalize

results and questions related to Example 3.2.5.

Conjecture 3.4.1. Suppose L is a finite relational language and K is a hereditary L-property such

that K :=
⋃
n∈NKn is fast-growing and non-trivial. If K has a 0-1 law, then Tas(K) is supersimple

with SU -rank 1.

We believe that understanding the above will rely on a general model theoretic understanding of

the asymptotic structure results which lead to the 0-1 laws in Example 3.2.5. This is the model

theoretic motivation for Chapter 6, which focuses on understanding asymptotic enumeration and

structure results in the setting of hereditary L-properties.
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3.5. Conclusion

In sum, 0-1 laws for the non-trivial, fast-growing families in Example 3.2.5 generate interesting

model theoretic questions and are not completely understood from a model theoretic perspective.

These 0-1 laws rely on precise structure and enumeration results, which in turn rely on approximate

structure and enumeration results. Chapter 6 of this thesis addresses approximate structure and

enumeration results from a model theoretic perspective, and thus can be seen as contributing to our

understanding of these 0-1 laws. Chapter 4 of this thesis proves a new 0-1 law for certain families of

discrete metric spaces. Chapter 5 contains combinatorial results for certain families of multigraphs,

which are key ingredients in forthcoming work by the author and D. Mubayi which proves precise

asymptotic structure results as well as new new 0-1 laws for these families. The results in Chapters

4 and 5 contributed directly to the development of the results in Chapter 6, and may serve useful in

generalizing further aspects of the arguments used to prove the 0-1 laws for the examples in Example

3.2.5.



CHAPTER 4

Discrete Metric Spaces

4.1. Introduction

The work in this chapter is joint with D. Mubayi and appears in [82]. Given integers n, r ≥ 3, define

Mr(n) to be the the set of all metric spaces with underlying set [n] := {1, . . . , n} and distances in

{1, . . . , r}. The goal of this chapter is to investigate the approximate structure of most elements of

Mr(n) for fixed r and large n, and in the case when r is even, to prove that Mr(n) has a labeled

first-order 0-1 law.

4.1.1. Background. Given a set X, let
(
X
2

)
= {Y ⊆ X : |Y | = 2} and 2X = {Y : Y ⊆ X}.

An r-graph G is a pair (V, c), where V is a (vertex) set, and c :
(
V
2

)
→ 2[r]; we call G a simple

complete r-graph if |c(xy)| = 1 for all xy ∈
(
V
2

)
. Elements of Mr(n) are naturally viewed as simple

complete r-graphs by assigning edge colors corresponding to distances. Given a set H of r-graphs,

let Forbrn(H) be the set of simple complete r-graphs with vertex set [n] which contain no element of

H as a substructure. By taking H to be the set of simple complete r-graphs on three vertices which

contain violations of the triangle inequality, we see that Mr(n) = Forbrn(H). In this way, we can

view Mr(n) as an edge-colored analogue of Forbn(H). This analogy suggests that one could prove

similar results as in [49] and [66] about Mr(n). In this chapter we show that this is indeed the case,

utilizing techniques from graph theory to describe the approximate structure of most elements of

Mr(n) for large n.

We may view elements of Mr(n) as first-order structures in the language Lr consisting of r binary

predicates, one for each edge color. In this setting, as a corollary of our structural results, we are able

to prove in the case when r is even, that there is a labeled first-order 0-1 law for Mr =
⋃
n∈NMr(n)

and to give an axiomatization of its almost sure theory. We consider only r ≥ 3 for the following

reason. There is no way to violate the triangle inequality using distances in {1, 2}, so M2(n) consists

of the set of all simple complete 2-graphs. This means that given a pair x, y of distinct elements

of [n], the distance between x and y is equal to 1 in exactly half of the elements of M2(n). For

each G ∈ M2(n), associate a graph G with vertex set [n] such that for each x, y ∈ [n], there is an

20
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edge between x and y in G if and only if the distance between x and y is equal to 1 in G. Under

this association, we see that M2(n) behaves exactly like the random graph G(n, 1/2), the structural

properties of which have been studied extensively (see [25]), and which is known to have a labeled

first-order 0-1 law [51, 55].

The proofs of our main results will rely on a stability theorem which is proved using a multi-color

version of the Szemerédi regularity lemma [7]. While our proof techniques bear some resemblance

to the classical results in [48, 49, 64], we need several new ideas that are motivated by work on

weighted Turán-type problems [54]. The results in this chapter also add to existing results that

study metric spaces as combinatorial objects [37, 71, 78, 79]. In particular, [79] and [71] address

questions similar to ours in the continuous setting. In [79], Mascioni investigates the following

problem. Given an integer n and a fixed set X of n points, if we assign i.i.d. uniform real numbers

in [0, 1] to the elements of
(
X
2

)
, what is the probability we get a metric space? It is shown in [79]

that this probability p satisfies

(1)

(
1

2

)(n2)
≤ p ≤

(
1

2

)bn/2c(
2

3

)bn/2c(dn/2e−2)

,

where the lower bound is obtained by noting that any assignment of distances from [ 1
2 , 1] yields a

metric space. In more recent work, Kozma, Meyerovitch, Peled, and Samotij [71] identify the set of

metric spaces on [n] having all distances in [0, 1] with elements in the cube [0, 1](
n
2). Let Mn be the

subset of [0, 1](
n
2) which corresponds to the set of metric spaces on [n]. Then [71] shows that there

are constants c, c′, and C such that c > 0 and

1

2
+

c′√
n
≤ (volMn)1/(n2) ≤ 1

2
+
C

nc
.(2)

They also prove that with high probability, all distances are between 1/2 − n−c and 1. The upper

bound in (2) implies that p1/(n2) approaches 1/2 as n → ∞, where p = volMn is the probability

from (1). Given a fixed even r ≥ 4, our results about Mr(n) can be translated into results about

metric spaces on [n] with all distances in { 1
r , . . . ,

r−1
r , 1}. In this setting, our Theorem 4.1.2 says that

almost all such metric spaces (as n→∞) have all of their distances in [ 1
2 , 1], therefore capturing a

similar phenomenon as the results of [71] (for odd r the situation is slightly more complicated). If

it were possible to generalize our results to the setting where r →∞ and n is fixed, then they could

apply to the continuous setting.

While existing results on logical 0-1 laws do not apply directly to Mr, a result of [68] does imply

that a subfamily Cr of Mr, (which will be defined later) has a labeled first-order 0-1 law. Our results
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will show that when r is even, almost all elements of Mr are in Cr, which will yield that Mr has

a labeled first-order 0-1 law. Therefore, this chapter provides the combinatorial argument required

to reduce the existence of a labeled first-order 0-1 law for Mr to the existence of one for Cr, while

the fact that Cr has a labeled first-order 0-1 law follows from known results, and is in fact very easy

to prove directly. Part of the motivation for this work is the idea that having more examples of

logical limit laws in languages other that of graphs, and seeing the techniques used to prove them,

will improve our general understanding of when a family of finite structures has a logical limit law.

4.1.2. Results. In this section we state the results in this chapter. First we give some necessary

definitions and notation. Given positive integers r, s and a set X, set [r] = {1, . . . , r},
(
X
s

)
= {Y ⊆

X : |Y | = s}, and 2X = {Y : Y ⊆ X}. Recall that an r-graph G is a pair (V, c), where V is a

set, and c :
(
V
2

)
→ 2[r]. We call V the vertex set of G and c the coloring of G. In the case when

|c(e)| ≤ 1 for every e ∈
(
V
2

)
, we say that (V, c) is simple, and when c(e) 6= ∅ for each e ∈

(
V
2

)
, we say

G is complete. Given integers r, n ≥ 3, we consider Mr(n) as the set of simple complete r-graphs

([n], c) satisfying the triangle inequality, i.e, for every three pairwise distinct elements x, y, z of [n],

if {i} = c(xy), {j} = c(yz), and {k} = c(xz), then we have i ≤ j + k.

Given a set X and {x, y} ∈
(
X
2

)
, we will write xy to mean {x, y}. Given integers i < j, set

[i, j] = {i, i+ 1, . . . , j}.

Definition 4.1.1. For an even integer r ≥ 4 and any integer n, let Cr(n) be the set of all simple

complete r-graphs G = ([n], c) such that c(e) ⊂ [ r2 , r] for all e ∈
(

[n]
2

)
.

When r is even, there is no way to violate the triangle inequality using distances in [ r2 , r], so

Cr(n) ⊂Mr(n). The strongest structural result we will prove (Theorem 4.1.2 below) says that when

r ≥ 4 is even, almost all elements in Mr(n) are in Cr(n).

Theorem 4.1.2. Let r ≥ 4 be an even integer. Then there is β > 0 and M > 0 such that for all

n ≥M ,

|Cr(n)| ≥ |Mr(n)|(1− 2−βn).

When r is even, |Cr(n)| = ( r2 + 1)(
n
2). Therefore Theorem 4.1.2 yields that when r is even,

(r
2

+ 1
)(n2) ≤ |Mr(n)| ≤

(
1

1− 2−βn

)(r
2

+ 1
)(n2)

for some positive β and sufficiently large n. We obtain the following Corollary.
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Corollary 4.1.3. Let r ≥ 4 be an even integer. Then |Mr(n)| = ( r2 + 1)(
n
2)+o(1).

When r is odd, we still obtain a result on the approximate structure of most elements of Mr(n)

(Theorem 4.1.5 below), however the situation in this case is more complicated.

Definition 4.1.4. Let r ≥ 3 be an odd integer. Define Cr(n) to be the the set of simple complete

r-graphs G = ([n], c) such that there is a partition V1 ∪ . . . ∪ Vt of [n] and for every xy ∈
(

[n]
2

)
,

c(xy) ⊂


[ r−1

2 , r − 1] if xy ∈
(
Vi
2

)
for some i ∈ [t]

[ r+1
2 , r] if x ∈ Vi, y ∈ Vj for some i 6= j ∈ [t].

It is easy to see that for r odd, Cr(n) ⊂Mr(n). Given δ > 0, two r-graphs G = (V, c) and G′ = (V, c′)

with the same vertex set V are δ-close if |{e ∈
(
V
2

)
: c(e) 6= c′(e)}| ≤ δ|V |2. Set

Cδr (n) = {G ∈Mr(n) : there is G′ ∈ Cr(n) such that G and G′ are δ-close}.

We now state our structure theorem which holds for all r ≥ 3. Informally, it states that most

members of Mr(n) are in Cδr (n) for small δ and n large enough depending on δ.

Theorem 4.1.5. Let r ≥ 3 be an integer. Then for all δ > 0, there exists an M and β > 0 such

that n > M implies

|Mr(n) \ Cδr (n)|
|Mr(n)|

≤ |Mr(n) \ Cδr (n)|
d r+1

2 e
(n2)

≤ 2−βn
2

.

We will prove the following enumeration theorem as a corollary of Theorem 4.1.5 in Section 4.3.

Corollary 4.1.6. Let r ≥ 3 be an integer. Then |Mr(n)| = d r+1
2 e

(n2)+o(n2).

Given r ≥ 3, define Lr = {R1, . . . , Rr} where each Ri is a binary relation symbol. Given n ∈ N,

we can naturally consider elements G = ([n], c) ∈ Mr(n) as Lr-structures by interpreting for each

(x, y) ∈ [n]2, RGi (x, y) ⇔ xy ∈
(

[n]
2

)
and c(xy) = {i}. We will prove as a consequence of Theorem

4.1.2 that, when r is even, Mr =
⋃
n∈NMr(n) has a labeled first-order 0-1 law. In fact, we will define

a set Tr of Lr-sentences such that the following holds (see Section 4.2 for the definition of Tr).

Theorem 4.1.7. Let r ≥ 4 be an even integer and consider the elements of Mr(n) and Cr(n) as

Lr-structures. Then Mr =
⋃
n∈NMr(n) and Cr =

⋃
n∈N Cr(n) have labeled first-order 0-1 laws.

Moreover they have the same almost sure theory, and this theory is axiomatized by Tr.
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When r is odd, the error term in Corollary 4.1.6 cannot be improved from o(n2) to O(n), and

moreover, Theorem 4.1.2 does not hold (see Section 7 for a detailed discussion). This leads us to

make the following conjecture.

Conjecture 4.1.8. Let r ≥ 3 be an odd integer and consider elements of Mr(n) as Lr-structures

as in Theorem 4.1.7. Then Mr =
⋃
n∈NMr(n) has a labeled first-order limit law, but does not have

a labeled first-order 0-1 law.

4.1.3. Notation and outline. Throughout the chapter, we will omit floors and ceilings where

they are unimportant to the argument. Let r ≥ 3 be an integer and let G be an r-graph. We will

write V (G) to denote the vertex set of G and cG to denote its coloring. For simplicity of notation

we set E(G) =
(
V (G)

2

)
, and for subsets X,Y ⊆ V (G), set E(X,Y ) = {xy ∈ E(G) : x ∈ X, y ∈ Y },

and E(X) = E(X,X). Given a simple complete r-graph G, we define dG : E(G) → [r] to be the

function sending xy ∈ E(G) to the unique i ∈ [r] such that cG(xy) = {i}. We will sometimes also

wish to discuss graphs, meaning a set equipped with a single binary, symmetric, irreflexive relation.

In order to avoid confusion, these graphs will be denoted by G = (V, E), where V is the vertex

set of G and E ⊆
(V

2

)
is the edge set of G. Given a graph G = (V, E) and v ∈ V, we will write

DEG(v) = |{u : uv ∈ E}|.

By a violating triple we will mean a tuple (i, j, k) ∈ N3 such that |i − j| ≤ k ≤ i + j is false. By a

violating triangle, we will mean an r-graph H such that V (H) = {x, y, z}, and for some violating

triple (i, j, k), i ∈ cH(xy), j ∈ cH(yz), and k ∈ cH(xz). Given two r-graphs H and G, we say H is

a sub-r-graph of G if V (H) ⊆ V (G) and for all xy ∈
(
V (H)

2

)
, cH(xy) ⊆ cG(xy). We say G omits H

if H is not a sub-r-graph of G. Define a metric r-graph to be an r-graph G = (V, c) which omits

all violating triangles. We will say an r-graph contains a violating triangle if it contains a violating

triangle as a sub-r-graph. Given two finite r-graphs G and G′ with V (G) = V (G′), set

∆(G,G′) = {xy ∈ E(G) : cG(xy) 6= cG
′
(xy)}.

In this notation, given δ > 0, G and G′ are δ-close if |∆(G,G′)| ≤ δ|V (G)|2. Given a set of finite

r-graphs S and a finite r-graph G, say that G is δ-close to S if G is δ-close to some element of S.

Given r ≥ 3, set

m(r) =

⌈
r + 1

2

⌉
.

A subset A ⊆ [r] is called a metric set if A3 contains no violating triples. Note that when r is

even, [ r2 , r] is a metric subset of [r] of size m(r). When r is odd, both [ r−1
2 , r − 1] and [ r+1

2 , r]
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are metric subsets of [r] of size m(r). As remarked earlier, any r-graph meeting the requirements

in the definition of Cr(n) is already in Mr(n). In particular, Cr(n) contains all simple complete

metric r-graphs with distances in [m(r), r], therefore |Cr(n)| ≥ m(r)(
n
2). These observations yield

the following fact we will use throughout the chapter.

Remark 4.1.9. Let n, r ≥ 3 be integers. Then

|Mr(n)| ≥ |Cr(n)| ≥ m(r)(
n
2),

and if r is even, then |Cr(n)| = m(r)(
n
2).

We now give an outline of the chapter. In Section 4.2 we introduce the notion of a labeled first-

order 0-1 law, and prove as a consequence of Theorem 4.1.2 that Theorem 4.1.7 is true, i.e. when

r ≥ 4 is an even integer, Mr has a labeled first-order 0-1 law in the language consisting of r binary

predicates. In Section 4.3 we prove Corollary 4.1.6, which provides an asymptotic enumeration of

Mr(n) as a consequence of Theorem 4.1.5. In Section 4.4 we provide preliminaries and notation

regarding a multi-color version of Szemerédi’s regularity lemma, then we prove Theorem 4.4.13,

which is a stability result needed to prove Theorem 4.1.5. In Section 4.5 we prove Theorem 4.1.5,

and in Section 4.6 we prove Theorem 4.1.2. Finally, in Section 4.7, we explain why Corollary 4.1.3

and Theorem 4.1.2 do not hold when r is odd, then discuss open questions concerning Mr(n) when

r is odd.

4.2. Proof of logical 0-1 law

In this section we assume Theorem 4.1.2 and prove Theorem 4.1.7, which says that for even integers

r ≥ 4, the family Mr =
⋃
n∈NMr(n) has a labeled first-order 0-1 law in the language Lr consisting

of r binary relation symbols. The outline of the argument is as follows. Theorem 4.1.2 allows

us to reduce Theorem 4.1.7 to showing the existence of a labeled first-order 0-1 for the subfamily

Cr =
⋃
n∈N Cr(n). The existence of a labeled first-order 0-1 law for Cr follows from a standard

argument. In particular, it follows from a theorem in [68] which generalizes the method in [51]. We

assume familiarity with the theory of Fräıssé limits. For background on Fräıssé limits, see Chapter

7 of [59]. For background on 0-1 laws, see Chapter 3.

Fix an even integer r ≥ 4 for the rest of the section. Define Lr = {R1(x, y), . . . , Rr(x, y)}, where

each Ri(x, y) is a binary relation symbol. Given an r-graph G, make G into an Lr-structure by
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interpreting for all (x, y) ∈ V (G)2,

RGi (x, y)⇔ xy ∈ E(G) and i ∈ cG(xy).

From here on, all r-graphs will be considered as Lr-structures in this way. We now prove that as a

consequence of Theorem 4.1.2, Mr has a labeled first-order 0-1 law if and only if Cr does.

Lemma 4.2.1. For all Lr-sentences ψ, if µCr (ψ) exists, then µMr (ψ) exists, and moreover, µCr (ψ) =

µMr (ψ).

Proof. Assume µCr (ψ) exists. For all n,

µMr
n (ψ) =

|{G ∈Mr(n) \ Cr(n) : G |= ψ}|
|Mr(n)|

+
|{G ∈ Cr(n) : G |= ψ}|

|Mr(n)|
.(3)

By Theorem 4.1.2, there is β > 0 such that for sufficiently large n,

|Mr(n) \ Cr(n)| ≤ 2−βn|Mr(n)| and |Cr(n)| ≤ |Mr(n)| ≤ (1 + 2−βn)|Cr(n)|,

where the second inequality is because for all n, Cr(n) ⊆Mr(n). Thus for sufficiently large n,

|{G ∈ Cr(n) : G |= ψ}|
|Cr(n)|(1 + 2−βn)

≤ |{G ∈ Cr(n) : G |= ψ}|
|Mr(n)|

≤ |{G ∈ Cr(n) : G |= ψ}|
|Cr(n)|

.

and

|{G ∈Mr(n) \ Cr(n) : G |= ψ}|
|Mr(n)|

≤ 2−βn.

Therefore

lim
n→∞

|{G ∈Mr(n) \ Cr(n) : G |= ψ}|
|Mr(n)|

= 0

and

lim
n→∞

|{G ∈ Cr(n) : G |= ψ}|
|Mr(n)|

= lim
n→∞

|{G ∈ Cr(n) : G |= ψ}|
|Cr(n)|

= µCr (ψ).

Combining these with (3) yields that µMr (ψ) = µCr (ψ). �

Towards stating the definition of Tr from Theorem 4.1.7, we now fix some notation. Fix an integer

k ≥ 2. Given A ∈ Mr(k), write x1 . . . xk ≡ A as short hand for the Lr-formula which says that

sending xi 7→ i makes x1 . . . xk isomorphic to A. Explicitly we mean the formula ψ(x1, . . . , xk) given

by ∧
1≤i<j≤k

(
RdA(i,j)(xi, xj) ∧

∧
s 6=dA(i,j)

¬Rs(xi, xj)

)
.
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Given A ∈Mr(k) and A′ ∈Mr(k+1), write A ≺ A′ to denote that for all ij ∈
(

[k]
2

)
, dA(ij) = dA

′
(ij).

Given such a pair A ≺ A′, let σA′/A be the following sentence:

∀x1 . . . ∀xk((x1 . . . xk ≡ A)→ ∃y(x1 . . . xky ≡ A′)).

Sentences of this form are called extension axioms. Let T be a set of Lr-sentences axiomatizing an

infinite metric space with distances all in [ r2 , r],

T ′ =
⋃
k∈N
{σA′/A : A ∈ Cr(k), A′ ∈ Cr(k + 1), A ≺ A′}, and

Tr = T ∪ T ′.

Given an Lr-structure M , let Th(M) denote the set of Lr-sentences true in M . Given a set of

Lr-sentences Γ, we will write M |= Γ to denote that M |= φ for all φ ∈ Γ.

Proof of Theorem 4.1.7. Lemma 4.2.1 implies that if Cr has a labeled first-order 0-1 law then so

does Mr, and moreover TCras = TMr
as . Therefore, it suffices to show Cr has a labeled first-order 0-1

law and to show Tr axiomatizes TCras . Let Cr be the class of Lr-structures obtained by closing Cr

under isomorphism. Given M ∈ Cr, we will write V (M) to denote the underlying set of M . That

Cr is a Fräıssé class is straightforward to see. For the sake of completeness we verify that Cr has

the amalgamation property. Given X,Y ∈ Cr, an isometry f : X → Y is an injective map from

V (X) into V (Y ) such that for all xy ∈ E(X), dX(x, y) = dY (f(x), f(y)). Suppose A,B,C ∈ Cr and

f : C → A, g : C → B are isometries. Without loss of generality, assume that f and g are inclusion

maps and V (A)∩ V (B) = V (C). To verify the amalgamation property, we want to find D ∈ Cr and

isometries h : A→ D and s : B → D such that for all c ∈ V (C), s(c) = h(c). We do this by setting

V (D) = V (A) ∪ V (B) and for xy ∈
(
V (D)

2

)
, setting

dD(x, y) =


dA(x, y) if xy ∈ E(A),

dB(x, y) if xy ∈ E(B) \ E(A),

r if x ∈ (V (A) \ V (C)), y ∈ (V (B) \ V (C)).

(4)

D is a simple complete r-graph with dD(x, y) ∈ [ r2 , r] for all xy ∈ E(D), so D ∈ Cr. Define h : A→ D

and s : B → D to be the inclusion maps. Then for all c ∈ V (C), h(c) = s(c) = c, as desired, and

Cr has the amalgamation property. Note that we could have chosen any color in [ r2 , r] to assign the
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edges in the third case of (62), as there are no forbidden configurations in Cr. We leave the rest of

the verification that Cr is a Fräıssé class to the reader.

Let FL(Cr) be the Fräıssé limit of Cr and make FL(Cr) into an Lr-structure by interpreting, for

each (x, y) ∈ FL(Cr)2, Ri(x, y) if and only if dCr (x, y) = i. It is a standard exercise to see that

FL(Cr) |= Tr and further that Tr axiomatizes Th(FL(Cr)). Therefore Tr is a complete, consistent

Lr-theory, so to show Cr has a labeled first-order 0-1 law, it suffices to show that for each ψ ∈ Tr,

µCr (ψ) = 1. For ψ ∈ T , this is obvious. Because there are no forbidden configurations in Cr, a

straightforward counting argument shows that for ψ ∈ T ′, µCr (¬ψ) = 0, and therefore µCr (ψ) = 1.

An example of such an argument applied to graphs is the proof of Lemma 2.4.3 of [77]. The proof

in our case is only slightly more complicated, so we omit it. We also point out that this fact (that

for all ψ ∈ T ′, µCr (ψ) = 1) follows directly from a much more general result, Theorem 3.15 of [68].

Because this theorem is much more powerful than what our example requires, we leave it to the

interested reader to verify it applies to Cr and ψ ∈ T ′. �

We end this section by showing that while there is a Fräıssé limit naturally associated to Mr, its

theory is very different from the almost sure theory we obtain from Mr. Let Mr be the class of

finite metric spaces obtained by closing Mr under isomorphism, that is, Mr is the class of all finite

metric spaces with distances all in [r]. It is well known that Mr is a Fräıssé class. For instance,

this is a simple case of general results contained in [43], which tell us when, given S ⊆ R, the class

of finite metric spaces with distances all in S forms a Fräıssé class. For completeness we verify the

amalgamation property for our case, that is, when S = [r].

Suppose A,B,C ∈Mr and f : C → A, g : C → B are isometries. Without loss of generality, assume

that f and g are inclusion maps and V (A) ∩ V (B) = V (C). To verify the amalgamation property,

we want to find D ∈ Mr and isometries h : A → D and s : B → D such that for all c ∈ V (C),

s(c) = h(c). Given s, t ∈ [r], let tus = min{r, t+s}. Set V (D) = V (A)∪V (B) and for xy ∈
(
V (D)

2

)
,

set

(5) dD(x, y) =


dA(x, y) if xy ∈ E(A),

dB(x, y) if xy ∈ E(B) \ E(A),

max{dA(x, c)u dB(c, y) : c ∈ V (C)} if x ∈ (V (A) \ V (C)), y ∈ (V (B) \ V (C)).

We leave it to the reader to verify that the assigned distances do not violate the triangle inequality,

and therefore, that D is in Mr. Define h : A → D and s : B → D to be the inclusion maps. Then
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for all c ∈ V (C), h(c) = s(c) = c, as desired, and Mr has the amalgamation property. Note that

unlike in the proof of the amalgamation property for Cr, the distance in the third line of (5) must

be chosen carefully, as there are many forbidden configurations in Mr.

Let FL(Mr) be the Fräıssé limit of Mr. It is a standard exercise that the theory of FL(Mr) is

axiomatized by the axioms for an infinite metric space with distances all in [r] and the collection

of all extension axioms of the form σA′/A for some A ∈ Mr(k), A′ ∈ Mr(k + 1) with A ≺ A′, and

k ≥ 0. We can see now that Th(FL(Mr)) and Th(FL(Cr)) are different. For instance, let ψ be the

sentence

∃x∃yR1(x, y).

Then ψ ∈ Th(FL(Mr)), while clearly Th(FL(Cr)) |= ¬ψ. Model theoretically, Th(FL(Cr)) is simple

(in the sense of Definition 7.2.1 in [100]). This can be seen by adapting the argument used to prove

the theory of the random graph is simple, as Cr is just an edge-colored version of the random graph

(see Corollary 7.3.14 in [100] for a proof that the theory of the random graph is simple). On the

other hand, a straightforward adjustment of the construction in Theorem 5.5(b) of [42] shows that

Th(FL(Mr)) has the r-strong order property (SOPr), a measure of the complexity of a first-order

theory defined in [95]. It is shown in [95] that for all n ≥ 3, a theory with SOPn is not simple. In

sum, when r ≥ 4 is even, we have a family of labeled finite structures, Mr, associated to two theories

which differ in model theoretic complexity:

• Th(FL(Mr)) where Mr is obtained by closing Mr under isomorphism. This theory has SOPr

(and therefore is not simple).

• TMr
as = TCras = Th(FL(C)), where Cr ⊆ Mr is a special subfamily, and Cr is obtained by closing

Cr under isomorphism. This theory is simple.

4.3. Asymptotic Enumeration

In this section we assume Theorem 4.1.5 and prove Corollary 4.1.6, which asymptotically enumerates

Mr(n) for all r ≥ 3. Recall that for all integers r ≥ 3, m(r) = d r+1
2 e.

Proof of Corollary 4.1.6. Fix an integer r ≥ 3. All logs will be base m(r) unless otherwise stated.

Remark 4.1.9 implies that |Mr(n)| ≥ m(r)(
n
2), so it suffices to show that for all 0 < γ < 1, there is

M such that n > M implies |Mr(n)| < m(r)(
n
2)+γn2

.
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Fix 0 < γ < 1. Let H(x) = −x log2 x− (1− x) log2(1− x). Recall that
(
n
xn

)
≤ 2H(x)n for all n ∈ N

and 0 < x ≤ 1
2 (see for instance page 427 of [52]). Basic calculus shows H(x)→ 0 as x→ 0. Choose

δ > 0 small enough so that

(H(δ) + δ) log 2 + δ log r <
γ

4
.

Theorem 4.1.5 implies there exists a β = β(δ) > 0 and M1 = M1(δ) such that n > M1 implies

|Mr(n) \ Cδr (n)| ≤ 2−βn
2

m(r)(
n
2).

Choose M > M1 large enough so that n > M implies γ
4n

2 + n log n < γ
2n

2 and γ
2n

2 + log 2 ≤ γn2.

We now assume n > M and bound the size of Cδr (n). All elements G ∈ Cδr (n) can be constructed

as follows:

• Choose an element of G′ ∈ Cr(n). There are |Cr(n)| ways to do this. If r is even, then |Cr(n)| =

m(r)(
n
2). If r is odd, we must find an upper bound for |Cr(n)|. When r is odd, we can construct

any element of Cr(n) by first choosing a partition of [n], then assigning a color to each edge in a

way compatible with the partition. There are at most nnm(r)(
n
2) ways to do this.

• Choose at most δn2 edges to be in ∆(G,G′). There are at most
(
n2

δn2

)
2δn

2 ≤ 2(H(δ)+δ)n2

ways to

do this.

• Assign a color to each edge in ∆(G,G′). There are at most rδn
2

ways to do this.

Thus

|Cδr (n)| ≤ nnm(r)(
n
2)2(H(δ)+δ)n2

rδn
2

= m(r)(
n
2)+n2((H(δ)+δ) log 2+δ log r)+n logn.

By our assumptions on δ and M , this is at most m(r)(
n
2)+ γ

4 n
2+n logn < m(r)(

n
2)+ γ

2 n
2

. Therefore,

since Mr(n) = (Mr(n) \ Cδr (n)) ∪ Cδr (n) we have

|Mr(n)| ≤ m(r)(
n
2)−n

2β log 2 +m(r)(
n
2)+ γ

2 n
2

≤ 2m(r)(
n
2)+ γ

2 n
2

= m(r)(
n
2)+ γ

2 n
2+log 2 ≤ m(r)(

n
2)+γn2

,

where the last inequality is by the choice of M . �

4.4. Stability Theorem

In this section we prove a stability theorem which implies that for all integers r ≥ 3, for large

enough n, if G ∈ Mr(n) has close to the maximal number of different distances occurring between

its vertices, then it is structurally close to an element of Cr(n). This is a crucial step in the proofs

of Theorems 4.1.2 and 4.1.5. Before proceeding further, we require some definitions and notation.
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4.4.1. Regularity Lemmas and Preliminaries. In this section we state a version of Sze-

merédi’s Regularity Lemma which applies to r-graphs. We will also prove easy consequences of this

for our situation.

Definition 4.4.1. Let r ≥ 3 be an integer. Fix a finite r-graph G and disjoint subsets X,Y ⊆ V (G).

(1) We call a partitionA = {A1, . . . , Am} of V (G) an equipartition of order m if ||Ai|−|Aj || ≤ 1

for all i 6= j. A refinement of A is a partition B = {B1, . . . , Bk} such that for each i ∈ [k],

there is j ∈ [m] such that Bi ⊆ Aj .

(2) For l ∈ [r], set

eGl (X,Y ) := |{xy ∈ E(X,Y ) : l ∈ cG(xy)}| and

ρGl (X,Y ) :=
el(X,Y )

|X||Y |
.

(3) The density vector of (X,Y ) in G is (ρG1 , . . . , ρ
G
r ) where ρGi = ρGi (X,Y ).

(4) (X,Y ) is ε-regular for G if for all X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |,

for all l ∈ [r],

|ρGl (X,Y )− ρGl (X ′, Y ′)| ≤ ε.

(5) A partition B = {B1, . . . , Bk} of V (G) is called ε-regular for G if it is an equipartition of

V (G), and for all but at most εk2 of the pairs ij ∈
(

[k]
2

)
, (Bi, Bj) is ε-regular for G.

We now state the multi-color version of the Szemerédi Regularity Lemma and one of its corollaries

we will use in this chapter. Both results appear in [7].

Theorem 4.4.2. (Regularity Lemma) Fix an integer r ≥ 2. For every ε > 0 and positive integer m,

there is an integer CM = CM(m, ε) such that if G is a finite r-graph with at least CM vertices,

and A is an equipartition of G of order m, then there k such that m ≤ k ≤ CM and a refinement

B of A of order k which is ε-regular for G.

Theorem 4.4.3. (Embedding Lemma) Fix an integer r ≥ 2. For every 0 < d < 1 and k ∈ N \ {0},

there is a positive γ = γel(d, k) ≤ d and δ = δel(d, k) such that the following holds. Suppose that

H and G are r-graphs and V (H) = {v1, . . . , vk}. Suppose V1, . . . , Vk are pairwise disjoint subsets

of V (G) such that for every ij ∈
(

[k]
2

)
, (Vi, Vj) is γ-regular for G, and for each l ∈ [r], l ∈ cH(vivj)

implies ρGl (Vi, Vj) ≥ d. Then there are at least δ
∏k
i=1 |Vi| k-tuples (w1, . . . , wk) ∈ V1×· · ·×Vk such

that for each ij ∈
(

[k]
2

)
, cH(vivj) ⊆ cG(wiwj).
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We will apply these theorems to what are called reduced r-graphs, which we define below. Recall

that a metric r-graph is an r-graph with no violating triangles.

Definition 4.4.4. Let r ≥ 2 be an integer, G a finite r-graph, and 0 < η ≤ d ≤ 1.

(1) Suppose P = {V1, . . . , Vt} is an η-regular partition for G. Let R(G,P, d) be the r-graph

R with vertex set [t] such that s ∈ cR(ij) if and only if (Vi, Vj) is η-regular for G and

ρs(Vi, Vj) ≥ d. We say R is a reduced r-graph obtained from G with parameters η and d.

(2) Let M̃r(t) be the set of metric r-graphs on [t] and set

Qη,d,t(G) = {R(G,P, d) : P is an η-regular equipartition for G and P has order t}, and

Qη,d(G) =

CM( 1
η ,η)⋃

t= 1
η

Qη,d,t(G).

We emphasize that the difference between M̃r(t) and Mr(t) is that r-graphs in M̃r(t) need not be

simple and need not be complete. The following two lemmas will be needed.

Lemma 4.4.5. Let r ≥ 2 be an integer, 0 < d < 1, 0 < γ ≤ γel(d, 3), and δ ≤ δel(d, 3). Let

(i, j, k) ∈ [r]3 be a violating triple. Suppose G ∈ Mr(n) and V1, V2, V3 ⊆ V (G) are pairwise disjoint

and pairwise γ-regular for G with δ|V1||V2||V3| ≥ 1. If {X,Y, Z} = {V1, V2, V3}, then

(6) min{ρGi (X,Y ), ρGj (Y, Z), ρGk (X,Z)} < d.

Proof. Suppose for contradiction that {X,Y, Z} = {V1, V2, V3} and (6) fails. By Theorem 4.4.3

there exists at least δ|V1||V2||V3| ≥ 1 tuples (x, y, z) ∈ X × Y × Z such that i ∈ cG(xy), j ∈ cG(yz)

and k ∈ cG(xz). But now {x, y, z} is a violating triangle in G, a contradiction. �

Lemma 4.4.6. Let 0 < d < 1 and 0 < η ≤ γel(d, 3). There is an M such that n > M implies that

for all G ∈ Mr(n), ∅ 6= Qη,d(G) ⊆
⋃CM( 1

η ,η)

t= 1
η

M̃r(t). In other words, any reduced r-graph obtained

from G with parameters d and η omits all violating triangles.

Proof. Let M =
2CM( 1

η ,η)

δel(d,3)
1
3

. Suppose n > M and G ∈ Mr(n). As n > CM( 1
η , η), there is t with

1
η ≤ t ≤ CM( 1

η , η) and P = {V1, . . . , Vt} an η-regular partition for G. Therefore Qη,d,t(G) 6= ∅, so

Qη,d(G) 6= ∅. Let R = R(G,P, d) ∈ Qη,d,t(G). We will show that R ∈ M̃r(t). Note that for all

Vi, Vj , Vk ∈ P,

δel(d, 3)|Vi||Vj ||Vk| ≥ δel(d, 3)

(
n

t
− 1

)3

> δel(d, 3)

(
n

2t

)3

≥ δel(d, 3)
n3

8CM( 1
η , η)3

> 1,
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by assumption on M . Thus by Lemma 4.4.5, R contains no violating triangle, so R ∈ M̃r(t). �

We spend the rest of this section stating various definitions and facts we will need for our proofs.

We will work with the following subset C̃r(n) ⊆ M̃r(n) which is an analogue of Cr(n) ⊆Mr(n).

Definition 4.4.7. Let r ≥ 3 be an integer. Set C̃r(t) to be the the set of complete r-graphs R with

V (R) = [t] such that

(i) if r is even, then for all xy ∈ E(R), cR(xy) = [ r2 , r].

(ii) if r is odd, then there is a partition [t] = V1 ∪ . . . ∪ Vs such that for all xy ∈
(

[t]
2

)
,

cR(xy) =


[ r−1

2 , r − 1] if xy ∈
(
Vi
2

)
for some i ∈ [s]

[ r+1
2 , r] if xy ∈ E(Vi, Vj) for some i 6= j ∈ [s].

Note that elements of C̃r(t) contain no violating triangles, so C̃r(t) ⊆ M̃r(t). Further, note that

when r is even, C̃r(t) consists of a single r-graph. The following weight function defined on metric

r-graphs is crucial to our proof.

Definition 4.4.8. Let t ≥ 2 and r ≥ 3 be integers and let R ∈ M̃r(t). For ij ∈
(

[t]
2

)
, set

fR(i, j) = max{|cR(ij)|, 1} and W (R) =
∏

ij∈([t]
2 )

fR(i, j).

Note that for integers r ≥ 3 and t ≥ 2, any r-graph R with t vertices has W (R) ≤ r(
t
2). Recall that

when r is even m(r) = |[ r2 , r]| and when r is odd, m(r) = |[ r−1
2 , r−1]| = |[ r+1

2 , r]|, so for any integers

r ≥ 3 and t ≥ 2, for all R ∈ C̃r(t) and ij ∈
(

[t]
2

)
, fR(i, j) = m(r), and thus W (R) = m(r)(

t
2).

We now state a lemma which restricts how many colors we can assign to the edges of a triangle

{i, j, k} in an r-graph without creating a violating triangle. The proof of this lemma is elementary

but somewhat tedious, and for this reason is relegated to the Appendix.

Lemma 4.4.9. Fix an integer r ≥ 3. Let A, B, and C be nonempty subsets of [r] such that |A| ≥

|B| ≥ |C|, |A| > m(r), and |B| ≥ m(r). Set x = |A| −m(r) and y = |B| −m(r), and suppose

|C| ≥


max{m(r)− x− y, 1} if r is even

max{m(r)− x− y + 2, 1} if r is odd.

Then there is a violating triple (a, b, c) ∈ A×B × C.
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A straightforward consequence of this is that m(r) is the largest size of a metric subset of [r]. Another

important consequence is the following.

Corollary 4.4.10. Let r, t ≥ 3 be integers and let R ∈ M̃r(t). Suppose uv, vw, uw ∈ E(R), and

fR(u, v) ≥ fR(v, w) > m(r). Then fR(u,w) < m(r) and max{fR(u, v)fR(u,w), fR(v, w)fR(u,w)} ≤

m(r)2 − 1.

Proof. For xy ∈
(

[t]
2

)
, set f(x, y) = fR(x, y). GivenA,B,C ⊆ [r] and x, y ∈ [r], write P (A,B,C, x, y)

if A,B,C, x, y satisfy the hypotheses of Lemma 4.4.9, that is, if the following hold.

• |A| ≥ |B| ≥ |C|,

• x = |A| −m(r) and y = |B| −m(r),

• |A| > m(r) and |B| ≥ m(r).

Set A = cR(uv), B = cR(vw), C = cR(uw), x = |A| − m(r), and y = |B| − m(r). We show

P (A,B,C, x, y) holds. By definition of x and y, the second bullet holds. Since |A| = f(u, v),

|B| = f(v, w), and |C| = f(u,w), our assumptions imply |A| ≥ |B| > m(r), so the last bullet holds.

We now show the first bullet holds, that is, that |A| ≥ |B| ≥ |C|. Suppose for a contradiction

that |C| > |B|. Let z = |C| − m(r) and note our assumptions imply that either P (A,C,B, x, z)

or P (C,A,B, z, x) holds. In either case, |B| > m(r) ≥ m(r) − x − z + 2 implies by Lemma 4.4.9

that there is a violating triple (a, b, c) ∈ A × B × C. Now {u, v, w} is a violating triangle in R, a

contradiction. Thus |A| ≥ |B| ≥ |C|.

Consequently, P (A,B,C, x, y) holds, so if |C| ≥ m(r) − x − y + 2 were true, Lemma 4.4.9 would

imply that there is a violating triple (a, b, c) ∈ A × B × C, making {u, v, w} a violating triangle in

R, a contradiction. Therefore, we must have |C| < m(r) − x − y + 2. Our assumptions imply that

x, y ≥ 1, so in fact, |C| < m(r). Further, we have shown that

|B||C| = f(v, w)f(u,w) ≤ (m(r)+y)(m(r)−x−y+1) ≤ (m(r)+y)(m(r)−y) = m(r)2−y2 ≤ m(r)2−1,

and

|A||C| = f(u, v)f(u,w) ≤ (m(r)+x)(m(r)−x−y+1) ≤ (m(r)+x)(m(r)−x) = m(r)2−x2 ≤ m(r)2−1,

as desired. �

4.4.2. Two Lemmas. In this section, we prove two lemmas toward our stability result. The

first lemma bounds the size of W (R) for R ∈ M̃r(t). We will frequently use the following inequality
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which holds for all integers r ≥ 3:

m(r)2 − 1 ≥ r.(7)

Lemma 4.4.11. Let t, r ≥ 3 be integers and R ∈ M̃r(t). Let aR = |{ij ∈ E(R) : fR(i, j) > m(r)}|.

Then

W (R) ≤ m(r)(
t
2)+t+5

(
m(r)2 − 1

m(r)2

)aR
.

Proof. Fix an integer r ≥ 3. Given an integer t andR ∈ M̃r(t), set g(R) = m(r)(
t
2)+t+5(m(r)2−1

m(r)2 )aR .

We proceed by induction on t. Assume t = 3 and fix R ∈ M̃r(t). In this case aR ≤ 3, so

g(R) ≥ m(r)5(m(r)2 − 1)3. It is straightforward to verify that r3 ≤ m(r)5, as r ≥ 3. Therefore,

W (R) ≤ r3 ≤ m(r)5(m(r)2 − 1)3 ≤ g(R).

Assume now that t > 3 and the claim holds for all t′ with 3 ≤ t′ < t. Fix R ∈ M̃r(t), set a = aR,

and for xy ∈
(

[t]
2

)
, set f(x, y) = fR(x, y). If a = 0 then W (R) ≤ m(r)(

t
2) ≤ g(R) trivially. So assume

a > 0.

Choose uv ∈ E(R) such that f(u, v) is maximum, and note that a > 0 implies f(u, v) > m(r).

Define R′ to be the r-graph with V (R′) = [t] \ {u, v} and for each xy ∈ E(R′), cR
′

= cR|V (R′). Let

a′ = aR′ ,

Y = {z ∈ V (R′) : max{f(u, z), f(v, z)} > m(r)},

and set s = |Y |. For all z ∈ Y , because max{f(u, z), f(v, z)} > m(r) and f(u, v) > m(r), Corollary

4.4.10 implies min{f(u, z), f(v, z)} < m(r) and f(u, z)f(v, z) ≤ m(r)2 − 1. By the definition of Y ,

for all z ∈ V (R′) \ Y , max{f(u, z), f(v, z)} ≤ m(r), so f(u, z)f(v, z) ≤ m(r)2. Combining these

facts we have

W (R) = W (R′)f(u, v)

( ∏
z∈Y

f(u, z)f(z, v)

)( ∏
z/∈Y

f(u, z)f(z, v)

)

≤W (R′)f(u, v)(m(r)2 − 1)sm(r)2(t−2−s) ≤W (R′)r(m(r)2 − 1)sm(r)2(t−2−s).

Using (7), we can upper bound this by

W (R′)(m(r)2 − 1)s+1m(r)2(t−2−s) = W (R′)

(
m(r)2 − 1

m(r)2

)s+1

m(r)2t−2.
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By the induction hypothesis, this is at most

m(r)(
t−2
2 )+t−2+5

(
m(r)2 − 1

m(r)2

)a′(
m(r)2 − 1

m(r)2

)s+1

m(r)2t−2 = m(r)(
t
2)+t+4

(
m(r)2 − 1

m(r)2

)a′+s+1

.

Note that a = a′ + |{zu : z ∈ Y and f(u, z) > m(r)} ∪ {vz : z ∈ Y and f(v, z) > m(r)} ∪ {uv}|.

Because for each z ∈ Y exactly one of f(u, z) or f(v, z) is strictly greater than m(r), this shows

a = a′ + s+ 1. Therefore,

W (R) ≤ m(r)(
t
2)+t+4

(
m(r)2 − 1

m(r)2

)a
< g(R).

This completes the proof. �

We now fix some notation. Suppose r ≥ 3 is an integer, 0 < ε < 1, R is an r-graph, u ∈ V (R), and

t = |V (R)|. For i ∈ [r], set

ΓRi (u) = {v ∈ V (R) : fR(u, v) = i},

µRi (u) = |ΓRi (u)|, and

V R0 (ε) = {v ∈ V (R) : µRm(r)(v) < (1−
√
ε)(t− 1)}.

We now prove the second lemma.

Lemma 4.4.12. For every integer r ≥ 3 there are C1, C2, C3, depending only on r such that for

every 0 < ε < 1, there is M such that if t > M the following holds. Suppose R ∈ M̃r(t) with W (R) >

m(r)(1−ε)(t2). Let aR = |{ij ∈ E(R) : fR(i, j) > m(r)}| and bR = |{ij ∈ E(R) : fR(i, j) < m(r)}|.

Then

(1) aR ≤ C1εt
2,

(2) bR ≤ C2εt
2, and

(3) |V R0 (ε)| ≤
√
εC3t.

Proof. Let r, t ≥ 3 be integers. Fix ε > 0 and suppose R ∈ M̃r(t) is such that W (R) > m(r)(1−ε)(t2).

Set a = aR and b = bR. All logs in this proof are base m(r). Our assumptions and Lemma 4.4.11

imply m(r)(1−ε)(t2) < W (R) ≤ m(r)(
t
2)+t+5(m(r)2−1

m(r)2 )a. Consequently,

(
m(r)2

m(r)2 − 1

)a
< m(r)ε(

t
2)+t+5.(8)
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Suppose M1 is large enough so that t > M1 implies t(1− ε
2 ) + 5 < εt2

4 , and assume t > M1. Taking

log of both sides of (8) we obtain

a log

(
m(r)2

m(r)2 − 1

)
≤ ε
(
t

2

)
+ t+ 5 <

ε

2
t2 +

ε

4
t2 =

3εt2

4
,

where the last inequality is by assumption on M1. Therefore a ≤ C1εt
2, for appropriate choice of

C1 = C1(r). This proves (1). For (2), note that by the definitions of W (R), a, and b we have

W (R) ≤ (m(r)− 1)bram(r)(
t
2)−a−b.

Thus our assumptions and part (1) imply that,

m(r)(1−ε)(t2) < (m(r)−1)brC1εt
2

m(r)(
t
2)−a−b ≤ (m(r)−1)brC1εt

2

m(r)(
t
2)−b =

(
m(r)− 1

m(r)

)b
rC1εt

2

m(r)(
t
2).

Consequently, (
m(r)

m(r)− 1

)b
< m(r)ε(

t
2)rC1εt

2

.

Taking log of both sides, we obtain

b log

(
m(r)

m(r)− 1

)
< ε

(
t

2

)
+ C1εt

2 log r <

(
1

2
+ C1 log r

)
εt2,

from which (2) follows directly for an appropriate choice of C2 = C2(r). For (3), parts (1) and (2)

yield

|{ij ∈ E(R) : f(i, j) = m(r)}| =
(
t

2

)
− a− b ≥

(
t

2

)
− (C1 + C2)εt2 =

(
1

2
− (C1 + C2)ε

)
t2 − t

2
.

Setting m = |V R0 (ε)| = |{u ∈ V (R) : µRm(r)(u) < (1−
√
ε)(t− 1)}|, it is clear that

∑
v∈V (R)

µRm(r)(v) ≤ m(1−
√
ε)(t− 1) + (t−m)(t− 1) = t2 − t−

√
εmt+

√
εm.

On the other hand, let G be the graph with vertex set V = [t] and edge set E = {ij ∈
(V

2

)
: fR(ij) =

m(r)}. Then

∑
v∈V (R)

µRm(r)(v) =
∑
v∈V
DEG(v) = 2|E| ≥ 2

((
1

2
− ε(C1 + C2)

)
t2 − t

2

)
= (1− 2ε(C1 + C2))t2 − t.

Consequently (1− 2ε(C1 + C2))t2 − t ≤ t2 − t−
√
εmt+

√
εm. Simplifying this we obtain

m ≤ 2ε(C1 + C2)t2√
ε(t− 1)

= 2
√
ε(C1 + C2)

t2

t− 1
.
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Set C3 = 3(C1 + C2). It is now clear that there is M2 such that if t > M2, then m ≤
√
εC3t, so (3)

holds. Therefore if t > M = max{M1,M2}, (1), (2), and (3) hold. �

4.4.3. Proof of the Stability Result. In this section we will prove our stability result below.

Theorem 4.4.13. Fix an integer r ≥ 3. For all δ > 0 there is 0 < ε < 1 and M such that for all

t > M the following holds. If R ∈ M̃r(t) and W (R) > m(r)(1−ε)(t2), then R is δ-close to C̃r(t).

The following is a consequence of Lemma 4.4.9, so its proof appears in the appendix along with the

proof of Lemma 4.4.9.

Lemma 4.4.14. Suppose r ≥ 3 is an integer and A,B,C ⊆ [r] are such that |A| = |B| = |C| = m(r)

and there is no violating triple (a, b, c) ∈ A×B × C. Then one of the following holds:

(1) r is even and A = B = C = [m(r)− 1, r].

(2) r is odd and for some relabeling {A,B,C} = {D,E, F} one of the following holds:

(a) D = F = E = [m(r)− 1, r − 1].

(b) D = F = [m(r), r], E ⊆ [m(r)− 1, . . . r].

An immediate corollary of this is the following.

Corollary 4.4.15. Suppose r, t ≥ 3 are integers, R ∈ M̃r(t), and xy, yz, xz ∈
(

[t]
2

)
are such that

fR(x, y) = fR(y, z) = fR(x, z) = m(r). Then one of the following holds:

(1) r is even and cR(xy) = cR(yz) = cR(xz) = [m(r)− 1, r].

(2) r is odd and for some relabeling {x, y, z} = {u, v, z} one of the following holds:

(a) cR(uv) = cR(uw) = cR(vw) = [m(r)− 1, r − 1].

(b) cR(uv) = cR(uw) = [m(r), r], cR(vw) ⊆ [m(r)− 1, r].

Proof. R ∈ M̃r(t) implies there is no violating triple (a, b, c) ∈ cR(uv) × cR(uw) × cR(vw). Thus

the corollary follows immediately by applying Lemma 4.4.14 to A = cR(uv), B = cR(uw) and

C = cR(vw). �

We will use the following consequence of Corollary 4.4.15.

Lemma 4.4.16. For all integers r ≥ 3 and 0 < ε < 1, there is M such that t > M and R ∈ M̃r(t)

implies the following. Let V = [t]. Then one of the following holds.
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(i) r is even and for all xy ∈
(
V
2

)
\ E(V, V R0 (ε)), fR(x, y) = m(r) implies cR(xy) = [m(r)− 1, r].

(ii) r is odd and for all xy ∈
(
V
2

)
\ E(V, V R0 (ε)), fR(x, y) = m(r) implies both of the following:

(a) either r ∈ cR(xy) or cR(xy) = [m(r)− 1, r − 1].

(b) either m(r)− 1 ∈ cR(xy) or cR(xy) = [m(r), r].

Proof. Fix an integer r ≥ 3 and 0 < ε < 1. Choose M large enough so that t > M implies

t − 2 − 2
√
ε(t − 1) ≥ 1 and fix R ∈ M̃r(t). Suppose xy ∈

(
V
2

)
\ E(V R0 (ε), V ) and fR(x, y) = m(r).

Since x, y /∈ V R0 (ε), min{µRm(r)(x), µRm(r)(y)} ≥ (1−
√
ε)(t− 1). Therefore

|V ∩ ΓRm(r)(x) ∩ ΓRm(r)(y)| ≥ t− 2− 2
√
ε(t− 1) ≥ 1,

where the last inequality holds by our assumption on M . Thus there is z ∈ V \ {x, y} such that

fR(x, y) = fR(y, z) = fR(x, z) = m(r). If r is even, part (1) of Corollary 4.4.15 implies cR(xy) =

[m(r) − 1, r], so (i) holds. If r is odd, part (2) of Corollary 4.4.15 implies cR(xy) ⊆ [m(r) − 1, r].

Recall that since r is odd, |[m(r)−1, r]| = m(r)+1. Therefore, since |cR(xy)| = fR(x, y) = m(r) and

cR(xy) ⊆ [m(r)− 1, r], m(r)− 1 /∈ cR(xy) implies cR(xy) = [m(r), r] (so (i) holds), and r /∈ cR(xy)

implies cR(xy) = [m(r)− 1, r − 1] (so (ii) holds). �

We now fix some notation. Suppose r ≥ 3 is an integer, R is an r-graph, and u ∈ V (R). For i ∈ [r],

set

NR
i (u) = {v ∈ V (R) : i ∈ cR(uv)} and

degRi (u) = |NR
i (u)|.

Proof of Theorem 4.4.13. Let r ≥ 3 be an integer, and fix δ > 0. Let C1, C2, C3 be as in Lemma

4.4.12. We will consider the cases when r is even and odd separately.

Case 1: r is even. Fix 0 < ε < 1 small enough so that max{
√
εC3, (C1 + C2)ε} < δ

2 . Apply Lemma

4.4.12 to ε to obtain M1, and apply Lemma 4.4.16 to ε to obtain M2. Set M = max{M1,M2}.

Fix t > M and R ∈ M̃r(t) such that W (R) ≥ m(r)(1−ε)(t2). Set V = [t]. Let R′ be the unique

element of C̃r(t), that is, R′ is the complete r-graph with vertex set V such that for all xy ∈
(
V
2

)
,

cR
′
(xy) = [m(r)− 1, r]. We show |∆(R,R′)| ≤ δt2.

Let V0 = V R0 (ε) and V1 = V \ V0. Define A = E(V0, V ) ∪ {xy ∈
(
V
2

)
: fR(x, y) 6= m(r)}. Suppose

xy ∈
(
V
2

)
\ A. Then xy ∈

(
V
2

)
\ E(V, V0) and fR(x, y) = m(r), so Lemma 4.4.16 (i) implies
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cR(xy) = [m(r) − 1, r]. Thus cR(xy) = cR
′
(xy) and xy /∈ ∆(R,R′). We have shown ∆(R,R′) ⊆ A,

and consequently |∆(R′, R)| ≤ |A|.

We now bound |A|. The definition of A and parts (1), (2), and (3) of Lemma 4.4.12 imply

|A| ≤ |V ||V0|+ aR + bR ≤ (
√
εC3 + (C1 + C2)ε)t2.

By assumption on ε, (
√
εC3 + (C1 + C2)ε)t2 < ( δ2 + δ

2 )t2 = δt2, and consequently, |∆(R,R′)| ≤ δt2

as desired.

Case 2: r is odd. Fix 0 < ε < 1 small enough so that max{
√
εC3, (C1 + C2)ε, 2

√
ε} < δ

5 .

Apply Lemma 4.4.12 to ε to obtain M1 and apply Lemma 4.4.16 to ε to obtain M2. Choose

M > max{M1,M2} large enough so that t > M implies 2√
εt
< δ

5 ,
√
εt2 + t ≤ 2

√
εt2, and t2

t−1 < 2t.

Fix t > M and R ∈ M̃r(t) such that W (R) ≥ m(r)(1−ε)(t2) and set V = [t]. We construct an element

R′ ∈ C̃r(t), then show |∆(R,R′)| ≤ δt2. First we choose integers k ≥ 1, ` ∈ {0, . . . , k}, and a

partition V0, V1, . . . , Vl, . . . , Vk of V with the following properties:

• |V0| ≤
√
εC3t,

• If 0 < l, then for each 1 ≤ i ≤ l, there is ui ∈ V and Bi ⊆ V such that Vi = (NR
m(r)−1(ui) ∩Bi) ∪

{ui},

• If l < k, then Vl+1, . . . , Vk are singletons.

Step 1: Let V0 = V R0 (ε). Note that part (3) of Lemma 4.4.12 implies |V0| ≤
√
εC3t. Define

B1 = V \ V0. If there exists u ∈ B1 such that |NR
m(r)−1(u) ∩ B1| ≥

√
ε(t − 1), then choose u1

to be any u ∈ B1 with |NR
m(r)−1(u) ∩ B1| maximal, and set V1 = (NR

m(r)−1(u1) ∩ B1) ∪ {u1}. If

V \ (V0 ∪ V1) = ∅, set k = l = 1 and end the construction. If not, go to step 2. If no u exists in B1

such that |NR
m(r)−1(u)∩B1| ≥

√
ε(t− 1), then put each element of B1 into its own part and end the

construction. This means we set l = 0, k = t− |V0|, and let V1, . . . , Vk partition B1 into singletons.

Step i+ 1: Suppose i ≥ 1 and we have chosen Vi, Bi, and ui such that Vi = (NR
m(r)−1(ui)∩Bi)∪{ui}

and V \
⋃i
j=0 Vj 6= ∅. Set Bi+1 = V \

⋃i
j=0 Vj . If there exists u ∈ Bi+1 such that |NR

m(r)−1(u) ∩

Bi+1| ≥
√
ε(t − 1), choose ui+1 to be any u ∈ Bi+1 with |NR

m(r)−1(u) ∩ Bi+1| maximal, and set

Vi+1 = (NR
m(r)−1(ui+1)∩Bi+1)∪{ui+1}. If V \

⋃i+1
j=0 Vj = ∅, set k = l = i+1 and end the construction.

Otherwise go to step i + 2. If no u exists in Bi+1 such that |NR
m(r)−1(u) ∩ Bi+1| ≥

√
ε(t − 1),

then put each element of Bi+1 into its own part and end the construction. This means we set

l = i, k = t − |
⋃i
j=0 Vi|, and let Vi+1, . . . , Vk partition Bi+1 into singletons. This completes the
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construction of the partition V0, V1, . . . , Vl, . . . , Vk. Given xy ∈
(
V
2

)
, define

cR
′
(xy) =


[m(r)− 1, r − 1] if xy ∈

(
Vi
2

)
some 0 ≤ i ≤ l

[m(r), r] otherwise.

This completes our construction of R′. We now bound |∆(R,R′)|. Set

A = E(V0, V ) ∪

{
xy ∈

(
V

2

)
: fR(x, y) 6= m(r)

}
∪

l⋃
i=1

E({ui}, V ) ∪ E(Vi, V \ ΓRm(r)(ui)).

We first bound |A|, then |∆(R,R′) \A|. By parts (1), (2), and (3) of Lemma 4.4.12,∣∣∣∣∣E(V0, V ) ∪

{
xy ∈

(
V

2

)
: fR(x, y) 6= m(r)

}∣∣∣∣∣ ≤ |V ||V0|+ aR + bR ≤ C3

√
εt2 + C1εt

2 + C2εt
2.

By construction, for each 1 ≤ i ≤ l, |Vi| ≥
√
ε(t− 1), therefore l ≤ t√

ε(t−1)
. Thus

∣∣∣∣∣
l⋃
i=1

E({ui}, V )

∣∣∣∣∣ ≤ lt ≤ t2√
ε(t− 1)

≤ 2t√
ε
,

where the last inequality is by assumption on M . By construction, for each 1 ≤ i ≤ l, ui /∈ V0

implies |V \ ΓRm(r)(ui)| ≤
√
ε(t− 1) + 1. Therefore∣∣∣∣∣

l⋃
i=1

E(Vi, V \ΓRm(r)(ui))

∣∣∣∣∣ ≤
l∑
i=1

|Vi||V \ΓRm(r)(ui)| ≤ (
√
ε(t−1)+1)

l∑
i=1

|Vi| ≤ (
√
ε(t−1)+1)t ≤ 2

√
εt2,

where the last inequality is by assumption on M . Combining all of this yields that

|A| ≤

(
√
εC3 + (C1 + C2)ε+

2√
εt

+ 2
√
ε

)
t2.

We now bound |∆(R,R′) \A|. An edge xy ∈ ∆(R,R′) \A is contained in one of the following:

• X =
⋃
l+1≤i<j≤k{xy ∈ E(Vi, Vj) \A : cR(xy) 6= [m(r), r]}.

• For some 1 ≤ i ≤ l, Yi = {xy ∈ E(Vi) \A : cR(xy) 6= [m(r)− 1, r − 1]}.

• For some 1 ≤ i ≤ ` and i < j ≤ k, Zij = {xy ∈ E(Vi, Vj) \A : cR(xy) 6= [m(r), r]}.

We now bound |X|. Define G to be the graph with vertex set V =
⋃k
j=l+1 Vj and edge set

E = {xy ∈
(
V
2

)
: m(r)− 1 ∈ cR(xy)}.

By definition of X, for all xy ∈ X we have xy ∈
(
V
2

)
\ E(V0, V ), fR(x, y) = m(r), and cR(xy) 6=

[m(r), r], so Lemma 4.4.16 (ii)(b) implies m(r)−1 ∈ cR(xy), and therefore X ⊆ E . By construction,
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for all u ∈ V, DEG(v) = |NR
m(r)−1(u) ∩ V| <

√
ε(t− 1), thus

|X| ≤ |E| = 1

2

∑
v∈V
DEG(v) <

√
εt2

2
.

We now show each Yi is empty. If l = 0 this is vacuous, so assume l ≥ 1. Suppose for a contradiction

that for some 1 ≤ i ≤ l, Yi 6= ∅. Then there is xy ∈ E(Vi) such that fR(x, y) = m(r) and

cR(xy) 6= [m(r) − 1, r − 1]. By Lemma 4.4.16 (ii)(a), r ∈ cR(xy). But by construction, m(r) − 1 ∈

cR(uix) ∩ cR(uiy). Now (r,m(r) − 1,m(r) − 1) ∈ cR(xy) × cR(uix) × cR(uiy) is a violating triple,

making {x, y, ui} a violating triangle, a contradiction.

We now show each Zij is empty. Suppose for a contradiction that for some 1 ≤ i ≤ ` and some i <

j ≤ k, there is xy ∈ Zij , say with x ∈ Vi, y ∈ Vj . Then fR(x, y) = fR(ui, y) = m(r) and cR(xy) 6=

[m(r), r]. By Lemma 4.4.16 (ii)(b), m(r) − 1 ∈ cR(xy), and by construction m(r) − 1 ∈ cR(xui).

Also by construction, m(r)− 1 /∈ cR(uiy), so Lemma 4.4.16 (ii)(b) implies cR(uiy) = [m(r), r]. But

now (r,m(r) − 1,m(r) − 1) ∈ cR(uiy) × cR(uix) × cR(xy) is a violating triple, making {ui, x, y} a

violating triangle, a contradiction.

Combining all of this yields that |∆(R,R′) \A| <
√
εt2

2 , so

|∆(R,R′)| ≤ (
√
εC3 + (C1 + C2)ε+

2√
εt

+ 2
√
ε+

√
ε

2
)t2.

By our assumptions on ε and because 2√
εt
< δ

5 , (
√
εC3 +(C1 +C2)ε+ 2√

εt
+2
√
ε+
√
ε

2 )t2 < 5 δ5 t
2 = δt2,

and |∆(R,R′)| < δt2 as desired. �

4.5. Proof of Theorem 4.1.5

In this section we prove Theorem 4.1.5, which says that for all integers r ≥ 3 and all δ > 0, almost

all elements of Mr(n) are δ-close to Cr(n). We begin with some key definitions. For n, r, s ≥ 3

integers, and δ, η, d, ε ≥ 0, set

C̃δr (s) = {R ∈ M̃r(s) : R is δ-close to C̃r(s)},

Dr(n, δ, η, d) = {G ∈Mr(n) : Qη,d(G) 6= ∅ and for all R ∈ Qη,d(G), R ∈ C̃δr (t) where t = |V (R)|},

Ẽr(s, ε) = {R ∈ M̃r(s) : W (R) ≥ m(r)(1−ε)(s2)}, and

Er(n, ε, η, d) = {G ∈Mr(n) : for all R ∈ Qη,d(G), R ∈ Ẽr(t, ε) where t = |V (R)|},

and recall that Cδr (n) = {G ∈ Mr(n) : G is δ-close to Cr(n)}. Theorem 4.1.5 follows from two

lemmas that we now prove. The first lemma below informally states that r-graphs in Mr(n) with
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reduced r-graphs close to C̃r(t) are themselves close to Cr(n). We will use throughout the following

observations.

Fact 4.5.1. Suppose 3 ≤ t ≤ n. Then
(dn/te

2

)
≤
(
n/t+1

2

)
≤ n2

t2 and dn/te2 ≤ (n/t+ 1)2 ≤ 4n2/t2.

Lemma 4.5.2. Let r, n ≥ 3 be integers. For all δ > 0, there is d0 such that for all positive d ≤ d0

and η ≤ γel(d, 3),

Dr(n, δ/8, η, d) ⊆ Cδr (n).

Proof. Fix δ > 0 and set d0 = δ
2(2r+5) . Fix d ≤ d0 and η ≤ γel(d, 3), and suppose G ∈

Dr(n, δ/8, η, d). Then by definition of Dr(n, δ/8, η, d), G ∈ Mr(n) and there is R ∈ Qη,d(G) which

is δ
8 -close to C̃r(t) where t = |V (R)|. Let R′ ∈ C̃r(t) be such that R is δ

8 -close to R′. We will build

an element G′ ∈ Cr(n) such that G is δ-close to G′.

Let P = {V1, . . . , Vt} be an η-regular partition for G such that R = R(G,P, d). Define

A = ∆(R,R′) ∪ {ij ∈
(

[t]

2

)
: (Vi, Vj) is not η-regular for G}.

Note that |A| ≤ δ
8 t

2 + ηt2. Define G′ by V (G′) = V (G) = [n] and for xy ∈
(

[n]
2

)
,

dG
′
(x, y) =


r − 1 if xy ∈ E(Vi) for some i ∈ [t]

r − 1 if xy ∈ E(Vi, Vj) for some ij ∈
(

[t]
2

)
such that either ij ∈ A or dG(x, y) /∈ cR′(ij)

dG(x, y) if xy ∈ E(Vi, Vj) for some ij ∈
(

[t]
2

)
\A and dG(x, y) ∈ cR′(ij).

Set

Ur =


[m(r), r] if r is odd

[m(r)− 1, r] if r is even

and Lr =


[m(r)− 1, r − 1] if r is odd

[m(r)− 1, r] if r is even.

Note that r−1 ∈ Ur ∩Lr. By the definition of C̃r(t), there is a partition W̃1, . . . , W̃s of [t] such that

for all ij ∈
(

[t]
2

)
,

cR
′
(ij) =


Lr if ij ∈ E(W̃u) some u ∈ [s]

Ur if ij ∈ E(W̃u, W̃v) some uv ∈
(

[s]
2

)
.
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Define a new partition W1, . . . ,Ws of [n] by setting Wu =
⋃
i∈W̃u

Vi for each u ∈ [s]. Then by

construction, for all xy ∈
(

[n]
2

)
,

dG
′
(x, y) ∈


Lr if xy ∈ E(Wu) some u ∈ [s]

Ur if xy ∈ E(Wu,Wv) some uv ∈
(

[s]
2

)
.

Therefore, G′ ∈ Cr(n) by definition. We now show |∆(G,G′)| ≤ δn2. Recall that by definition of

Qη,d(G) and η, 3 ≤ 1
η ≤ t ≤ n. Edges xy ∈ ∆(G,G′) fall into the following categories:

• xy ∈ E(Vi) for some i ∈ [t]. There are at most t
(dn/te

2

)
≤ tn

2

t2 = n2

t ≤ ηn
2 such edges.

• xy ∈ E(Vi, Vj) for some ij ∈ A. The number of such edges is at most

|A|
⌈n
t

⌉2

≤ |A|4n
2

t2
≤
(δ

8
t2 + ηt2

)4n2

t2
=
(δ

2
+ 4η

)
n2.

• xy ∈ E(Vi, Vj) for some ij ∈
(

[t]
2

)
\A such that dG(x, y) /∈ cR′(ij). This means (Vi, Vj) is η-regular

for G and cR
′
(ij) = cR(ij). Because R = R(G,P, d), for each l ∈ [r] \ cR(ij) we have that

eGl (Vi, Vj) ≤ d|Vi||Vj |. Therefore there are at most dr
(
t
2

)
dnt e

2 ≤ dr t
2

2
4n2

t2 = 2drn2 such edges.

Combining these bounds with the fact that η ≤ d ≤ d0 = δ
2(2r+5) yields

|∆(G,G′)| ≤ n2(5η +
δ

2
+ 2dr) ≤ n2(5d0 +

δ

2
+ 2d0r) = n2

(δ
2

+ d0(2r + 5)
)

= δn2.

�

We now prove the second lemma. Informally, it says that most graphs in Mr(n) have all their

reduced graphs R with W (R) quite large.

Lemma 4.5.3. For all ε > 0, there is β = β(ε) and d0 = d0(ε) > 0, such that for all positive d ≤ d0

and η ≤ γel(d, 3), there is M such that n ≥M implies

|Mr(n) \ Er(n, ε, η, d)|
m(r)(

n
2)

≤ 2−βn
2

.(9)

Proof. All logs in this proof are base 2. Fix ε > 0 and set β = ε logm(r)
8 . Define

F (x) = 5x log r + 4r(H(x) + x)− 2β,

and choose d0 <
1
3 small enough so that F (d0) < −β. Recall that for 0 ≤ y ≤ x ≤ 1

2 , H(y) ≤ H(x),

so for any 0 ≤ y ≤ x ≤ d0, F (y) ≤ F (x). Fix d ≤ d0 and η ≤ γel(d, 3) ≤ d. Set N = CM( 1
η , η) and

define
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C = log(N − 1
η + 1) + log(2r)

(
N
2

)
+ (H(η) + η)N2,

C ′ = logN + logm(r)
2 +N2 log r, and

C ′′ = 5η log r + 4r(H(d) + d)− 4β.

For any integer n, define

S(n) = n log(N) + (H(η) + η)N2 + (5η log r)n2 + 4r(H(d) + d)n2 + nN2 log r,

S′(n) = S(n) + log(N − 1
η + 1) +

(
N
2

)
log(2r), and

S′′(n) = S′(n)− 4βn2 + logm(r)
2 n.

Notice that S′′(n) = C + C ′n + C ′′n2 and C ′′ ≤ F (d) − 2β. Choose M ≥ N large enough so that

n > M implies S′′(n) < (C ′′ + 2β)n2 ≤ F (d)n2. We show n > M implies (9) holds. Fix n > M .

Our assumptions on d ≤ d0 and M imply S′′(n) < F (d)n2 ≤ F (d0)n2 < −βn2, so it suffices to show

|Mr(n) \ Er(n, ε, η, d)|
m(r)(

n
2)

≤ 2S
′′(n).(10)

By definition of E(n, ε, η, d), we have G ∈ Mr(n) \ Er(n, ε, η, d) if and only if there is 1
η ≤ t ≤ N

and R ∈ M̃r(t) such that R ∈ Qη,d(G) and W (R) < m(r)(1−ε)(t2). We give an upper bound for the

number of such G.

Fix some 1
η ≤ t ≤ N and R ∈ M̃r(t) such that W (R) < m(r)(1−ε)(t2). All G ∈ Mr(n) such that

R ∈ Qη,d(G) can be constructed as follows:

• Choose an equipartition of [n] into t pieces V1, . . . , Vt. There are at most tn ≤ Nn such partitions.

Note that for each i ∈ [t], |Vi| ≤ dn/te.

• Choose J ⊆
(

[t]
2

)
to be the set of ij such that (Vi, Vj) is not η-regular for G. There are at most( (t2)

η(t2)

)
2η(

t
2) ≤ 2H(η)t2+ηt2 ≤ 2(H(η)+η)N2

ways to do this.

• Choose dG(x, y) for each xy ∈ E(Vi) and i ∈ [t]. There are at most rt(
dn/te

2 ) ≤ rt
n2

t2 = r
n2

t ≤ rηn2

ways to do this.

• Choose dG(x, y) for each xy ∈ E(Vi, Vj) where ij ∈ J . The number of ways to do this is at most

(rdn/te
2

)ηt
2 ≤ r

4n2

t2
ηt2 = r4ηn2

.

• Choose dG(x, y) for each xy ∈ E(Vi, Vj) where ij ∈ I =
(

[t]
2

)
\ J . For each ij ∈ I, (Vi, Vj) is

η-regular, so the colors for edges in E(Vi, Vj) can be chosen as follows:

(a) For each s /∈ cR(ij), choose a subset of E(Vi, Vj) of size at most d|Vi||Vj | to have color s. The

number of ways to do this is at most((
dn/te2

ddn/te2

)
2ddn/te

2

)r
≤ 2r(H(d)dn/te2+ddn/te2) ≤ 2

4rn2

t2
(H(d)+d).
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(b) Assign colors from cR(ij) to the rest of the edges in E(Vi, Vj). The number of ways to do

this is at most fR(i, j)dn/te
2 ≤ fR(i, j)

n2

t2
+ 2n

t +1 ≤ fR(i, j)
n2

t2 r
2n
3 +1 ≤ fR(i, j)

n2

t2 rn ways to

do this.

Therefore, the total number of ways to choose dG(x, y) for xy ∈ E(Vi, Vj) where ij ∈ I is at most

∏
ij∈I

2(H(d)+d) 4rn2

t2 fR(i, j)
n2

t2 rn ≤ 24r(H(d)+d)n2

rnN
2

( ∏
ij∈I

fR(i, j)
n2

t2

)
≤ 24r(H(d)+d)n2

rnN
2

W (R)
n2

t2 .

By the assumption, W (R) < m(r)(1−ε)(t2). Therefore

W (R)
n2

t2 < m(r)(1−ε)(t2)
n2

t2 < m(r)(1−ε)((n2)+n
2 ).

Combining the above yields that the number of G ∈Mr(n) with R ∈ Qη,d(G) is at most

Nn2(H(η)+η)N2

r5ηn2

24r(H(d)+d)n2

rnN
2

m(r)(1−ε)((n2)+n
2 ) = 2S(n)m(r)(1−ε)((n2)+n

2 ).

The number of R ∈ M̃r(t) with 1
η ≤ t ≤ N is at most (N − 1

η + 1)|M̃r(N)|, so

|Mr(n) \ Er(n, ε, η, d)| < (N − 1

η
+ 1)|M̃r(N)|2S(n)m(r)(1−ε)((n2)+n

2 )

< (N − 1

η
+ 1)(2r)(

N
2 )2S(n)m(r)(1−ε)((n2)+n

2 ) = 2S
′(n)m(r)(1−ε)((n2)+n

2 ).

Thus

|Mr(n) \ Er(n, ε, η, d)|
m(r)(

n
2)

<
2S
′(n)m(r)(1−ε)((n2)+n

2 )

m(r)(
n
2)

= 2S
′′(n).

We have shown that n > M implies (10) holds, so we are done. �

Proof of Theorem 4.1.5. Fix δ > 0. Apply Theorem 4.4.13 to δ
8 to obtain ε and M4.4.13. Apply

Lemma 4.5.2 to δ to obtain (d0)4.5.2. Apply Lemma 4.5.3 to ε to obtain β and (d0)4.5.3. Let d0 =

min{(d0)4.5.2, (d0)4.5.3}. Apply Lemma 4.5.3 to d = d0 ≤ (d0)4.5.3 and η = min{γel(d, 3), 1
M4.4.13

} to

obtain M4.5.3. Set M = max{CM(η, 1
η ),M4.5.3} and fix n > M . Lemma 4.5.3 implies

|Mr(n) \ Er(n, ε, η, d)|
m(r)(

n
2)

≤ 2−βn
2

.(11)

We now show Er(n, ε, η, d) ⊆ Dr(n, δ/8, η, d). Suppose G ∈ Er(n, ε, η, d). We need to show that

Qη,d(G) 6= ∅ and for all R ∈ Qη,d(G), R ∈ C̃
δ/8
r (t) where t = |V (R)|. As n > CM(η, 1

η ), by

Theorem 4.4.2, we have Qη,d(G) 6= ∅. Suppose R ∈ Qη,d(G) and set t = |V (R)|. By definition

of Er(n, ε, η, d), R ∈ Ẽr(t, ε). Theorem 4.4.13 and our assumptions on η imply that R ∈ C̃δ/8r (t),

so Er(n, ε, η, d) ⊆ Dr(n, δ/8, η, d). Lemma 4.5.2 implies Dr(n, δ/8, η, d) ⊆ Cδr (n). Combining these
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inclusions with (11) we have that

|Mr(n) \ Cδr (n)|
m(r)(

n
2)

≤ 2−βn
2

.

By Remark 4.1.9, |Mr(n)| ≥ m(r)(
n
2), so

|Mr(n) \ Cδr (n)|
|Mr(n)|

≤ |Mr(n) \ Cδr (n)|
m(r)(

n
2)

≤ 2−βn
2

,

which completes our proof of Theorem 4.1.5. �

4.6. Proof of Theorem 4.1.2

In this section we prove Theorem 4.1.2, which says that for all even integers r ≥ 4, almost all G in

Mr(n) are in Cr(n). The outline of the proof is as follows. Given ε > 0 and integers r, n ≥ 3, define

Ar(n, ε) = {G ∈Mr(n) : ∃x ∈ [n] such that for some l ∈ [m(r)− 2], |NG
l (x)| ≥ εn},

A′r(n, ε) = {G ∈Mr(n) \Ar(n, ε) : ∃xy ∈
(

[n]

2

)
with dG(x, y) ∈ [m(r)− 2]}.

For all ε > 0, n ∈ N, and even integers r ≥ 4, we have that Mr(n) = Cr(n) ∪ Ar(n, ε) ∪ A′r(n, ε),

and thus Mr(n) \ Cr(n) = Ar(n, ε) ∪ A′r(n, ε). We will show that when r is even, there are ε > 0

and β > 0 such that for large n, |Ar(n, ε) ∪ A′r(n, ε)| ≤ 2−βn|Mr(n)|, from which Theorem 4.1.2

will follow. We do this in two lemmas, one for each of the sets Ar and A′r defined above. The first

lemma will apply to all r ≥ 3, while the second will apply only to even r ≥ 4.

Lemma 4.6.1. For all integers r ≥ 3 and all ε > 0 there is β > 0 and M such that n > M implies

|Ar(n, ε)| ≤ 2−βn
2

|Cr(n)|.(12)

Proof. Let r ≥ 3 be an integer and fix ε > 0. By Remark 4.1.9, it suffices to find β > 0 and M

such that n > M implies

|Ar(n, ε)| ≤ 2−βn
2

m(r)(
n
2).

Choose T > 0 large enough so that ε2T 2

64 −
εT
8 ≥ 1, then choose 0 < δ < min{ 1

T ,
ε2

128}. Apply

Theorem 4.4.13 to δ to obtain ε4.4.13 and M4.4.13. Apply Lemma 4.5.3 to ε4.4.13 to obtain d0 and

β > 0. Choose d ≤ d0 and η < min{δ, γel(d, 3), ε2 , d,
1

M4.4.13
}. Apply Lemma 4.5.3 to this d and η to
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obtain M4.5.3. Choose M ≥ max{M4.5.3, CM( 1
η , η)}. Lemma 4.5.3 implies that for all n > M ,

|Mr(n) \ Er(n, ε4.4.13, η, d)|
m(r)(

n
2)

≤ 2−βn
2

.

Therefore, it suffices to prove that n > M implies that Ar(n, ε) ⊆ Mr(n) \ Er(n, ε4.4.13, η, d). Fix

n > M and suppose for a contradiction that there is some G ∈ Ar(n, ε) ∩ Er(n, ε4.4.13, η, d).

Since G ∈ Ar(n, ε), there is x ∈ [n] and l ∈ [m(r) − 2] such that |NG
l (x)| ≥ εn. Because

n > CM( 1
η , η), by Theorem 4.4.2, there is R ∈ Qη,d(G). Also, G ∈ Er(n, ε4.4.13, η, d) implies

that W (R) ≥ m(r)(1−ε4.4.13)(t2) where t = |V (R)|. Then t ≥ 1
η > M4.4.13 implies that there is

R′ ∈ C̃r(t) such that |∆(R,R′)| ≤ δt2.

Let P = {V1, . . . , Vt} be an η-regular partition for G such that R = R(G,P, d), and define Σ = {i ∈

[t] : |NG
l (x) ∩ Vi| ≥ ε

2 |Vi|}. We have that

εn ≤ |NG
l (x)| =

∑
i∈Σ

|NG
l (x) ∩ Vi|+

∑
i/∈Σ

|NG
l (x) ∩ Vi| ≤ |Σ|

⌈n
t

⌉
+ (t− |Σ|) ε

2

⌈n
t

⌉
.(13)

Note that n ≥ 3 implies dn/te ≤ 4n
3t , so

|Σ|
⌈n
t

⌉
+(t−|Σ|) ε

2

⌈n
t

⌉
= |Σ|

(
1− ε

2

)⌈n
t

⌉
+
εt

2

⌈n
t

⌉
≤ |Σ|

(
1− ε

2

)4n

3t
+
εt

2

4n

3t
= |Σ|

(
1− ε

2

)4n

3t
+

2εn

3
.

Combining this with (29), yields that εn ≤ |Σ|(1 − ε
2 ) 4n

3t + 2εn
3 . Rearranging this, we obtain that

|Σ| ≥ (εn/3)/((4n/3t)(1− ε
2 )) = εt

4(1− ε2 ) ≥
εt
4 . Set

I = {ij ∈ E(Σ) : (Vi, Vj) is η-regular for G and cR(ij) = cR
′
(ij)}.

Applying that P is an η-regular partition for G, that |∆(R,R′)| ≤ δt2, and that εt
4 ≤ |Σ| yields

|I| ≥
( εt

4

2

)
− ηt2 − δt2 = t2

(
ε2

32
− η − δ

)
− εt

8
≥ t2

(
ε2

32
− 2δ

)
− εt

8
,(14)

where the last inequality is because η < δ. By our assumptions, t ≥ 1
δ ≥ T and δ < ε2

128 . These facts

imply the right hand side of (14) is at least ε2T
64 −

εT
8 ≥ 1. Thus I 6= ∅.

Take ij ∈ I and let Wi = NG
l (x)∩Vi and Wj = NG

l (x)∩Vj . Since η < ε
2 and (Vi, Vj) is η-regular for

G, we have ρGr−1(Wi,Wj) ≥ ρGr−1(Vi, Vj)− η. Because cR(ij) = cR
′
(ij), we have that r− 1 ∈ cR(ij).

Therefore, by definition of R, ρGr−1(Vi, Vj) ≥ d, so ρGr−1(Wi,Wj) ≥ d−η > 0, where the last inequality

is by the assumption on η. Therefore, there is (xi, xj) ∈ Wi ×Wj such that dG(xi, xj) = r − 1.

But now dG(x, xi) = l, dG(x, xj) = l, and dG(xi, xj) = r − 1 implies that {x, xi, xj} is a violating
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triangle in G, a contradiction. This finishes the proof that Ar(n, ε) ⊆Mr(n) \ Er(n, ε4.4.13, η, d), so

we are done. �

Lemma 4.6.2. Let r ≥ 4 be an even integer integer. There are ε, β > 0 and N such that n > N

implies

|A′r(n, ε)| ≤ 2N
2−βn|Cr(n)|.(15)

Proof. All logs are base 2. Set β = 1
2 (logm(r)2 − log(m(r)2 − 2)) and choose ε > 0 small enough

so that

2r(H(ε) + ε)− 2β < −3β

2
.(16)

Given an integer k, set

F (k) = log

(
k

2

)
+ log(m(r)− 2)− 2 log(m(r)2 − 2) + 2rk(H(ε) + ε) and

F ′(k) = F (k) + 3 logm(r).

By Corollary 4.1.6, there is n0 such that n > n0 implies

|Mr(n)| ≤ 2(n−1)2−βnm(r)(
n
2) = 2(n−1)2−βn|Cr(n)|.(17)

By (16) and definition of F ′(n), there is n1 such that n > n1 implies

F ′(n)− 2βn+ 5 < −βn.(18)

Apply Lemma 4.6.1 to ε to obtain M4.6.1 and β4.6.1. Choose N > max{M4.6.1, n0, n1} large enough

so β4.6.1(N − 2)2 > 1. We show by induction that for all n ≥ N , (15) holds. We begin with the base

cases n = N and n = N + 1. Combining (17) with the fact that for all n, A′r(n, ε) ⊆Mr(n) yields

|A′r(N, ε)| ≤ |Mr(N)| ≤ 2(N−1)2−βN |Cr(N)| < 2N
2−βN |Cr(N)| and

|A′r(N + 1, ε)| ≤ |Mr(N + 1)| ≤ 2N
2−β(N+1)|Cr(N + 1)|.

Therefore (15) holds for n = N and n = N + 1. Suppose now n ≥ N + 2 and (15) holds for all m

such that N ≤ m ≤ n− 1. We show it holds for n. We can construct any element G of A′r(n, ε) as

follows.

• Choose a pair of elements xy ∈
(

[n]
2

)
. There are

(
n
2

)
ways to do this.

• Choose dG(x, y) ∈ [m(r)− 2]. There are m(r)− 2 ways to do this.
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• Put a structure on [n] \ {x, y}. There are at most |Mr(n− 2)| ways to do this.

• For each l ∈ [m(r)−2], choose Nl(x) and Nl(y). Since G is not in Ar(n, ε), for each l ∈ [m(r)−2],

max{|Nl(x)|, |Nl(y)|} ≤ εn. Therefore, there are at most (
(
n
εn

)
2εn)2(m(r)−2) ≤ 22rn(H(ε)+ε) ways

to do this.

• For each z ∈ [n] \ ({x, y} ∪
⋃m(r)−2
l=1 Nl(x) ∪ Nl(y)), choose dG(x, z) and dG(y, z). Note that

(dG(x, z), dG(y, z)) must be chosen from [m(r)−1, r]× [m(r)−1, r]\{(m(r)−1, r), (r,m(r)−1)},

so there are at most m(r)2 − 2 choices.

Combining all of this we obtain that |A′r(n, ε)| is at most(
n

2

)
(m(r)− 2)22rn(H(ε)+ε)(m(r)2 − 2)n−2|Mr(n− 2)| = 2F (n)(m(r)2 − 2)n|Mr(n− 2)|.(19)

Because Mr(n− 2) = Cr(n− 2) ∪Ar(n− 2, ε) ∪A′r(n− 2, ε),

|Mr(n− 2)| = |Cr(n− 2)|+ |Ar(n− 2, ε)|+ |A′r(n− 2, ε)|.

Lemma 4.6.1 implies |Ar(n − 2, ε)| ≤ |Cr(n − 2)|2−β4.6.1(n−2)2 , and our induction hypothesis im-

plies |A′r(n − 2, ε)| ≤ |Cr(n − 2)|2N2−β(n−2). Remark 4.1.9 implies |Cr(n)| = m(r)2n−3|Cr(n − 2)|.

Combining these facts with (19), we obtain that

|A′r(n, ε)| ≤ 2F (n)(m(r)2 − 2)n(1 + 2−β4.6.1(n−2)2 + 2N
2−β(n−2))|Cr(n− 2)|

= 2F (n)(m(r)2 − 2)nm(r)−2n+3(1 + 2−β4.6.1(n−2)2 + 2N
2−β(n−2))|Cr(n)|

= 2F
′(n)−2βn(1 + 2−β4.6.1(n−2)2 + 2N

2−β(n−2))|Cr(n)|.(20)

By assumption on N , −β4.6.1(n− 2)2 < −1, so we have that

1 + 2−β4.6.1(n−2)2 + 2N
2−β(n−2) ≤ 2 + 2N

2−β(n−2) ≤


4 if N2 − β(n− 2) ≤ 1,

2(2N
2−β(n−2)) if N2 − β(n− 2) > 1.

Combining this with (20) yields that

|A′r(n, ε)| ≤


2F
′(n)−2βn+2|Cr(n)| if N2 − β(n− 2) ≤ 1 and

2F
′(n)−3βn+N2+5|Cr(n)| if N2 − β(n− 2) > 1.

In both cases we have |A′r(n, ε)| ≤ 2N
2+F ′(n)−2βn+5|Cr(n)|, so by (18), |A′r(n, ε)| ≤ 2N

2−βn|Cr(n)|.

This completes the induction. �
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Proof of Theorem 4.1.2. Fix r ≥ 4 an even integer. Apply Lemma 4.6.2 to obtain ε4.6.2,

β4.6.2 and N4.6.2. Apply Lemma 4.6.1 to ε4.6.2 to obtain β4.6.1 and M4.6.1. Set ε = ε4.6.2 and

β = 1
2β4.6.2. Let M ′ be large enough so that n > M ′ implies 2−β4.6.1n

2

+ 2N
2
4.6.2−β4.6.2n < 2−βn.

Set M = max{M4.6.1, N4.6.2,M
′}. For all n, by definition, Mr(n) \ Cr(n) = Ar(n, ε) ∪ A′r(n, ε).

Therefore, when n > M our assumptions imply

|Mr(n) \ Cr(n)| = |Ar(n, ε)|+ |A′r(n, ε)| ≤ (2−β4.6.1n
2

+ 2N
2
4.6.2−β4.6.2n)|Cr(n)| < 2−βn|Cr(n)|.

Rearranging yields that |Cr(n)| ≥ |Mr(n)|(1− 2−βn), as desired. �

4.7. Concluding remarks

• When r is odd, the error term in Corollary 4.1.6 cannot be strengthened from o(n2) to o(1) (or

even to O(n)), as in Corollary 4.1.3. This can be seen by constructing a large collection of elements

of Mr(n), which will show that |Mr(n)| is at least m(r)(
n
2)+Ω(n logm(r)(n)). Fix n a sufficiently large

integer. Define a matching to be a set S ⊆
(

[n]
2

)
such that no two elements of S have nonempty

intersection. Given a matching S, define A(S) to be the set of simple complete r-graphs G such

that for each xy ∈ S, dG(x, y) = m(r) − 1 and for each xy ∈
(

[n]
2

)
\ S, dG(x, y) ∈ [m(r), r]. One

can easily verify that for any matching S, no element of A(S) contains a violating triangle, so

A(S) ⊆Mr(n), and that given another matching S′ 6= S, A(S)∩A(S′) = ∅. Further, it is clear that

|A(S)| = m(r)(
n
2)−|S| and |S| ≤ n

2 , so |A(S)| ≥ m(r)(
n
2)−

n
2 . Finally, note that there are at least (n2 )!

distinct matchings on [n]. This and Stirling’s approximation yields that

|Mr(n)| ≥ (
n

2
)!m(r)(

n
2)−

n
2 = m(r)(

n
2)+Ω(n logm(r) n).

Combining this with Theorem 4.1.6, the best bounds we have obtained for |Mr(n)| are

m(r)(
n
2)+Ω(n logn) ≤ |Mr(n)| ≤ m(r)(

n
2)+o(n2).

We conjecture that in fact, |Mr(n)| = m(r)(
n
2)+Θ(n logn).

• It is impossible to extend Theorem 4.1.2 to the case when r is odd. Indeed, one can show that

|Cr(n)| ≤ (1− r−66r2)|Mr(n)|.
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The proof of this (see the appendix of [82]) in fact shows that there is an Lr-sentence ψ such that

for all n, Cr(n) ⊆ {G ∈Mr(n) : G |= ¬ψ}, and

|Cr(n)| ≤ r65r2 |{G ∈Mr(n) : G |= ψ}|.(21)

Suppose we knew that for some α > 0, |Cr(n)| ≥ α|Mr(n)| for all sufficiently large n. Then since

for all G ∈ Cr(n), G |= ¬ψ we would know that

|{G ∈Mr(n) : G |= ¬ψ}| ≥ α|Mr(n)|

Dividing both sides of this by |Mr(n)| gives us that µMr (¬ψ) ≥ α, and therefore µMr (ψ) ≤ 1 − α.

By dividing the quantities in (21) by |Mr(n)|, we obtain that |Cr(n)|/|Mr(n)| ≤ µMr (ψ)r65r2 , and

therefore α/r65r2 ≤ µMr (ψ). Combining these inequalities, we would have that

0 <
α

r65r2
≤ µMr (ψ) ≤ 1− α < 1,

that is, µMr (ψ) /∈ {0, 1}. Therefore, if we could show such an α existed, we would know that Mr

had no labeled first-order 0-1 law. However, we do not know that such an α exists. In fact it seems

likely to the authors that instead, limn→∞ |Cr(n)|/|Mr(n)| = 0.

4.8. Appendix

Proof of Lemma 4.4.9. Given an integer r ≥ 3, subsets A,B,C ⊆ [r], and integers x, y, write

Hr(A,B,C, x, y) to mean A,B,C, x, y satisfy the hypotheses of the lemma for r. We show by

induction on r that for all r ≥ 3, A,B,C ⊆ [r], and x, y ∈ N, Hr(A,B,C, x, y) implies A × B × C

contains a violating triple.

Case r = 3: Fix A, B, C ⊆ [3], and integers x, y such that H3(A,B,C, x, y). As m(3) = 2 and

3 − m(3) = 1, we have |A| = 3, x = 1, |B| ≥ 2, 0 ≤ y ≤ 1, and |C| ≥ max{2 − 1 − y + 2, 1} =

max{3− y, 1}. If y = 0, then |B| = 2 and |C| ≥ 3− y = 3, contradicting that |B| ≥ |C|. Therefore,

y = 1, |B| = 3, and |C| ≥ 2. This implies that A = B = [3] and C ∩ {1, 3} 6= ∅, so either (3, 1, 1) or

(1, 1, 3) is in A×B × C, and we are done.

Case r > 3: Let r > 3 and suppose by induction that the claim holds for all 3 ≤ r′ < r. Fix

A,B,C ⊆ [r] and integers x, y such that Hr(A,B,C, x, y). Notice this implies x ≥ y ≥ 0 and x ≥ 1.
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Suppose A,B,C ⊆ [r − 1]. Then

|A| = m(r) + x =


m(r − 1) + x+ 1 if r is even

m(r − 1) + x if r is odd,

|B| = m(r) + y =


m(r − 1) + y + 1 if r is even

m(r − 1) + y if r is odd

and

|C| ≥


max{m(r)− x− y, 1} = max{m(r − 1)− (x+ 1)− (y + 1) + 3, 1} if r is even

max{m(r)− x− y + 2, 1} = max{m(r − 1)− x− y + 2, 1} if r is odd.

Thus, Hr−1(A,B,C, x, y) holds when r is odd, and Hr−1(A,B,C, x+1, y+1) holds when r is even, so

we are done by the induction hypothesis. Assume now one of A, B, or C contains r. Let a = minA,

b = minB, c = minC, a′ = maxA, b′ = maxB, and c′ = maxC. Our assumptions imply that

a ≤ r − |A|+ 1 = r − (m(r) + x) + 1 =


m(r)− 1− x if r is even

m(r)− x if r is odd,

(22)

and

b ≤ r − |B|+ 1 ≤ r − (m(r) + y) + 1 =


m(r)− 1− y if r is even

m(r)− y if r is odd.

Thus

a+ b ≤


m(r)− 1− x+m(r)− 1− y = r − x− y if r is even

m(r)− x+m(r)− y = r − x− y + 1 if r is odd.

If

c′ >


r − x− y if r is even

r − x− y + 1 if r is odd,

then (a, b, c′) is a violating triple and we are done. So assume

c′ ≤


r − x− y if r is even

r − x− y + 1 if r is odd.

(23)
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Note that

c ≤


r − x− y − |C|+ 1 ≤ r − x− y − (m(r)− x− y) + 1 = m(r)− 1 if r is even

r − x− y + 1− |C|+ 1 ≤ r − x− y + 1− (m(r)− x− y + 2) + 1 = m(r)− 1 if r is odd.

Therefore

c+ a ≤


m(r)− 1 +m(r)− 1− x = r − x if r is even

m(r)− 1 +m(r)− x = r − x if r is odd.

If b′ > r − x, then (a, b′, c) is a violating triple and we are done. So assume b′ ≤ r − x. Because

x ≥ 1, this implies r /∈ B. Further,

b ≤


r − x− (m(r) + y) + 1 = m(r)− x− y − 1 if r is even

r − x− (m(r) + y) + 1 = m(r)− x− y if r is odd.

(24)

Suppose r /∈ C. Then we must have that a′ = r ∈ A. Therefore,

a′ − b ≥


r − (m(r)− x− y − 1) = m(r) + x+ y − 1 if r is even

r − (m(r)− x− y) = m(r) + x+ y − 1 if r is odd.

We now have c ≤ m(r)− 1 < m(r) + x+ y − 1 ≤ a′ − b, so (a′, b, c) is a violating triple, and we are

done.

Suppose now c′ = r ∈ C. By (23), this implies that r is odd, x = 1 and y = 0. By (24), b ≤ m(r)−1.

Therefore,

c′ − b ≥ r − (m(r)− 1) = m(r) > m(r)− x,

so by (22), (a, b, c′) is a violating triple. This completes the induction. �

Proof of Lemma 4.4.14. We proceed by induction on r ≥ 3. The base case r = 3 can easily be

verified. Suppose now the claim holds for all 3 ≤ r′ < r. Set A′ = A ∩ [r− 1], B′ = B ∩ [r− 1], and

C ′ = C ∩ [r − 1].

Suppose that r is odd. If A,B,C ⊆ [r − 1], then because |A| = |B| = |C| = m(r) = m(r − 1), the

induction hypothesis implies that A = B = C = [m(r − 1) − 1, r − 1] = [m(r) − 1, r − 1], i.e. case

(2)(a) holds. Suppose now at least one of A, B, or C contain r. By relabeling if necessary, we may

assume r ∈ A. Let a′ = r ∈ A, b = minB and c = minC. Then b ≤ r − |B|+ 1 = m(r). Therefore

c ≥ a′ − b ≥ r − m(r) = m(r) − 1, so C ⊆ [m(r) − 1, r]. Similarly, c ≤ r − |C| + 1 = m(r), so

b ≥ a′ − c ≥ r −m(r) = m(r) − 1 implies B ⊆ [m(r) − 1, r]. If b = c = m(r) − 1, then (a′, b, c) is
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a violating triple, a contradiction. Thus as most one of b or c is m(r)− 1. Therefore, by relabeling

if necessary, we may assume B ⊆ [m(r), r] and C ⊆ [m(r) − 1, r]. Recall that |[m(r) − 1, r]| =

m(r) + 1 = |B| + 1, so this implies that B = [m(r), r]. Let a = minA. Then r ∈ B and c ≤ m(r)

implies a ≥ r − m(r) = m(r) − 1, so A ⊆ [m(r) − 1, r]. If C = [m(r), r], then we are done. If

C 6= [m(r), r], then c < m(r) implies (m(r) − 1, r, c) is a violating triple, so m(r) − 1 /∈ A. Thus

A ⊆ [m(r), r] and |A| = |[m(r), r]| implies A = [m(r), r] and we are done.

Suppose now that r is even. Note that min{|A′|, |B′|, |C ′|} ≥ m(r) − 1. If two elements of the set

{|A′|, |B′|, |C ′|} are strictly greater than m(r) − 1 = m(r − 1), then Lemma 4.4.9 implies there is

a violating triple in A′ × B′ × C ′, a contradiction. Therefore by relabeling if necessary, we may

assume |A′| = |B′| = m(r) − 1, so r ∈ A ∩ B. Let a = minA, b = minB, c = minC and note that

max{a, b, c} ≤ r −m(r) + 1 = m(r)− 1. Now (a, r, c) and (r, b, c) cannot be violating triples, so

a ≥ r − c ≥ r − (m(r)− 1) = m(r)− 1,

c ≥ r − b ≥ r − (m(r)− 1) = m(r)− 1 and

b ≥ r − c ≥ r − (m(r)− 1) = m(r)− 1.

Thus, A,B,C ⊆ [m(r) − 1, r]. Since |A| = |B| = |C| = |[m(r) − 1, r]|, this implies A = B = C =

[m(r)− 1, r]. �

4.8.1. Proof that when r is odd, Cr(n) is not almost all of Mr(n). Fix r ≥ 3 an odd

integer for the rest of this section. In this section we show that it is not the case that almost

all elements of Mr(n) are in Cr(n) by constructing, for each integer n ≥ 4, a map f : Cr(n) →

Mr(n) \ Cr(n) which is at most r65r2-to-1. This will imply that for all n ≥ 4,

|Cr(n)| ≤ (1− r−66r2)|Mr(n)|.(25)

We start with some preliminary definitions. Given an integer n and X,Y disjoint subsets of [n], set

X <∗ Y if and only if

(i) |X| < |Y | or

(ii) |X| = |Y | and minX < minY .

Definition 4.8.1. Fix an integer n ≥ 3 and G ∈Mr(n).
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(1) A set X ⊆ [n] is a component of G if for all xy ∈
(
X
2

)
, there is a sequence (z1, . . . , zk) of

distinct elements of X such that x = z1, y = zk, and for each 1 ≤ i ≤ k− 1, dG(zi, zi+1) =

m(r)− 1.

(2) A component decomposition of G is a partition X1, . . . , Xl of [n] such that each Xi is

a component of G. Note that there is a unique component decomposition of G, up to

relabeling.

(3) If X1, . . . , Xl is the component decomposition of G and X1 <∗ . . . <∗ Xl, we say X1, . . . , Xl

is the canonically ordered component decomposition (c.o.c.d.) of G.

(4) A component X of G is large if |X| ≥ 2r. Otherwise it is small.

(5) Suppose X1, . . . , Xl is the c.o.c.d. of G. The minimal large component of G is

ML(G) =


∅ if max{|X1|, . . . , |Xl|} < 2r,

Xi where i = min{j ∈ [l] : |Xj | ≥ 2r} otherwise.

(6) H is the simple complete r-graph with vertex set [4] such that dH(1, 3) = dH(2, 4) = r− 1,

dH(1, 4) = r, and dH(1, 2) = dG(2, 3) = dH(3, 4) = m(r)− 1.

(7) A bad cycle in G is a sequence (z1, . . . , zk) of distinct elements of [n] such that for each

1 ≤ i ≤ k − 1, dG(zi, zi+1) = m(r) − 1 and dG(z1, zk) = r. Say G contains a bad cycle if

there are z1, . . . , zk ∈ [n] such that (z1, . . . , zk) is a bad cycle in G.

Lemma 4.8.2. H ∈Mr(4), and for any integers n ≥ k ≥ 4, if G ∈Mr(n) contains a bad cycle, then

G ∈Mr(n) \ Cr(n). In particular, if G ∈Mr(n) and G contains a copy of H, then G /∈ Cr(n).

Proof. That H contains no violating triangles and is therefore in Mr(4) can be checked easily.

Suppose now n ≥ k ≥ 4, G ∈Mr(n), and (y1, . . . , yk) is a bad cycle in G. Suppose for a contradiction

that G ∈ Cr(n). Then there is a partition P = {V1, . . . , Vt} of [n] such that for all xy ∈
(

[n]
2

)
,

dG(x, y) ∈


[m(r), r] if xy ∈ E(Vi, Vj) some 1 ≤ i < j ≤ t,

[m(r)− 1, r − 1] if xy ∈
(
Vi
2

)
some 1 ≤ i ≤ t.

Note that for all xy ∈
(

[n]
2

)
, if x and y are in the same component of G, then they are in the same

element of P. Fix 1 ≤ i ≤ t such that y1 ∈ Vi. Then dG(y1, y2) = . . . = dG(yk−1, yk) = m(r) − 1

implies yk is in the same component of G as y1, so yk ∈ Vi. This implies dG(y1, yk) ∈ [m(r)−1, r−1].

Because (y1, . . . , yk) is a bad cycle in G, by definition, dG(y1, yk) = r, a contradiction. Since
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H contains a bad cycle, it follows immediately that if G ∈ Mr(n) contains a copy of H, then

G /∈ Cr(n). �

Suppose n is an integer and G ∈ Mr(n). Given X ⊆ [n], let G[X] denote the simple complete

r-graph with vertex set X such that for all xy ∈ E(X), dG[X](x, y) = dG(x, y). Set

D1(n) ={G ∈ Cr(n) : the c.o.c.d. of G has at least 4 small components},

D2(n) ={G ∈ Cr(n) \D1(n) : if {y1, . . . , y4} are the least four elements of ML(G),

then G[ML(G) \ {y1, . . . , y4}] has at most 3 large components},

D3(n) =Cr(n) \ (D1(n) ∪D2(n)).

We are now ready to define our map f .

Definition 4.8.3. Given n ≥ 4 and G ∈ Cr(n), define f(G) to be the simple complete r-graph with

vertex set [n] satisfying the following, where Y1, . . . , Yu denotes the c.o.c.d. of G.

(1) If G ∈ D1(n), set Y =
⋃4
i=1 Yi, and for each i ∈ [4], set yi = minYi. Given xy ∈

(
[n]
2

)
, set

df(G)(x, y) =


dH(i, j) if xy = yiyj ∈

({y1,...,y4}
2

)
,

r − 1 if xy ∈
(
Y
2

)
\
({y1,...,y4}

2

)
,

dG(x, y) otherwise.

(2) If G ∈ D2(n), let s ∈ [4] be such that Ys = ML(G) and let y1 < y2 < y3 < y4 be the least

four elements of Ys. Set Y =
⋃s−1
i=1 Yi and Y ′s = Ys \ {y1, . . . , y4}. Given xy ∈

(
[n]
2

)
, set

df(G)(x, y) =



dH(i, j) if xy = yiyj ∈
({y1,...,y4}

2

)
,

r if xy ∈
(
Y
2

)
∪ E(Y, {y1, . . . , y4})

dG(x, y) + 1 if xy = yiz for some yi ∈ {y1, . . . , y4} and z ∈ Y ′s ,

dG(x, y) otherwise.

Note that any small component of f(G) is either a singleton coming from Y , or is a

small component of f(G)[Y ′s ]. If X is a small component of f(G)[Y ′s ], then since X and

{y1, . . . , y4} were in the same component of G, there must be x ∈ X and y ∈ {y1, . . . , y4}

such that dG(x, y) = m(r) − 1, and thus, df(G)(x, y) = m(r). In particular, if X = {x}

is a singleton, then for some y ∈ {y1, . . . , y4}, df(G)(x, y) = m(r). On the other hand,
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if X = {x} is a singleton coming from Y , then by construction, for all y ∈ {y1, . . . , y4},

df(G)(x, y) = r.

(3) If G ∈ D3(n), let s ∈ [4] be such that let Ys = ML(G) and let y1 < y2 < y3 < y4 be the

least four elements of Ys. Set Y =
⋃s−1
i=1 Yi and Y ′s = Ys \ {y1, . . . , y4}. Let Z1, . . . , Zk

be the large components of G[Y ′s ] listed so that Z1 <∗ . . . <∗ Z
k. Note that for each

ij ∈
(

[k]
2

)
and xy ∈ E(Zi, Zj), because Zi and Zj are different components in G[Y ′s ],

dG(x, y) 6= m(r)− 1. Since Zi and Zj are contained in the same component of G, we know

dG(x, y) ∈ [m(r) − 1, r − 1]. Therefore we must have dG(x, y) ∈ [m(r), r − 1]. Enumerate

each Zi = {zi1, . . . , zi|Zi|} in increasing order.

We inductively build a sequence i1, . . . , ik with the following properties:

(i) For each 1 ≤ j ≤ k, ij ∈ [2r].

(ii) For each 2 ≤ j ≤ k − 1, dG(zj−1
ij−1

, zjij ) = |ij − ij+1| ∈ [r].

Set i1 = i2 = 1, i3 = dG(z1
i1
, z2
i2

) + 1. Notice 1 ≤ i3 ≤ (r − 1) + 1 = r, so i3 ∈ [2r], and by

construction, i3 − i2 = dG(z1
i1
, z2
i2

) ∈ [r], so (i) and (ii) are satisfied for j = 1, 2. Suppose

we’ve defined i1, . . . , ij for 2 ≤ j < k such that (i) and (ii) hold for j − 1. Set

ij+1 =


ij + dG(zj−1

ij−1
, zjij ) if ij ≤ r,

ij − dG(zj−1
ij−1

, zjij ) if ij > r.

By the induction hypothesis, ij ∈ [2r], so by the above definition, if ij ≤ r, then ij+1 ∈

[2, 2r] and if ij > r, then ij+1 ∈ [1, 2r − 1]. In either case, ij+1 ∈ [2r] so (i) is satisfied for

j + 1. We also have that (ii) is satisfied by j + 1 since by definition,

|ij − ij+1| = dG(zj−1
ij−1

, zjij ) ∈ [r].

This completes the construction of i1, . . . , ik. Given xy ∈
(

[n]
2

)
, set

df(G)(x, y) =



r if xy ∈
(
Y
2

)
∪ E(Y, {y1, . . . , y4}) ∪ {z1

i1
zkik},

dH(i, j) if xy = yiyj ∈
({y1,...,y4}

2

)
,

m(r)− 1 if xy = zjijz
j+1
ij+1
∈ {z1

i1
z2
i2
, . . . , zk−1

ik−1
zkik},

dG(x, y) + 1 if xy = yiz for some yi ∈ {y1, . . . , y4} and z ∈ Y ′s ,

dG(x, y) otherwise.

Note that the same remarks as above for the case when G ∈ D2(n) apply here. That is, if X = {x}

is a singleton component of f(G), then either df(G)(x, y) = r for all y ∈ {y1, . . . , y4} in which case x



4.8. APPENDIX 59

is an element in a small component of G, or there is y ∈ {y1, . . . , y4} such that df(G)(x, y) = m(r),

in which case x is an element of ML(G) \ {y1, . . . , y4}.

Lemma 4.8.4. Let n ≥ 4 be an integer and G ∈ Cr(n). Then f(G) ∈Mr(n) \ Cr(n).

Proof. By definition, f(G) must contain a copy of H, so f(G) is not in Cr(n) by Lemma 4.8.2.

We now show f(G) ∈ Mr(n). We leave the verification of the case when G ∈ D1(n) to the reader,

since it requires only the simplest types of arguments which we show below for the other cases. So

assume G ∈ D2(n) ∪ D3(n). Let Y1, . . . , Yu be the c.o.c.d. of G, let s be such that Ys = ML(G),

and let y1 < . . . < y4 be the least elements of Ys. Set Y =
⋃s−1
i=1 Yi and Y ′s = Ys \ {y1, . . . , y4}. It

suffices to show that if x, y, z ∈ [n] are pairwise distinct and E({x, y, z}) ∩ ∆(G, f(G)) 6= ∅, then

{x, y, z} is not a violating triangle in f(G), or equivalently, (df(G)(x, y), df(G)(y, z), df(G)(x, z)) is

not a violating triple. We consider only the cases where {x, y, z} ⊆ Ys, as the rest of the cases are

similar to these or trivial.

Fix x, y, z ∈ [n] pairwise distinct such that E({x, y, z}) ∩ ∆(G, f(G)) 6= ∅, {x, y, z} ⊆ Ys. If

{x, y, z} ⊆ {y1, . . . , y4}, let i, j, k ∈ [4] be such that x = yi, y = yj , z = yj . Then by definition

of f(G), {x, y, z} is a violating triangle in f(G) if and only if {i, j, k} is a violating triangle in H.

Since, by Lemma 4.8.2, H contains no violating triangles, we are done. If x, y ∈ {y1, . . . , y4} and

z ∈ Y ′s or if x, y ∈ Y ′s and z ∈ {y1, . . . , y4}, then by definition,

df(G)(x, z) = dG(x, z) + 1, df(G)(y, z) = dG(y, z) + 1, and df(G)(x, y) ∈ [m(r)− 1, r].

Because x, y, z were in the same component of G, dG(x, z), dG(y, z) ∈ [m(r)− 1, r − 1]. Therefore

(df(G)(x, z), df(G)(y, z), df(G)(x, y)) ∈ [m(r), r]× [m(r), r]× [m(r)− 1, r],

which contains no violating triples. Up to relabeling, this leaves us with the case where {x, y, z} ⊆ Y ′s .

This case is vacuous when G ∈ D2(n), because for G ∈ D2(n), E(Y ′s ) ∩∆(G, f(G)) = ∅. So we are

left with the case when G ∈ D3(n) and {x, y, z} ⊆ Y ′s .

Let Z1 <∗ . . . <∗ Z
k be the c.o.c.d. of G[Y ′s ], and for 1 ≤ j ≤ k, let zjij ∈ Zj be as in the

definition of f(G). We must have E({x, y, z}) ∩ {z1
i1
z2
i2
, . . . , zk−1

ik−1
zkik , z

1
i1
zkik} 6= ∅ since otherwise

E({x, y, z})∩∆(G, f(G)) = ∅. Assume that xy ∈ {z1
i1
z2
i2
, . . . , zk−1

ik−1
zkik , z

1
i1
zkik}, and note this implies

df(G)(x, y) ∈ {r,m(r)− 1}.
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If z ∈ {z1
i1
, . . . , zkik}, and xz, yz /∈ {z1

i1
z2
i2
, . . . , zk−1

ik−1
zkik , z

1
i1
zkik}, then by definition of f ,

df(G)(x, z) = dG(x, z) and df(G)(y, z) = dG(y, z).

Because z is the same component of G as x and y, dG(x, z), dG(y, z) ∈ [m(r)− 1, r − 1]. Because z

is in a different component of G[Y ′s ] than both x and y, dG(x, z), dG(y, z) 6= m(r)− 1. Therefore

dG(x, z), dG(y, z) ∈ [m(r), r − 1], so

(df(G)(x, z), df(G)(y, z), df(G)(x, y)) ∈ [m(r), r − 1]× [m(r), r − 1]× {m(r)− 1, r},

which contains no violating triples. If z ∈ {z1
i1
, . . . , zkik} and xz ∈ {z1

i1
z2
i2
, . . . , zk−1

ik−1
zkik , z

1
i1
zkik}, then

since k ≥ 4, this implies yz /∈ {z1
i1
z2
i2
, . . . , zk−1

ik−1
zkik , z

1
i1
zkik}. By definition, df(G)(x, z) ∈ {m(r)−1, r},

and as above, because y and z are in the same component of G but different components of G[Y ′s ],

df(G)(y, z) = dG(y, z) ∈ [m(r), r − 1]. Therefore

(df(G)(x, z), df(G)(y, z), df(G)(x, y)) ∈ {m(r)− 1, r} × [m(r), r − 1]× {m(r)− 1, r},

which contains no violating triples. Up to relabeling we have now covered the cases where z ∈

{z1
i1
, . . . , zkik}, so assume z ∈ Y ′s \ {z1

i1
, . . . , zkik}. Then by definition,

df(G)(x, z) = dG(x, z), df(G)(y, z) = dG(y, z) ∈ [m(r)− 1, r − 1].

If z is in the same component of G[Y ′s ] as x, then y and z are in the same component of G but

different components of G[Y ′s ], so dG(y, z) 6= m(r)− 1. Therefore we have that

(df(G)(x, z), df(G)(y, z), df(G)(x, y)) ∈ [m(r)− 1, r − 1]× [m(r), r − 1]× {m(r)− 1, r},

which contains no violating triples. A similar argument covers the case where z is instead in the

same component of G[Y ′s ] as y. If z is in a different component of G[Y ′s ] than x and y, then

dG(x, z), dG(y, z) 6= m(r)− 1 so

(df(G)(x, z), df(G)(y, z), df(G)(x, y)) ∈ [m(r), r − 1]× [m(r), r − 1]× {m(r)− 1, r},

which contains no violating triples. This completes the proof. �

We will use the following lemmas. Given K ⊆Mr(n), set f−1(K) = {G ∈ Cr(n) : f(G) ∈ K}.
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Lemma 4.8.5. Let n ≥ 4 be an integer. For all G ∈ f(D1(n)), there is E ⊆
(

[n]
2

)
such that

|E| ≤
(

4+8r
2

)
and for all G′ ∈ f−1(G) ∩D1(n), ∆(G,G′) ⊆ E.

Proof. Suppose G ∈ f(D1(n)) and X1, . . . , Xl is the c.o.c.d. of G. Suppose X1, . . . , Xs enumerate

the components which are singletons and Xw is the unique component such that G[Xw] contains a

copy of H. Then by definition of f , for any G′ ∈ Cr(n), f(G′) = G implies

∆(G,G′) ⊆ E(Xw ∪
s⋃
i=1

Xi).

If s ≤ 8r, then set E = E(Xw ∪
⋃s
i=1Xi). Since in this case,

|E(Xw ∪
s⋃
i=1

Xi)| ≤
(

4 + s

2

)
≤
(

4 + 8r

2

)
,

we are done. Assume now s > 8r. Let G′ ∈ f−1(G) ∩ D1(n) and let Y1, . . . , Yu be the c.o.c.d. of

G′. For i ∈ [4], let {yi} = minYi and Y =
⋃4
i=1 Yi. By definition of f , ∆(G,G′) ⊆

(
Y
2

)
. Note that

for each 1 ≤ j ≤ 4, Yj has size at most 2r − 1, so |Y | ≤ 4(2r − 1) < 8r. Since s > 8r, there is some

1 ≤ i ≤ s such that Xi ∩ Y = ∅. Combining this with the fact that ∆(G,G′) ⊆
(
Y
2

)
, yields that

Xi ∈ {Y5, . . . , Yu},

say Xi = Yk, some 5 ≤ k ≤ u. Then |Yk| = 1 and Yk >∗ Y4 >∗ . . . >∗ Y1 implies by definition of <∗

that |Y4| = |Y3| = |Y2| = |Y1| = 1. Therefore Y = {y1, . . . , y4} = Xw, and ∆(G′, G) ⊆
(
Xw
2

)
. Setting

E =
(
Xw
2

)
we are done, as |Xw| = 4.

�

Lemma 4.8.6. Let n ≥ 4 be an integer. For all G ∈ f(D2(n)), there are G1, . . . , G8 ∈ D2(n) and

E ⊆
(

[n]
2

)
such that f(G1) = . . . = f(G8) = G, |E| ≤

(
4+6r

2

)
, and for all G′ ∈ f−1(G)∩D2(n), there

is 1 ≤ t ≤ 8 such that ∆(Gt, G
′) ⊆ E.

Proof. Suppose G ∈ f(D2(n)) and X1, . . . , Xl is the c.o.c.d. of G. Let t be such that ML(G) = Xt.

By definition of f , there is a unique index 1 ≤ w ≤ l such that G[Xw] consists of a copy of H. There

is also be a unique (possibly empty) sequence 1 ≤ i1 < . . . < iv < w with the following properties:

• For each 1 ≤ j ≤ v, Xij = {xij} is a singleton, and

• For each 1 ≤ j ≤ v, for each y ∈ Xw, dG(xij , y) = r, and

• For all j /∈ {i1, . . . , iv}, if Xj = {xj} is a singleton, then for some y ∈ Xw, dG(x, y) = m(r).



4.8. APPENDIX 62

Suppose G′ ∈ f−1(G)∩D2(n). Suppose Y1, . . . , Yu is the c.o.c.d. of G′ and s is such that ML(G′) =

Ys. By definition of f on D2(n), we must have that Xw consists of the least 4 elements of Ys. By

the discussion following the definition of f on D2(n),

v⋃
j=1

Xij =

s−1⋃
i=1

Yi,

and the small components ofG′[Ys\Xw] are exactly the elements of {X1, . . . , Xt−1}\{Xi1 , . . . , Xiv , Xw}.

Notice that by definition of D2(n), s ≤ 4, so∣∣∣∣∣
v⋃
j=1

Xij

∣∣∣∣∣ =

∣∣∣∣∣
s−1⋃
i=1

Yi

∣∣∣∣∣ ≤ 3(2r − 1) < 6r.

By definition of f , we have that

{Xt, . . . , Xl} = {Ys+1, . . . , Yu} ∪ {the large components of G′[Ys \Xw]}.(26)

If Xi is a large component of G′[Ys \ Xw], then |Xi| ≤ |Ys \ Xw| < |Ys| ≤ |Ys+1| ≤ |Yu|. So by

definition of <∗,

Xi <∗ Ys+1 <∗ . . . <∗ Yu.(27)

By definition of D2(n) there are at most 3 large components of G′[Ys \Xw]. Combining this with

(26) and (27), we have that the large components of G′[Ys \Xw] are contained in {Xt, Xt+1, Xt+2}

(where we let Xi = ∅ if i > l). In sum, for any G′ ∈ f−1(G) ∩D2(n), we have the following.

(i) Xw consists of the least 4 elements of ML(G′),

(ii)
⋃v
j=1Xij is the union of the small components of G′ and has size strictly less than 6r,

(iii) The small components ofG′[ML(G′)\Xw] are the elements of {X1, . . . , Xt−1}\{Xi1 , . . . , Xiv , Xw},

(iv) The set of large components of G′[ML(G′) \Xw] is some subset S of {Xt, Xt+1, Xt+2}.

Set E = E(Xw ∪
⋃v
j=1Xij ), and given S ⊆ {Xt, Xt+1, Xt+2}, set

XS =

( ⋃
Xi∈S

Xi

)
∪

( ⋃
j∈[t−1]\{i1,...,iv}

Xj

)
.

Then (iii) and (iv) show that for all G′ ∈ f−1(G) ∩D2(n), there is S ⊆ {Xt, Xt+1, Xt+2} such that

ML(G′) = XS . Moreover, given such a G′ and S, by definition of f and (i)-(iv),

• ∆(G,G′) ⊆ E ∪ E(Xw, XS) and

• For all xy ∈ E(Xw, XS), dG
′
(x, y) = dG(x, y)− 1.



4.8. APPENDIX 63

Therefore, for all other G′′ ∈ f−1(G) ∩ D2(n) such that ML(G′′) = XS , we have that for all

xy ∈ E(Xw, XS), dG
′′
(x, y) = dG(x, y)− 1 = dG

′
(x, y), so ∆(G′, G′′)∩E(Xw, XS) = ∅. This implies

that

∆(G′, G′′) ⊆ (∆(G′, G) ∪∆(G′′, G)) \ E(Xw, XS) ⊆ E.

We now define G1, . . . , G8. Let S1, . . . , S8 enumerate the subsets of {Xt, Xt+1, Xt+2}. For each

1 ≤ i ≤ 8, if there is G′ ∈ f−1(G) ∩ D2(n) such that ML(G′) = XSi , choose Gi to be such a

G′. If no such G′ exists, choose Gi to be any element of D2(n). By what we’ve shown, for all

G′ ∈ f−1(G)∩D2(n), there is 1 ≤ i ≤ 8 such that ML(G′) = XSi , and therefore ∆(G′, Gi) ⊆ E. By

(ii), |
⋃v
j=1Xij | < 6r, so |Xw ∪

⋃v
j=1Xij | < 4 + 6r and |E| ≤

(
4+6r

2

)
. This completes the proof. �

Lemma 4.8.7. Let n ≥ 4 be an integer. For all G ∈ f(D3(n)), there is G1 ∈ f−1(G) ∩D3(n) and

E ⊆
(

[n]
2

)
such that |E| ≤

(
4+6r

2

)
+ 2, and for all G′ ∈ f−1(G) ∩D1(n), ∆(G1, G

′) ⊆ E.

Proof. Suppose G ∈ f(D3(n)) and X1, . . . , Xl is the c.o.c.d. of G. By definition of f , there are

exactly two indices 1 ≤ w < b ≤ l such that G[Xw] consists of a copy of H, and such that there is

a sequence (z1, . . . , zk) which is a bad cycle in G[Xb] of some length k ≥ 4. Let B be the simple

complete r-graph with vertex set Xb such that for all 1 ≤ i ≤ k−1, dB(zi, zi+1) = dB(z1, zk) = r−1,

and for all other xy ∈ E(Xb), d
B(x, y) = dG(x, y). Then by definition of f , B must have k

components, Z1, . . . , Zk such that for each 1 ≤ i ≤ k, Zi is a large component of B containing zi.

Moreover, we must have that either Z1 <∗ . . . <∗ Z
k or Zk <∗ . . . <∗ Z

1. Because (z1, . . . , zk) is

a bad cycle if and only if (zk, . . . , z1) is a bad cycle, we can relabel (z1, . . . , zk) if necessary so that

Z1 <∗ . . . <∗ Z
k. There is also be a unique (possibly empty) sequence 1 ≤ i1 < . . . < iv < w with

the following properties:

• For each 1 ≤ j ≤ v, Xij = {xij} is a singleton, and

• For each 1 ≤ j ≤ v, for each y ∈ Xw, dG(xij , y) = r, and

• For all j /∈ {i1, . . . , iv}, if Xj = {xj} is a singleton, then for some y ∈ Xw, dG(x, y) = m(r).

Suppose G′ ∈ f−1(G)∩D3(n) and Y1, . . . , Yu is the c.o.c.d. of G′. Let s be such that ML(G′) = Ys.

The same arguments as in the case when G ∈ D2(n) imply that Xw consists of the least 4 elements

of Ys,
v⋃
j=1

Xij =

s−1⋃
i=1

Yi,



4.8. APPENDIX 64

the small components of G′[Ys\Xw] are exactly the elements of {X1, . . . , Xt−1}\{Xi1 , . . . , Xiv , Xw},

and |
⋃v
j=1Xij | < 6r. Further, by definition of f we must have that Z1, . . . , Zk are the large

components of G′[Ys \Xw]. In sum, for any G′ ∈ f−1(G) ∩D2(n), we have the following.

(i) Xw consists of the least 4 elements of ML(G′),

(ii)
⋃v
j=1Xij is the union of the small components of G′ and has size strictly less than 6r,

(iii) {X1, . . . , Xt−1} \ {Xi1 , . . . , Xiv , Xw}} is the set of small components of G′[ML(G′) \Xw],

(iv) Z1, . . . , Zk are the large components of G′[ML(G′) \Xw], and Z1 <∗ . . . <∗ Z
k.

Set X =
⋃
j∈[t−1]\{i1,...,iv}Xj and Z =

⋃k
j=1 Z

j , and note (iii) and (iv) imply that ML(G′) = X∪Z.

Define

E1 = E(Xw ∪
v⋃
j=1

Xij ) and E2 = E(Xw, X ∪ Z).

Then for all G′ ∈ f−1(G) ∩ D3(n), the definition of f and (i)-(iv) imply that ∆(G,G′) ⊆ E1 ∪

E2 ∪ {z1z2, z2z3, . . . , z1zk} and for all xy ∈ E2, dG
′
(x, y) = dG(x, y) − 1. We now show that we

can also recover the value of dG
′
(zj−1, zj) for each 2 ≤ j ≤ k − 1. For each 1 ≤ j ≤ k, let

zjj1 , . . . , z
j
j|Zj |

enumerate the elements of Zj in increasing order. Let s1, . . . , sk be the indices such

that (z1
s1 , . . . , z

k
sk

) = (z1, . . . , zk). By definition of f , for each 2 ≤ i ≤ k−1, dG
′
(zi−1, zi) = |si+1−si|.

We have now shown that for all G′, G′′ ∈ f−1(G) ∩D3(n),

• ∆(G,G′) ∪∆(G,G′′) ⊆ E1 ∪ E2 ∪ {z1z2, z2z3, . . . , z1zk},

• For all xy ∈ E2, dG
′
(x, y) = dG(x, y)− 1 = dG

′′
(x, y), and

• For all zizi+1 ∈ {z1z2, . . . , zk−2zk−1}, dG′(x, y) = |si+1 − si| = dG
′′
(x, y).

Therefore,

∆(G′, G′′) ⊆ (∆(G,G′) ∪∆(G′′, G)) \ (E2 ∪ {z1z2, . . . , zk−2zk−1}) ⊆ E1 ∪ {zk−1zk, z1zk}.

Set E = E1∪{zk−1zk, z1zk} and take G1 to be any element of f−1(G)∩D3(n). By (ii), |
⋃v
j=1Xij | <

6r, so |Xw ∪
⋃v
j=1Xij | < 4 + 6r and |E| ≤

(
4+6r

2

)
+ 2. This completes the proof. �

We now prove that for all n ≥ 4, (25) holds. Fix an integer n ≥ 4 and G ∈ f(Cr(n)). Define

E1, . . . , E10 ⊆
(

[n]
2

)
and G1, . . . , G10 ∈ Cr(n) as follows. If G /∈ f(D1(n)), set E1 = ∅ and G1 = G.

Otherwise, let G1 = G and let E1 ⊆
(

[n]
2

)
be as in Lemma 4.8.5. If G /∈ f(D2(n)), let E2 = . . . =

E9 = ∅ and G2 = . . . = G8 = G. Otherwise let E ⊆
(

[n]
2

)
and G2, . . . , G9 ∈ D2(n) be as in Lemma

4.8.6, and set E2 = . . . = E9 = E. If G /∈ f(D3(n)), let E10 = ∅ and G10 = G. Otherwise, let
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E10 ⊆
(

[n]
2

)
and G10 ∈ D3(n) be as in Lemma 4.8.7. Then Lemmas 4.8.5, 4.8.6, and 4.8.7 imply that

f−1(G) ∩D1(n) ⊆ {G′ ∈ Cr(n) : ∆(G1, G
′) ⊆ E1},

f−1(G) ∩D2(n) ⊆
9⋃
i=2

{G′ ∈ Cr(n) : ∆(Gi, G
′) ⊆ Ei}, and

f−1(G) ∩D3(n) ⊆ {G′ ∈ Cr(n) : ∆(G10, G
′) ⊆ E10}.

Since Cr(n) = D1(n) ∪D2(n) ∪D3(n), we have that

f−1(G) ⊆
10⋃
i=1

{G′ ∈ Cr(n) : ∆(Gi, G
′) ⊆ Ei}.(28)

For each 1 ≤ i ≤ 10, every element of {G′ ∈ Cr(n) : ∆(Gi, G
′) ⊆ Ei} can be constructed by starting

with Gi, then changing the edges contained in Ei. There are at most r|Ei| ways to do this, and

for each i, |Ei| ≤
(

4+8r
2

)
≤ 64r2. Therefore, for each i, |{G′ ∈ Cr(n) : ∆(Gi, G

′) ⊆ Ei}| ≤ r64r2 .

Combining this with (28), we have that

|f−1(G)| ≤ 10r64r2 ≤ r65r2 .

Since f(Cr(n)) ⊆ Mr(n) \ Cr(n), this implies |Mr(n) \ Cr(n)| ≥ |f(Cr(n))| ≥ |Cr(n)|
r65r2

. Rearranging

this yields that

|Cr(n)| ≤ r65r2

r65r2 + 1
|Mr(n)| =

(
1− 1

r65r2 + 1

)
|Mr(n)| < (1− r−66r2)|Mr(n)|,

as desired.



CHAPTER 5

Multigraphs

5.1. Introduction

The work in this chapter is joint with D. Mubayi. A multigraph G is a pair (V,w), where V is a

set of vertices and w :
(
V
2

)
→ N = {0, 1, 2, . . .} is a funciton. Given integers s ≥ 2 and q ≥ 0, a

multigraph (V,w) is an (s, q)-graph if for every X ∈
(
V
s

)
,
∑
xy∈(X2 ) w(xy) ≤ q. An (n, s, q)-graph is an

(s, q)-graph with n vertices. In this chapter, we will prove multigraph versions of Turán’s Theorem

(Theorem 2.2.1) and the Erdős-Simonovits Stability Theorem (Theorem 2.2.2). Our object of study

will be the set of (n, s, q)-graphs with vertex set [n] := {1, . . . , n}, which we denote by F (n, s, q).

Definition 5.1.1. Given a multigraph G = (V,w), define

S(G) =
∑

xy∈(V2)

w(xy), P (G) =
∏

xy∈(V2)

w(xy),

exΣ(n, s, q) = max{S(G) : G ∈ F (n, s, q)}, and exΠ(n, s, q) = max{P (G) : G ∈ F (n, s, q)}.

An (n, s, q)-graph G is sum-extremal (product-extremal) if S(G) = exΣ(n, s, q) (P (G) = exΠ(n, s, q)).

Let S(n, s, q) (P(n, s, q)) be the set of all sum-extremal (product-extremal) (n, s, q)-graphs with

vertex set [n].

Determining exΣ(n, s, q) and the structure of elements in S(n, s, q) for a given s and q is a natural

multigraph version of Theorem 2.2.1 which has been studied extensively in the literature. In [29],

Bondy and Tuza determine the structure of multigraphs in S(n, s, q) when n is large compared to

s and q ≡ 0,−1 (mod
(
s
2

)
) and when s = 3. One interesting phenomenon discovered in [29] is that

S(n, s, q) has many non-isomorphic multigraphs when s = 3, q ≡ 2 (mod
(
s
2

)
) and n is large. In [53],

Füredi and Kündgen (among other things) determine the asymptotic value of exΣ(n, s, q) for all s, q

with a O(n) error term, and the exact value is determined for many cases. The results in both [29]

and [53] apply to the more general setting of integer-weighted graphs. Other special cases of these

questions have appeared in [72]. Versions of Theorems 2.2.1 and 2.2.2 for families of multigraphs

and digraphs with forbidden configurations have also appeared in a long and ongoing investigation

66
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in [30, 31, 32, 33, 34, 35] (see [35] for a survey of these results). These papers also deal exclusively

with questions related to summing the total number of edges in a multigraph or digraph.

This chapter investigates exΠ(n, s, q) and P(n, s, q) for various values of (s, q). Questions about

exΠ(n, s, q) and P(n, s, q) appear to be of independent interest, as they are natural “product versions”

of the questions about extremal sums for (n, s, q)-graphs investigated in [29, 53]. Another reason

to study these problems is that they can be used to prove asymptotic structure, enumeration, and

0-1 law results for (n, s, q)-graphs similar to those proved in [66] in the setting of Ks-free graphs.

Indeed, the crucial parameter that appears in the expression for the number of (n, s, q)-graph is

exΠ(n, s, q). This is developed in the multigraphs section of Chapter 7 and in forthcoming work by

the author and D. Mubayi.

5.2. Main Results

Observe that if n ≥ s ≥ 2, G = ([n], w) ∈ F (n, s, q) and q <
(
s
2

)
, then P (G) = 0 because any s-set

of vertices must contain a pair uv with w(uv) = 0. Therefore, throughout the chapter we assume

q ≥
(
s
2

)
≥ 1. Given a mutligraph G = (V,w) and xy ∈

(
V
2

)
, we will refer to w as the weight function

of G and w(xy) as the multiplicity of xy. The multiplicty of G is µ(G) = max{w(xy) : xy ∈
(
V
2

)
}.

Definition 5.2.1. Given integers s ≥ 2 and q ≥
(
s
2

)
, define the asymptotic product density and the

asymptotic sum density, respectively, as the following limits (which both exist):

exΠ(s, q) = lim
n→∞

(
exΠ(n, s, q)

) 1

(n2) and exΣ(s, q) = lim
n→∞

exΣ(n, s, q)(
n
2

) .

Given two multigraphs G = (V,w) and G′ = (V,w′), set ∆(G,G′) =
{
xy ∈

(
V
2

)
: w(xy) 6= w′(xy)

}
.

We say G and G′ are δ-close if |∆(G,G′)| ≤ δn2, otherwise they are δ-far. Given a multigraph

G = (V,w) and a set X ⊆ V , G[X] denotes the multigraph with vertex set X and weight function

w �(X2 ). Suppose that q ≡ b (mod
(
s
2

)
). Our results fall into three cases depending on the value of b.

5.2.1. Case (i): 0 ≤ b ≤ s− 2.

Definition 5.2.2. Given n ≥ s ≥ 1 and a ≥ 1, let Us,a(n) be the set of multigraphs G = ([n], w)

such that there is a partition A0, A1, . . . , Abns c of [n] for which the following holds.

• For each 1 ≤ i ≤ bn/sc, |Ai| = s, and |A0| = n/s− bn/sc.

• For each 0 ≤ i ≤ bn/sc, and G[Ai] is a star with |Ai| − 1 edges of multiplicity a+ 1 and all

other edges of multiplicity a.
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• For all xy /∈
⋃(Ai

2

)
, w(xy) = a.

Let Ua(n) be the unique element of U1,a(n), i.e. Ua(n) = ([n], w) where w(xy) = a for all xy ∈
(

[n]
2

)
.

Theorem 5.2.3. Suppose n, s, q, a are integers satisfying n ≥ s ≥ 2, a ≥ 1, and q = a
(
s
2

)
+ b for

some 0 ≤ b ≤ s− 2.

• (Extremal) Then a(n2) ≤ exΠ(n, s, q) ≤ a(n2)((a+ 1)/a)b
b
b+1nc and thus exΠ(s, q) = a. Further,

(a) If b = 0, then P(n, s, q) = {Ua(n)} and exΠ(n, s, q) = a(n2).

(b) If b = s − 2, then Us−1,a(n) ⊆ P(n, s, q) and exΠ(n, s, q) = a(n2)
(
a+1
a

)b (s−2)n
s−1 c

. Also,

P(n, 3, q) = U2,a(n).

• (Stability) For all δ > 0, there is ε > 0 and M such that for all n > M and G ∈ F (n, s, q), if

P (G) > exΠ(n, s, q)1−ε, then G is δ-close to Ua(n).

5.2.2. Case (ii): b =
(
s
2

)
− t and 1 ≤ t ≤ s

2 . Call a partition U1, . . . , Uk of a finite set X an

equipartition if ||Ui| − |Uj || ≤ 1 for all i 6= j.

Definition 5.2.4. Given integers a ≥ 2 and n ≥ s ≥ 1, define Ts,a(n) to be the set of multigraphs

G = ([n], w) with the following property. There is an equipartition U1, . . . , Us of [n] such that

w(xy) =


a− 1 if xy ∈

(
Ui
2

)
for some i ∈ [s].

a if (x, y) ∈ Ui × Uj for some i 6= j ∈ [s].

We think of elements of Ts,a(n) as multigraph analogues of Turán graphs. Recall that ts(n) is the

number of edges in Ts(n).

Theorem 5.2.5. Let s, q, a, t be integers satisfying a ≥ 2, q = a
(
s
2

)
− t and either

(a) s ≥ 2 and t = 1 or

(b) s ≥ 4 and 2 ≤ t ≤ s
2 .

• (Extremal) Then for all n ≥ s, Ts−t,a(n) ⊆ P(n, s, q), exΠ(n, s, q) = (a − 1)(
n
2)( a

a−1 )ts−t(n), and

exΠ(s, q) = (a− 1)( a
a−1 )

s−t−1
s−t . If (a) holds and n ≥ s or (b) holds and n is sufficiently large, then

P(n, s, q) = Ts−t,a(n).

• (Stability) For all δ > 0, there is M and ε such that for all n > M and G ∈ F (n, s, q), if

P (G) > exΠ(n, s, q)1−ε then G is δ-close to an element of Ts−t,a(n).
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5.2.3. Case (iii): (s, q) = (4, 15). This is one of the first cases not covered by cases (i) and

(ii). It is our most difficult result, and also perhaps our most interesting, as it gives an indication of

the difficulty of determining exΠ(n, s, q) in general.

Definition 5.2.6. Given n, let W (n) be the set of multigraphs G = ([n], w) for which there is a

partition L,R of [n] such that w(xy) = 1 if xy ∈
(
L
2

)
, w(xy) = 2 if xy ∈

(
R
2

)
, and w(xy) = 3 if

(x, y) ∈ L×R.

Notice W (n) ⊆ F (n, 4, 15) for all n ∈ N. Straightforward calculus shows that for G ∈ W (n), the

product P (G) is maximized when |R| ≈ βn, where β = log 3
2 log 3−log 2 . Write P(W (n)) for the set of

G ∈W (n) with P (G) = max{P (G′) : G′ ∈W (n)}.

Theorem 5.2.7. There is M such that for all n ≥M , P(W (n)) ⊆ P(n, 4, 15). Consequently

exΠ(n, 4, 15) = 2γn
2+O(n),

where γ = β2/2 + β(1− β) log2 3 and β = log 3
2 log 3−log 2 .

For reference, β ≈ .73 and 2γ ≈ 1.49. Recall that Schanuel’s Conjecture states the following: if

z1, . . . , zn are complex numbers which are linearly independent overQ, thenQ(z1, . . . , zn, e
z1 , . . . , ezn)

has transcendence degree at least n over Q. As promised in the abstract, we now show that assuming

Schanuel’s Conjecture, 2γ is transcendental.

Proposition 5.2.8. Assuming Schanuel’s Conjecture, 2γ is transcendental.

Proof. Assume Schanuel’s Conjecture holds. It is well-known that Schanuel’s conjecture implies

log 2 and log 3 are algebraically independent over Q (see for instance [102]). Observe γ = f(log 2,log 3)
g(log 2,log 3)

where f(x, y) = xy2/2 + y2(y − x) and g(x, y) = x(2y − x)2. Note the coefficient of x3 in f(x, y) is

0 while in g(x, y) it is 1. We now show log 2, log 3, γ log 2 are linearly independent over Q. Suppose

towards a contradiction that this is not the case. Then there are non-zero rationals p, q, r such that

p log 2 + q log 3 + rγ log 2 = 0.

Replacing γ with f(log 2,log 3)
g(log 2,log 3) , this implies p log 2 + q log 3 + r f(log 2,log 3)

g(log 2,log 3) log 2. By clearing the de-

nominators of p, q, r and multiplying by g(log 2, log 3), we obtain that there are non-zero integers

a, b, c such that

(a log 2 + b log 3)g(log 2, log 3) + cf(log 2, log 3) log 2 = 0.
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Let p(x, y) = (ax+by)g(x, y)+cf(x, y)x. Then p(x, y) is a rational polynomial and p(log 2, log 3) = 0.

Since the coefficient of x3 is 1 in g(x, y) and 0 in f(x, y), the coefficient of x4 in p(x, y) is a 6= 0.

Thus p(x, y) has at least one non-zero coefficient, contradicting that log 2 and log 3 are algebraically

independent over Q. Thus log 2, log 3, γ log 2 are linearly independent over Q, so Schanuel’s conjec-

ture implies Q(log 2, log 3, γ log 2, 2γ) has transcendence degree at least 3 over Q. Suppose towards

a contradiction that 2γ is not transcendental. Then log 2, log 3, γ log 2 must be algebraically inde-

pendent over Q. Let h(x, y, z) = zxg(x, y)− xf(x, y). Then h(x, y, z) has non-zero coefficients and

h(log 2, log 3, γ log 2) = 0 implies log 2, log 3, γ log 2 are algebraically dependent over Q, a contraction.

Thus 2γ is trascendental. �

We remark that the question of obtaining transcendental densities for natural extremal problems

is an intriguing one, first explicitly posed by Fox (see [86]) in the context of Turán densities of

hypergraphs. Pikhurko [86] showed the set of hypergraph Turán densities is uncountable, thereby

proving the existence of transcendental ones (see also [57]). But to our knowledge, Theorem 5.2.7

is the first example of a fairly natural extremal problem whose answer is given (explicitly) by a

transcendental number (modulo Schanuel’s Conjecture of course).

5.3. Extremal Results: Cases (i) and (ii)

In this section we prove the extremal statements in Theorems 5.2.3 and 5.2.5. We begin with some

preliminaries. The results in [53] imply that for all s and q, exΣ(s, q) always exists. We now show

this for exΠ(s, q) for the values of s and q of interest to us in this chapter.

Proposition 5.3.1. For all n ≥ s ≥ 2 and q ≥
(
s
2

)
, exΠ(s, q) exists and exΠ(n, s, q) ≥ exΠ(s, q)(

n
2).

Proof. For all n ≥ s, bn := (exΠ(n, s, q))

1

(n2) ≥ 1 since q ≥
(
s
2

)
implies that U1(n) ∈ F (n, s, q). We

now show the bn are non-increasing. For n > s and G ∈ F (n, s, q),

P (G) =
( ∏
i∈[n]

P (G[[n] \ {i}])
)1/(n−2)

≤
( ∏
i∈[n]

b
(n−1

2 )
n−1

)1/(n−2)

= b
n(n−1

2 )/n−2

n−1 = b
(n2)
n−1.

Therefore for all G ∈ F (n, s, q), P (G)1/(n2) ≤ bn−1, so bn ≤ bn−1 and limn→∞ bn = exΠ(s, q) exists.

The inequality exΠ(n, s, q) ≥ exΠ(s, q)(
n
2) follows because the bn are non-increasing. �

Suppose s ≥ 2 and q ≥
(
s
2

)
. The AM-GM inequality implies that

exΠ(s, q) = lim
n→∞

exΠ(n, s, q)1/(n2) ≤ lim
n→∞

exΣ(n, s, q)(
n
2

) = exΣ(s, q).(29)
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The following lemma is an integer version of the AM-GM inequality.

Lemma 5.3.2. If ` ≥ 2, k ∈ [`] and a, x1, . . . , x` are positive integers such that
∑`
i=1 xi ≤ a` − k,

then
∏`
i=1 xi ≤ a`−k(a− 1)k. Moreover, equality holds if and only if exactly k of the xi are equal to

a− 1 and the rest are equal to a.

Proof. If there are xi and xj with xi < xj − 1, then replacing xi with xi + 1 and replacing xj with

xj − 1 increases the product and keeps the sum unchanged. So no two of the xi’s differ by more

than one when the product is maximized. �

Corollary 5.3.3. Let n ≥ s ≥ 2, a ≥ 2, and (a− 1)
(
s
2

)
≤ q < a

(
s
2

)
. Suppose G ∈ S(n, s, q) has all

edge multiplicities in {a, a− 1} and contains exactly k edges of multiplicity a− 1. Then for all other

G′ ∈ F (n, s, q), G′ ∈ P(n, s, q) if and only if G′ has k edges of multiplicity a− 1 and all other edges

of multiplicity a. Consequently, G ∈ P(n, s, q) ⊆ S(n, s, q).

Proof. Fix G so that the hypotheses hold. Then S(G) = a
(
n
2

)
− k and P (G) = a(n2)−k(a − 1)k.

Let G′ = ([n], w) be another element of F (n, s, q). Since G ∈ S(n, s, q), we have

S(G′) ≤ S(G) = a

(
n

2

)
− k.

By Lemma 5.3.2 with ` =
(
n
2

)
, P (G′) ≤ a(n2)−k(a−1)k with equality if and only if {w(xy) : xy ∈

(
[n]
2

)
}

consists of k elements equal to a−1 and the rest equal to a. This showsG′ ∈ P(n, s, q) if and only ifG′

has k edges of multiplicity a−1 and the rest of multiplicity a. Consequently, G ∈ P(n, s, q). To show

P(n, s, q) ⊆ S(n, s, q), let G′ ∈ P(n, s, q). Then by what we have shown, S(G′) = a
(
n
2

)
− k = S(G),

so G ∈ S(n, s, q) implies G′ ∈ S(n, s, q). �

The following is a consequence of Theorem 5.2 in [29] (case b = 0) and Theorems 8 and 9 in [53]

(cases 0 < b ≤ s− 2).

Theorem 5.3.4 (Bondy-Tuza [29], Füredi-Kündgen [53]). Let n ≥ s ≥ 2, a ≥ 1, 0 ≤ b ≤ s−2,

and q = a
(
s
2

)
+ b. Then

exΣ(n, s, q) ≤ a
(
n

2

)
+

⌊
b

b+ 1
n

⌋
.

with equality holding when b = s− 2 and when b = 0.

Proof of Theorem 5.2.3 (Extremal). Since Ua(n) ∈ F (n, s, q), a(n2) ≤ exΠ(n, s, q). On the other

hand, let G ∈ F (n, s, q). Theorem 5.3.4 implies that S(G) ≤ a
(
n
2

)
+b b

b+1nc. This along with Lemma
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5.3.2 implies that P (G) ≤ a(n2)((a+ 1)/a)b
b
b+1nc. Thus a(n2) ≤ exΠ(n, s, q) ≤ a(n2)((a+ 1)/a)b

b
b+1nc,

which implies exΠ(s, q) = a.

Case (a): If b = 0, then Theorem 5.3.4 implies Ua(n) ∈ S(n, s, q). Because Ua(n) has all edge

multiplicities in {a}, Corollary 5.3.3 implies Ua(n) ∈ P(n, s, q) and moreover, every other element of

P(n, s, q) has all edges of multiplicity a. In other words, {Ua(n)} = P(n, s, q), so exΠ(n, s, q) = a(n2).

Case (b): If b = s−2, then it is straightforward to check Us−1,a(n) ⊆ F (n, s, q). Since S(G) = a
(
n
2

)
+

b s−2
s−1nc for all G ∈ Us−1,a(n), Theorem 5.3.4 implies Us−1,a(n) ⊆ S(n, s, q). Because every element

in Us−1,a(n) has all edge multiplicitie in {a+1, a}, Corollary 5.3.3 implies Us−1,a(n) ⊆ P(n, s, q) and

every G′ ∈ P(n, s, q) contains exactly b s−2
s−1nc edges of multiplicity a+1, and all others of multiplicity

a. Thus exΠ(n, s, q) = a(n2)(a+1
a )b

s−2
s−1 c. Suppose s = 3, b = 1, and G′ = ([n], w) ∈ P(n, s, q). If

there are x, y 6= z ∈ [n] such that w(xy) = w(xz) = a + 1, then because G′ contains only edges

of multiplicity a + 1 and a, S({x, y, z}) ≥ 2(a + 1) + a = 3a + 2 > q, a contradiction. Thus the

edges of multiplicity a + 1 form a matching of size bn2 c in G′, so G′ ∈ Us−1,a(n). This shows

Us−1,a(n) = P(n, s, q). �

The following is a consequence of Theorem 5.2 of [29].

Theorem 5.3.5 (Bondy-Tuza [29]). Suppose n ≥ s ≥ 2, a ≥ 1, and q = a
(
s
2

)
− 1. Then

exΣ(n, s, q) = (a− 1)

(
n

2

)
+ ts−1(n).

Proof of Theorem 5.2.5(a) (Extremal). Since Ts−1,a(n) ⊆ F (n, s, q) and for all G ∈ Ts−1,a(n),

S(G) = (a−1)
(
n
2

)
+ ts−1(n), Theorem 5.3.5 implies that Ts−1,a(n) ⊆ S(n, s, q). Therefore Corollary

5.3.3 implies Ts−1,a(n) ⊆ P(n, s, q) and each G ∈ P(n, s, q) has ts−1(n) edges of multiplicity a and

the rest of multiplicity a− 1. Fix G = ([n], w) ∈ P(n, s, q) and let G′ be the graph with vertex set

[n] and edge set E = {xy ∈
(

[n]
2

)
: w(xy) = a}. Then G′ is Ks-free and has ts−1(n) edges, so by

Turán’s theorem, G′ = Ts−1(n) and thus G ∈ Ts−1,a(n). So we have shown, P(n, s, q) = Ts−1,a(n).

Consequently, exΠ(n, s, q) = (a− 1)(
n
2)( a

a−1 )ts−1(n) and exΠ(s, q) = (a− 1)( a
a−1 )

s−2
s−1 . �

To prove Theorem 5.2.5(b) (Extremal), we will need the following theorem, as well as a few lemmas.

Theorem 5.3.6. [Dirac [44], Bondy-Tuza [29]] Let n ≥ s ≥ 4, a ≥ 1, and q = a
(
s
2

)
− t for some

2 ≤ t ≤ s
2 . Then exΣ(n, s, q) = exΣ(n, s′, q′) where s′ = s− t+ 1 and q′ = a

(
s′

2

)
− 1.
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Proof. Let n ≥ s ≥ 4 and 2 ≤ t ≤ s/2. In [44], Dirac proved that exΣ(n, s,
(
s
2

)
− t) = ts−t(n).

This along with Lemma 5.1 in [29] implies that for all a ≥ 1,

exΣ(n, s, a

(
s

2

)
−t) = exΣ(n, s,

(
s

2

)
−t)+(a−1)

(
n

2

)
= ts−t(n)+(a−1)

(
n

2

)
= exΣ(n, s′, a

(
s′

2

)
−1),

where the last equality is by Theorem 5.3.5 applied to s′ and a
(
s′

2

)
− 1. �

Lemma 5.3.7. If s, q, a, t are integers satisfying case (b) of Theorem 5.2.5, and s′ = s − t + 1,

q′ = a
(
s′

2

)
− 1, then for all n ≥ s, Ts′−1(n) ⊆ P(n, s, q) and exΠ(n, s, q) = exΠ(n, s′, q′).

Proof. Set s′ = s−t+1 and q′ = a
(
s′

2

)
−1, and fix n ≥ s. FixG ∈ Ts′−1,a(n). It is straightforward to

check that G ∈ F (n, s, q). By Theorem 5.3.6, exΣ(n, s′, q′) = exΣ(n, s, q). Since S(G) = (a−1)
(
n
2

)
+

ts′−1(n), by Theorem 5.3.5 applied to s′ and q′, we have that S(G) = exΣ(n, s′, q′) = exΣ(n, s, q).

This shows G ∈ S(n, s, q). By Corollary 5.3.3, since G has all edge multiplicities in {a, a − 1},

G ∈ P(n, s, q), so P (G) = exΠ(n, s, q). Since G ∈ Ts′−1,a(n) and Ts′−1,a(n) ⊆ P(n, s′, q′) by

Theorem 5.2.5(a) (Extremal), P (G) = exΠ(n, s′, q′). Thus exΠ(n, s, q) = P (G) = exΠ(n, s′, q′). �

We now fix some notation. Given n ∈ N, z ∈ [n], Y ⊆ [n], and G = ([n], w), set

S(Y ) =
∑

xy∈(Y2)

w(xy), Sz(Y ) =
∑
y∈Y

w(yz), P (Y ) =
∏

xy∈(Y2)

w(xy), and Pz(Y ) =
∏
y∈Y

w(yz)

If X ⊆ [n] is disjoint from Y , set P (X,Y ) =
∏
x∈X,y∈Y w(xy).

Claim 5.3.8. Suppose s, q, a, t are integers satisfying the hypotheses of case (b) of Theorem 5.2.5.

Then for all n ≥ 2s and s− t+ 1 ≤ y ≤ s− 1,

exΠ(n− y, s, q) ≤ exΠ(n, s, q)(a− 1)−(y2)
(
ay−2(a− 1)2

)−(n−y)(a− 1

a

)n−y
s−t

.

Proof. Set s′ = s − t + 1 and q′ = a
(
s′

2

)
− 1. Fix n ≥ s and s′ ≤ y ≤ s − 1. Choose some

H = ([n−y], w) ∈ Ts′−1,a(n−y) and let U1, . . . , Us′−1 be the partition of [n−y] corresponding to H.

Observe that there is some i such that |Ui| ≥ n−y
s′−1 . Without loss of generality, assume |U1| ≥ n−y

s′−1 .

Assign the elements of Y ′ := [n] \ [n − y] to the Ui in as even a way as possible, to obtain an

equipartition U ′1, . . . , U
′
s′−1 of [n] extending U1, . . . , Us′−1. Observe that because s′ ≤ |Y ′| ≤ s − 1

and s′−1 = s−t ≥ s/2, for each i, |U ′i \Ui| ∈ {1, 2}, and there is at least one i such that |U ′i \Ui| = 1.

Since |U1| ≥ n−y
s−t , by redistributing Y ′ if necessary, we may assume that |U ′1 \U1| = 1. Define a new

multigraph H ′ = ([n], w′) so that w′(xy) = a − 1 if xy ∈
(
U ′i
2

)
for some i ∈ [s′ − 1] and w′(xy) = a

if (x, y) ∈ U ′i × U ′j for some i 6= j. Note that by construction H ′ ∈ Ts′−1,a(n) and H ′[[n− y]] = H.
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By Lemma 5.3.7, since n− y ≥ s, H ∈ Ts′−1,a(n− y) and H ′ ∈ Ts′−1,a(n) imply H ∈ P(n− y, s, q)

and H ′ ∈ P(n, s, q). These facts imply the following.

exΠ(n, s, q) = P (H ′) = P (H)P (Y ′)P (Y ′, [n− y]) = exΠ(n− y, s, q)P (Y ′)P (Y ′, [n− y]).(30)

By definition of H ′, if |U ′i \ Ui| = 2, then for all z ∈ Ui, Pz(Y ′) = ay−2(a− 1)2 and if |U ′i \ Ui| = 1,

then for all z ∈ Ui, Pz(Y ′) = ay−1(a− 1). Since |U ′1 \ U1| = 1, this implies

P (Y ′, [n− y]) ≥
(
ay−2(a− 1)2

)n−y−|U1|(
ay−1(a− 1)

)|U1|
=
(
ay−2(a− 1)2

)n−y( a

a− 1

)|U1|
.(31)

By construction, P (Y ′) ≥ (a−1)(
y
2). Combining this with (30), (6.9.3), and the fact that |U1| ≥ n−y

s−t ,

we obtain

exΠ(n, s, q) ≥ exΠ(n− y, s, q)(a− 1)(
y
2)
(
ay−2(a− 1)2

)n−y( a

a− 1

)n−y
s−t

.

Rearranging this yields exΠ(n− y, s, q) ≤ exΠ(n, s, q)(a− 1)−(y2)(ay−2(a− 1)2)−(n−y)(a−1
a )

n−y
s−t . �

Lemma 5.3.9. Let n ≥ s ≥ 4, a ≥ 2, and q = a
(
s
2

)
−t for some 2 ≤ t ≤ s

2 . Suppose G ∈ F (n, s, q) and

Y ∈
(

[n]
s−t+1

)
satisfies S(Y ) ≥ a

(
s−t+1

2

)
. Then there is Y ⊆ Y ′ ⊆ [n] such that s− t+1 ≤ |Y ′| ≤ s−1

and for all z ∈ [n] \ Y ′, Sz(Y ′) ≤ a|Y ′| − 2, and consequently, Pz(Y
′) ≤ a|Y ′|−2(a− 1)2.

Proof. Suppose towards a contradiction that Y ∈
(

[n]
s−t+1

)
satisfies S(Y ) ≥ a

(
s−t+1

2

)
but for all

Y ⊆ Y ′ ⊆ [n] such that s− t+ 1 ≤ |Y ′| ≤ s− 1, there is z ∈ [n] \ Y ′ with Sz(Y
′) > a|Y ′| − 2. Apply

this fact with Y ′ = Y to choose z1 ∈ [n] \ Y such that Sz1(Y ) > a|Y | − 2. Then inductively define

a sequence z2, . . . , zt−1 so that for each 1 ≤ i ≤ t− 2, Szi+1(Y ∪ {z1, . . . , zi}) ≥ a(s− t+ 1 + i)− 1

(to define zi+1, apply the fact with Y ′ = Y ∪ {z1, . . . , zi}). Then |Y ∪ {z1, . . . , zt−1}| = s and

S(Y ∪ {z1, . . . , zt−1}) ≥ S(Y ) + Sz1(Y ) + Sz2(Y ∪ {z1}) + . . .+ Szt−1
(Y ∪ {z1, . . . , zt−2})

≥ a
(
s− t+ 1

2

)
+ a(s− t+ 1)− 1 + . . .+ a(s− 1)− 1

= a

(
s

2

)
− (t− 1) > a

(
s

2

)
− t,

contradicting that G ∈ F (n, s, q). Therefore there is Y ⊆ Y ′ ⊆ [n] such that s− t+ 1 ≤ |Y ′| ≤ s− 1

and for all z ∈ [n]\Y ′, Sz(Y ′) ≤ a|Y ′|−2. By Lemma 5.3.2, this implies Pz(Y
′) ≤ a|Y ′|−2(a−1)2. �

Two multigraphs G = (V,w) and G′ = (V ′, w′) are isomorphic if there is a bijection f : V → V ′

such that for all xy ∈
(
V
2

)
, w(xy) = w′(f(x)f(y)).
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Lemma 5.3.10. Suppose s, q, a, t are integers satisfying the hypotheses of case (b) of Theorem 5.2.5.

Then there are constants C > 1 and 0 < α < 1 such that for all n ≥ 1 the following holds. Suppose

G ∈ F (n, s, q) and k(G) is the maximal number of pairwise disjoint elements of {Y ∈
(

[n]
s−t+1

)
:

S(G[Y ]) ≥ a
(
s−t+1

2

)
}. Then

P (G) ≤ Ck(G)αk(G)nexΠ(n, s, q).(32)

Proof. Set α = (a−1
a )

1
2t(s−t) . Choose C ≥ q(

s−1
2 ) sufficiently large so that exΠ(n, s, q) ≤ Cαn2

holds

for all 1 ≤ n ≤ s3. We proceed by induction on n. If 1 ≤ n ≤ s3 and G ∈ F (n, s, q), then (32) is

clearly true of k(G) = 0. If k(G) ≥ 1, then by choice of C and since k(G) ≤ n and α < 1,

P (G) ≤ exΠ(n, s, q) ≤ Cαn
2

≤ Cαk(G)n ≤ Ck(G)αk(G)nexΠ(n, s, q).

Now let n > s3 and suppose by induction (32) holds for all G′ ∈ F (n′, s, q) where 1 ≤ n′ < n. If

G ∈ F (n, s, q), then (32) is clearly true if k(G) = 0. If k(G) > 0, let Y1, . . . , Yk be a maximal set of

pairwise disjoint elements in {Y ∈
(

[n]
s−t+1

)
: S(G[Y ]) ≥ a

(
s−t+1

2

)
}. Apply Lemma 5.3.9 to find Y ′

such that Y1 ⊆ Y ′ ⊆ [n], s− t+ 1 ≤ |Y ′| ≤ s− 1, and for all z ∈ [n] \ Y ′, Pz(Y ′) ≤ a|Y
′|−2(a− 1)2.

Let |Y ′| = y. Then note

P (Y ′, [n] \ Y ′) =
∏

z∈[n]\Y ′
Pz(Y

′) ≤
(
ay−2(a− 1)2

)n−y
.(33)

Observe that G[[n] \ Y ′] is isomorphic to some H ∈ F (n − y, s, q). Since Y ′ can intersect at most

t − 2 other Yi, and since Y1, . . . , Yk was maximal, we must have k(H) + 1 ≤ k(G) ≤ k(H) + t − 1.

By our induction hypothesis,

P ([n] \ Y ′) = P (H) ≤ Ck(H)αk(H)(n−y)exΠ(n− y, s, q).(34)

Since µ(G) ≤ q and y ≤ s−1, and by our choice of C, P (Y ′) ≤ q(
y
2) ≤ C. Combining this with (33),

(34) and the fact that µ(H) ≤ µ(G) we obtain that

P (G) = P ([n] \ Y ′)P (Y ′, [n] \ Y ′)P (Y ′) ≤ Ck(H)αk(H)(n−y)exΠ(n− y, s, q)
(
ay−2(a− 1)2

)n−y
C

= Ck(H)+1αk(H)(n−y)exΠ(n− y, s, q)
(
ay−2(a− 1)2

)n−y
.

Plugging in the upper bound for exΠ(n− y, s, q) from Claim 5.3.8 yields that P (G) is at most

Ck(H)+1αk(H)(n−y)exΠ(n, s, q)(a− 1)−(y2)
(a− 1

a

)n−y
s−t ≤ Ck(H)+1αk(H)(n−y)+2t(n−y)exΠ(n, s, q),

(35)
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where the last inequality is because (a− 1)−(y2) < 1 and by definition of α, (a−1
a )1/(s−t) = α2t. We

claim that the following holds.

k(H)(n− y) + 2t(n− y) ≥ (k(H) + t− 1)n.(36)

Rearranging this, we see (36) is equivalent to yk(H) ≤ tn+n−2ty. Since 2 ≤ t ≤ s/2 and y ≤ s−1,

tn+n−2ty ≥ 3n−s(s−1), so it suffices to show yk(H) ≤ 3n−s(s−1). By definition, k(H) ≤ n−y
s−t+1

so yk(H) ≤ y(n−y)
s−t+1 . Combining this with the facts that s − t + 1 ≤ y ≤ s − 1 and s/2 < s − t + 1

yields

yk(H) ≤ (s− 1)(n− (s− t+ 1))

s− t+ 1
= n

( s− 1

s− t+ 1

)
− s+ 1 < 2n

(s− 1

s

)
− s+ 1.

Thus it suffices to check 2n( s−1
s ) − s + 1 ≤ 3n − s(s − 1). This is equivalent to (s − 1)2 ≤ n( s+2

s ),

which holds because n ≥ s3. This finishes the verification of (36). Combining (67), (36), and the

fact that k(H) + 1 ≤ k(G) ≤ k(H) + t− 1 yields

P (G) ≤ Ck(H)+1α(k(H)+t−1)nexΠ(n, s, q) ≤ Ck(G)αk(G)nexΠ(n, s, q).

�

Proof of Theorem 5.2.5(b)(Extremal). Set s′ = s − t + 1 and q′ = a
(
s′

2

)
− 1. Fix n ≥ s. By

Lemma 5.3.7 and definition of s′, Ts−t,a(n) = Ts′−1,a(n) ⊆ P(n, s, q) and

exΠ(n, s, q) = exΠ(n, s′, q′) = (a− 1)(
n
2)(

a

a− 1
)ts′−1(n),

where the last equality is by Theorem 5.2.5(a) (Extremal) applied to s′ and q′. By definition, we have

exΠ(s, q) = (a− 1)( a
a−1 )1− 1

s′−1 . We have left to show that P(n, s, q) ⊆ Ts′−1,a(n) holds for large n.

Assume n is sufficiently large and C and α are as in Lemma 5.3.10. Note exΠ(n, s, q) = exΠ(n, s′, q′)

implies P(n, s, q) ∩ F (n, s′, q′) ⊆ P(n, s′, q′) = Ts′−1,a(n), where the equality is by Theorem 5.2.5

(a) (Extremal). So it suffices to show P(n, s, q) ⊆ F (n, s′, q′). Suppose towards a contradiction that

there exists G = ([n], w) ∈ P(n, s, q) \F (n, s′, q′). Then in the notation of Lemma 5.3.10, k(G) ≥ 1.

Combining this with Lemma 5.3.10, we have

P (G) ≤ Ck(G)αk(G)nexΠ(n, s, q) =
(
Cαn

)k(G)

exΠ(n, s, q) < exΠ(n, s, q),

where the last inequality is because n is large, α < 1, and k(G) ≥ 1. But now P (G) < exΠ(n, s, q)

contradicts that G ∈ P(n, s, q). �
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5.4. Stability: Cases (i) and (ii)

In this section we prove the product-stability results for cases (i) and (ii). We will use the fact that

for any (s, q)-graph G, µ(G) ≤ q. If G = (V,w) and a ∈ N, let Ea(G) = {xy ∈
(
V
2

)
: w(xy) = a} and

ea(G) = |Ea(G)|. In the following notation, p stands for “plus” and m stands for “minus.”

pa(G) = |{xy ∈
(
V

2

)
: w(xy) > a}| and ma(G) = |{xy ∈

(
V

2

)
: w(xy) < a}|.

Lemma 5.4.1. Let s ≥ 2, q ≥
(
s
2

)
and a > 0. Suppose there exist 0 < α < 1 and C > 1 such that for

all n ≥ s, every G ∈ F (n, s, q) satisfies

P (G) ≤ exΠ(n, s, q)qCnαpa(G).

Then for all δ > 0 there are ε,M > 0 such that for all n > M the following holds. If G ∈ F (n, s, q)

and P (G) ≥ exΠ(n, s, q)1−ε then pa(G) ≤ δn2.

Proof. Fix δ > 0. Choose ε > 0 so that 2ε log q
log(1/α) = δ. Choose M ≥ s sufficiently large so

that n ≥ M implies (εn2 + Cn) log q ≤ 2ε(log q)n2. Let n > M and G ∈ F (n, s, q) be such that

P (G) ≥ exΠ(n, s, q)1−ε. Our assumptions imply

exΠ(n, s, q)1−ε ≤ P (G) ≤ exΠ(n, s, q)qCnαpa(G).

Rearranging exΠ(n, s, q)1−ε ≤ exΠ(n, s, q)qCnαpa(G) yields
(

1
α

)pa(G)

≤ exΠ(n, s, q)εqCn ≤ qεn
2+Cn,

where the second inequality is because exΠ(n, s, q) ≤ qn2

. Taking logs of both sides, we obtain

pa(G) log(1/α) ≤ (εn2 + Cn) log q ≤ 2εn2 log q,

where the second inequality is by assumption on n. Dividing both sides by log(1/α) and applying

the definition of ε yields pa(G) ≤ 2εn2 log q
log(1/α) = δn2. �

We now prove the key lemma for this section.

Lemma 5.4.2. Let s, q, b, a be integers satisfying s ≥ 2 and either

(i) a ≥ 1, 0 ≤ b ≤ s− 2, and q = a
(
s
2

)
+ b or

(ii) a ≥ 2, b = 0, and q = a
(
s
2

)
− 1.

Then there exist 0 < α < 1 and C > 1 such that for all n ≥ s and all G ∈ F (n, s, q),

P (G) ≤ exΠ(n, s, q)qCnαpa(G).(37)
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Proof. We prove this by induction on s ≥ 2, and for each fixed s, by induction on n. Let s ≥ 2

and q, b, a be as in (i) or (ii) above. Set

ξ =


0 if case (i) holds.

1 if case (ii) holds.

Suppose first s = 2. Set α = 1/2 and C = 2. Since G is an (n, 2, a− ξ)-graph, pa(G) = 0. Therefore

for all n ≥ 2,

P (G) ≤ exΠ(n, s, q) ≤ exΠ(n, s, q)qCn = exΠ(n, s, q)qCnαpa(G).

Assume now s > 2. Let I be the set of (s′, q′, b′) ∈ N3 such that 2 ≤ s′ < s and s′, q′, b′, a

satisfy (i) or (ii). Observe that I is finite. Suppose by induction on s that (s′, q′, b′) ∈ I implies

there are 0 < α(s′, q′, b′) < 1 and C(s′, q′, b′) > 1 such that for all n′ ≥ s′ and G′ ∈ F (n′, s′, q′),

P (G) ≤ exΠ(n, s′, q′)qC(s′,q′,b′)nα(s′, q′, b′)pa(G). Set

α = max
({
q−1,

(as−2(a− ξ)− 1

as−2(a− ξ)

) 1
s−2

,
(a− 1

a

) 1
s−2
}
∪
{
α(s′, q′, b′) : (s′, q′, b′) ∈ I

})
.

Observe 0 < α < 1. Choose C ≥
(
s−1

2

)
sufficiently large so that for all n ≤ s

q(
n
2) ≤ qCn(a− ξ)(

n
2)
( a

a− ξ

)ts−1(n)

α(n2),(38)

and so that for all (s′, q′, b′) ∈ I, C(s′, q′, b′) ≤ C/2 and (a+1
a )(s−3)/(s−2) ≤ qC/2. Given G ∈

F (n, s, q), set

Θ(G) =
{
Y ⊆

(
[n]

s− 1

)
: S(Y ) ≥ a

(
s− 1

2

)
+ (1− ξ)b

}
,

and let A(n, s, q) = {G ∈ F (n, s, q) : Θ(G) 6= ∅}. We show the following holds for all n ≥ 1 and

G ∈ F (n, s, q) by induction on n.

P (G) ≤ qCn(a− ξ)(
n
2)
( a

a− ξ

)ts−1(n)

αpa(G).(39)

This will finish the proof since (a − ξ)(
n
2)( a

a−ξ )ts−1(n) ≤ exΠ(n, s, q) (by Theorem 5.2.3 (Extremal)

for case (i) and Theorem 5.2.5(a) (Extremal) for case (ii)). If n ≤ s and G ∈ F (n, s, q), then (39)

holds because of (38) and the fact that P (G) ≤ q(
n
2). So assume n > s, and suppose by induction

that (39) holds for all s ≤ n′ < n and G′ ∈ F (n′, s, q). Let G = ([n], w) ∈ F (n, s, q). Suppose first

that G ∈ A(n, s, q). Choose Y ∈ Θ(G) and set R = [n] \ Y . Given z ∈ R, note that

a

(
s− 1

2

)
+ (1− ξ)b+ Sz(Y ) ≤ S(Y ) + Sz(Y ) = S(Y ∪ {z}) ≤ a

(
s

2

)
+ (1− ξ)b− ξ,
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and therefore Sz(Y ) ≤ a(s− 1)− ξ. Then for all z ∈ R, Lemma 5.3.2 implies Pz(Y ) ≤ as−2(a− ξ),

with equality only if {w(yz) : y ∈ Y } consists of s − 1 − ξ elements equal to a and ξ elements

equal to a − 1. Let R1 = {z ∈ R : ∃y ∈ Y,w(zy) > a} and R2 = R \ R1. Then z ∈ R1 implies

Pz(Y ) < as−2(a − ξ), so Pz(Y ) ≤ as−2(a − ξ) − 1. Let k = |R1|. Observe that G[R] is isomorphic

to an element of F (n′, s, q), where n′ = n− |R| ≥ 1. By induction (on n) and these observations we

have that the following holds, where pa(R) = pa(G[R]).

P (G) = P (R)P (Y )
∏
z∈R1

Pz(Y )
∏
z∈R2

Pz(Y )

≤ qC(n−s+1)(a− ξ)(
n−s+1

2 )
( a

a− ξ

)ts−1(n−s+1)

αpa(R)q(
s−1
2 )
(
as−2(a− ξ)− 1

)k(
as−2(a− ξ)

)n−s+1−k

≤ qC(n−s+2)(a− ξ)(
n−s+1

2 )
( a

a− ξ

)ts−1(n−s+1)

αpa(R)
(
as−2(a− ξ)− 1

)k(
as−2(a− ξ)

)n−s+1−k
,

where the second inequality is because
(
s−1

2

)
≤ C. Since α ≥

(
as−2(a−ξ)−1
as−2(a−ξ)

)1/(s−2)

, this is at most

qC(n−s+2)(a− ξ)(
n−s+1

2 )
( a

a− ξ

)ts−1(n−s+1)

αpa(R)+k(s−1)
(
as−2(a− ξ)

)n−s+1

.(40)

Because C(n− s+ 2) ≤ Cn−
(
s−1

2

)
and q−1 ≤ α, we have qC(n−s+2) ≤ qCnα(s−1

2 ). Combining this

with the fact that pa(G) ≤ pa(R) + k(s− 1) +
(
s−1

2

)
implies that (40) is at most

qCn(a− ξ)(
n−s+1

2 )
( a

a− ξ

)ts−1(n−s+1)

αpa(R)+k(s−1)+(s−1
2 )
(
as−2(a− ξ)

)n−s+1

=qCn(a− ξ)(
n−s+1

2 )+(s−1)(n−s+1)
( a

a− ξ

)ts−1(n−s+1)+(s−2)(n−s+1)

αpa(R)+k(s−1)+(s−1
2 )

≤qCn(a− ξ)(
n
2)
( a

a− ξ

)ts−1(n)

αpa(G).

We now have that P (G) ≤ qCn(a− ξ)(
n
2)( a

a−ξ )ts−1(n)αpa(G), as desired. Assume now G /∈ A(n, s, q).

Then for all Y ∈
(

[n]
s−1

)
, S(Y ) ≤ a

(
s−1

2

)
+ (1− ξ)b− 1. Thus G is an (n, s′, q′)-graph where s′ = s− 1

and q′ = a
(
s−1

2

)
+ (1 − ξ)b − 1. Suppose a = 1, ξ = 0, and b = 0. Then q′ =

(
s′

2

)
− 1 and any

(n, s′, q′)-graph must contain an edge of multiplicity 0. This implies P (G) = 0 and (39) holds. We

have the following three cases remaining, where b′ = max{b− 1, 0}.

(1) ξ = 0, b = 0, and a ≥ 2. In this case q′ = a
(
s′

2

)
− 1 and b′ = 0.

(2) ξ = 1, b = 0, and a ≥ 2. In this case q′ = a
(
s′

2

)
− 1 and b′ = 0.

(3) ξ = 0, 1 ≤ b ≤ s− 2, and a ≥ 1. In this case q′ = a
(
s′

2

)
+ b′ and 0 ≤ b′ ≤ s′ − 2.
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It is clear that in all three of these cases, (s′, q′, b′) ∈ I, so by our induction hypothesis (on s), there

are α′ = α(s′, q′, b′) ≤ α and C ′ = C(s′, q′, b) such that

P (G) ≤ exΠ(n, s′, q′)(q′)C
′n(α′)pa(G) ≤ exΠ(n, s′, q′)qC

′nαpa(G),(41)

where the inequality is because q′ ≤ q and α′ ≤ α. By Theorem 5.2.5(a) (Extremal) if cases 1 or 2

hold, and by Theorem 5.2.3 (Extremal) if case 3 holds, we have the following.

exΠ(n, s′, q′) ≤ (a− ξ)(
n
2)
( a

a− ξ

)ts′−1(n)(a+ 1

a

)b b′
b′+1

nc
≤ (a− ξ)(

n
2)
( a

a− ξ

)ts−1(n)(a+ 1

a

) s−3
s−2n

,

where the last inequality is because ts′−1(n) ≤ ts−1(n) and b b′

b′+1nc ≤
b′

b′+1n ≤
s−3
s−2n. By choice of

C, (a+1
a )

s−3
s−2n ≤ qCn/2. Thus exΠ(n, s′, q′) ≤ (a− ξ)(

n
2)( a

a−ξ )ts−1(n)qCn/2. Combining this with (41)

implies

P (G) ≤ (a− ξ)(
n
2)
( a

a− ξ

)ts−1(n)

qCn/2qC
′nαpa(G) ≤ (a− ξ)(

n
2)
( a

a− ξ

)ts−1(n)

qCnαpa(G),

where the last inequality is because C ′ ≤ C/2. Thus (39) holds. �

Proof of Theorem 5.2.3 (Stability). Let s ≥ 2, a ≥ 1, and q = a
(
s
2

)
+ b for some 0 ≤ b ≤ s− 2.

Fix δ > 0. Given G ∈ F (n, s, q), let pG = pa(G) and mG = ma(G). Note that if G ∈ F (n, s, q),

then |∆(G,Ua(n))| = mG + pG. Suppose first a = 1, so mG = 0. Combining Lemma 5.4.2

with Lemma 5.4.1 implies there are ε1 and M1 such that if n > M1 and G ∈ F (n, s, q) satisfies

P (G) ≥ exΠ(n, s, q)1−ε1 , then |∆(G,Ua(n))| = pG ≤ δn2. Assume now a > 1. Combining Lemma

5.4.2 with Lemma 5.4.1 implies there are ε1 and M1 such that if n > M1 and G ∈ F (n, s, q) satisfies

P (G) ≥ exΠ(n, s, q)1−ε1 , then pG ≤ δ′n2, where

δ′ = min
{δ

2
,
δ log(a/(a− 1))

4 log q

}
.

Set ε = min{ε1, δ log(a/(a−1))
4 log q }. Suppose n > M1 and G ∈ F (n, s, q) satisfies P (G) ≥ exΠ(n, s, q)1−ε.

Our assumptions imply pG ≤ δ′n2 ≤ δn2/2. Observe that by definition of pG and mG,

P (G) ≤ a(n2)−mG(a− 1)mGqpG = a(n2)
(a− 1

a

)mG
qpG .(42)

By Theorem 5.2.3(a)(Extremal), exΠ(n, s, q) ≥ a(n2). Therefore P (G) ≥ exΠ(n, s, q)1−ε ≥ a(n2)(1−ε).

Combining this with (42) yields

a(n2)(1−ε) ≤ a(n2)
(a− 1

a

)mG
qpG .
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Rearranging this, we obtain

( a

a− 1

)mG
≤ aε(

n
2)qpG ≤ qε(

n
2)+pG ≤ qεn

2+pG .

Taking logs, dividing by log(a/(a− 1)), and applying our assumptions on pG and ε yields

mG ≤
εn2 log q

log(a/(a− 1))
+

pG log q

log(a/(a− 1)
≤ δn2

4
+
δn2

4
=
δn2

2
.

Combining this with the fact that pG ≤ δn2

2 we have that |∆(G,Ua(n))| ≤ δn2. �

Proof of Theorem 5.2.5(a) (Stability). Let s ≥ 2, a ≥ 2, and q = a
(
s
2

)
− 1. Fix δ > 0. Given

G ∈ F (n, s, q), let pG = pa(G), mG = ma−1(G). Choose M0 and µ such that µ < δ/2 and so that

Theorem 2.2.2 implies that any Ks-free graph with n ≥ M0 vertices and at least (1 − µ)ts−1(n)

edges can be made into Ts−1(n) by adding or removing at most δn2

3 edges. Set

A =


2 if a = 2

a−1
a−2 if a > 2

Combining Lemma 5.4.2 with Lemma 5.4.1 implies there are ε1,M1 so that if n > M1 and G ∈

F (n, s, q) satisfies P (G) ≥ exΠ(n, s, q)1−ε1 , then pG ≤ δ′n2, where

δ′ = min
{δ

3
,
µ log(a/(a− 1))

2 log q
,
δ logA

6 log q

}
.(43)

Let

ε = min
{
ε1,

δ logA

6 log q
,
µ log(a/(a− 1))

2 log q

}
and M = max{M0,M1}.

Suppose now that n > M and G ∈ F (n, s, q) satisfies P (G) ≥ exΠ(n, s, q)1−ε. By assumption,

pG ≤ δ′n2 ≤ δn2

3 . We now bound mG. Note that if a = 2 and P (G) 6= 0, then mG = 0. If a > 2,

observe that by definition of pG and mG,

P (G) ≤ qpG(a− 2)mGaea(G)(a− 1)ea−1(G) ≤ qpG
(a− 2

a− 1

)mG
aea(G)(a− 1)(

n
2)−ea(G),(44)

where the last inequality is because ea−1(G) +mG ≤
(
n
2

)
− ea(G). Note that Turán’s theorem and

the fact that G is an (n, s, q)-graph implies that ea(G) ≤ ts−1(n), so

aea(G)(a− 1)(
n
2)−ea(G) ≤ ats−1(n)(a− 1)(

n
2)−ts−1(n) = exΠ(n, s, q),
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where the last equality is from Theorem 5.2.5(a) (Extremal). Combining this with (44) yields

exΠ(n, s, q)1−ε ≤ P (G) ≤ qpG
(a− 2

a− 1

)mG
exΠ(n, s, q).

Rearranging exΠ(n, s, q)1−ε ≤ qpG(a−2
a−1 )mGexΠ(n, s, q) and using that exΠ(n, s, q) ≤ qn2

, we obtain

AmG =
(a− 1

a− 2

)mG
≤ qpGexΠ(n, s, q)ε ≤ qpG+εn2

.

Taking logs, dividing by logA, and applying our assumptions on pG and ε we obtain mG < δn2/3.

Using (44) and ats−1(n)(a− 1)(
n
2)−ts−1(n) = exΠ(n, s, q), we have

exΠ(n, s, q)1−ε ≤ P (G) ≤ qpGaea(G)(a− 1)(
n
2)−ea(G) = qpGexΠ(n, s, q)

( a

a− 1

)ea(G)−ts−1(n)

.

Rearranging this we obtain

( a

a− 1

)ts−1(n)−ea(G)

≤ qpGexΠ(n, s, q)ε ≤ qpG+εn2

.

Taking logs, dividing by log(a/(a− 1)), and using the assumptions on pG and ε we obtain that

ts−1(n)− ea(G) ≤ pG log q

log(a/(a− 1))
+

εn2 log q

log(a/(a− 1))
≤ µn2

2
+
µn2

2
= µn2.

Let H be the graph with vertex set [n] and edge set E = Ea(G). Then H is Ks-free, and has

ea(G) many edges. Since ts−1(n) − ea(G) ≤ µn2, Theorem 2.2.2 implies that H is δ
3 -close to some

H ′ = Ts−1(n). Define G′ ∈ F (n, s, q) so that Ea(G′) = E(H ′) and Ea−1(G′) =
(
n
2

)
\ Ea(G′). Then

G′ ∈ Ts−1,a(n) and

∆(G,G′) ⊆ (Ea(G)∆Ea(G′)) ∪
⋃

i/∈{a,a−1}

Ei(G) = ∆(H,H ′) ∪
⋃

i/∈{a,a−1}

Ei(G).

This implies |∆(G,G′)| ≤ |∆(H,H ′)|+ pG +mG ≤ δ
3n

2 + δ
3n

2 + δ
3n

2 = δn2. �

5.4.1. Proof of Theorem 5.2.5(b) (Stability). In this subsection we prove Theorem 5.2.5(b)

(Stability). We first prove two lemmas.

Lemma 5.4.3. Let s ≥ 4, a ≥ 2, and q = a
(
s
2

)
− t for some 2 ≤ t ≤ s

2 . For all λ > 0 there

are M and ε > 0 such that the following holds. Suppose n > M and G ∈ F (n, s, q) satisfies

P (G) > exΠ(n, s, q)1−ε. Then k(G) < λn, where k(G) is as defined in Lemma 5.3.10.



5.4. STABILITY: CASES (I) AND (II) 83

Proof. Fix λ > 0. Set η = a
s−t−1
s−t (a − 1)

1
s−t and choose C and α as in Lemma 5.3.10. Choose

ε > 0 so that αλ/2 = η−ε. By Theorem 5.2.5(b) (Extremal), exΠ(n, s, q) = η(n2)+o(n2). Assume

M sufficiently large so that for all n ≥ M , (5.2.5) holds for all G ∈ F (n, s, q), exΠ(n, s, q) < ηn
2

,

Cλn ≤ ηεn
2

, and Cαn < 1. Fix n ≥ M and suppose towards a contradiction that G ∈ F (n, s, q)

satisfies P (G) > exΠ(n, s, q)1−ε and k(G) ≥ λn. By Lemma 5.3.10 and the facts that Cαn < 1 and

k(G) ≥ 1, we obtain that

P (G) ≤ Ck(G)αnk(G)exΠ(n, s, q) = (Cαn)k(G)exΠ(n, s, q) ≤ (Cαn)λnexΠ(n, s, q).

By assumption on n and definition of ε, (Cαn)εn = Cλnαλn
2

= Cλnη−2εn2 ≤ η−εn2

. Thus

P (G) ≤ η−εn
2

exΠ(n, s, q) < exΠ(n, s, q)1−ε,

where the last inequality is because by assumption, exΠ(n, s, q) < ηn
2

. But this contradicts our

assumption that P (G) > exΠ(n, s, q)1−ε. �

Given a multigraph G = (V,w), let H(G, s, q) = {Y ∈
(
V
s

)
: S(Y ) > q}. Observe that G is an

(s, q)-graph if and only if H(G, s, q) = ∅.

Lemma 5.4.4. Let s, q,m ≥ 2 be integers. For all 0 < δ < 1, there is 0 < λ < 1 and N such that

n > N implies the following. If G = ([n], w) has µ(G) ≤ m and H(G, s, q) contains strictly less than

dλne pairwise disjoint elements, then G is δ-close to an element in F (n, s, q).

Proof. Fix 0 < δ < 1. Observe we can view any multigraph G with µ(G) ≤ m as an edge-colored

graph with colors in {0, . . . ,m}. One can use a multi-color version of Szemeredi’s regularity lemma

(see [7]) to prove a version of the triangle removal lemma for multigraphs: for all δ > 0 there is ε

and M such that if n > M and G = ([n], w) has µ(G) ≤ m and H(G, s, q) ≤ ε
(
n
s

)
, then G is δ-close

to an element of F (n, s, q). Since the proof of this statement is merely an adjustment of the proof of

the triangle removal lemma for graphs, we omit it. Let λ := ε/s and N = max{M, s
1−λs}. We claim

this λ and N satisfy the desired conclusions. Suppose towards a contradiction that n > M and

G = ([n], w) has µ(G) ≤ m, H(n, s, q) contains strictly less than dλne pairwise disjoint elements,

but G is δ-far from every element in F (n, s, q). Then H(G, s, q) > ε
(
n
s

)
by choice of M and λ. By

our choice of N , dλnes ≤ (λn+ 1)s ≤ n. Then Proposition 11.6 in [56] and our assumptions imply

|H(G, s, q)| ≤ (dλne − 1)
(
n−1
s−1

)
. But now

|H(G, s, q)| ≤ (dλne − 1)

(
n− 1

s− 1

)
< λn

(
n− 1

s− 1

)
=
(εn
s

)( s
n

)(n
s

)
= ε

(
n

s

)
,
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a contradiction. �

Proof of Theorem 5.2.5(b) (Stability). Let s ≥ 4, a ≥ 2, and q = a
(
s
2

)
− t for some 2 ≤ t ≤ s

2 .

Fix δ > 0. Let s′ = s − t + 1 and q′ = a
(
s′

2

)
− 1. Note Theorem 5.2.5 (Extremal) implies that for

sufficiently large n, P(n, s, q) = Ts′−1,a(n), exΠ(n, s′, q′) = exΠ(n, s, q), and exΠ(s′, q′) = exΠ(s, q) =

η, where η = (a− 1)( a
a−1 )(s′−2)/(s′−1).

Apply Theorem 5.2.5 (a) (Stability) for (s′, q′) to δ/2 to obtain ε0. By replacing ε0 if necessary,

assume ε0 < 4δ/ log η. Set ε1 = ε0 log η/(8 log q) and note ε1 < δ/2. Apply Lemma 6.7.3 to ε1

and m = q to obtain λ such that for large n the following holds. If G = ([n], w) has µ(G) ≤ q

and H(G, s′, q′) contains strictly less than dλne pairwise disjoint elements, then G is ε1-close to an

element in F (n, s′, q′). Finally, apply Lemma 5.4.3 for s, q, t to λ to obtain ε2 > 0.

Choose M sufficiently large for the desired applications of Theorems 5.2.5(a) (Stability) and 5.2.5(b)

(Extremal) and Lemmas 5.4.3 and 6.7.3. Set ε = min{ε2, ε0/2}. Suppose n > M and G ∈ F (n, s, q)

satisfies P (G) ≥ exΠ(n, s, q)1−ε. Then Lemma 5.4.3 and our choice of ε implies k(G) < λn. Observe

that by the definitions of s′, q′,

{
Y ∈

(
[n]

s− t+ 1

)
: S(Y ) ≥ a

(
s− t+ 1

2

)}
=
{
Y ∈

(
[n]

s′

)
: S(Y ) ≥ q′ + 1

}
= H(G, s′, q′).

Thus k(G) < λn means H(G, s′, q′) contains strictly less than dλne pairwise disjoint elements.

Lemma 6.7.3 then implies G is ε1-close to some G′ ∈ F (n, s′, q′). Combining this with the definition

of ε1 yields

P (G′) ≥ P (G)q−|∆(G,G′)| ≥ P (G)q−ε1n
2

= P (G)η−ε0n
2/8 ≥ exΠ(n, s, q)1−εη−(ε0/2)(n2).(45)

By Proposition 5.3.1, exΠ(n, s, q) ≥ exΠ(s, q)(
n
2) = η(n2). Combining this with (45) and the definition

of ε yields

P (G′) ≥ exΠ(n, s, q)1−εη−(ε0/2)(n2) ≥ exΠ(n, s, q)1−ε−ε0/2 ≥ exΠ(n, s, q)1−ε0 .(46)

Since exΠ(n, s, q) = exΠ(n, s′, q′), (46) implies P (G′) ≥ exΠ(n, s′, q′)1−ε0 , so Theorem 5.2.5(a) (Sta-

bility) implies G′ is δ/2-close to some G′′ ∈ Ts′−1,a(n) = Ts−t,a(n). Now we are done, since

|∆(G,G′′)| ≤ |∆(G,G′)|+ |∆(G′, G′′)| ≤ ε1n2 + δn2/2 ≤ δn2.

�
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5.5. Extremal Result for (n, 4, 15)-graphs

In this section we prove Theorem 5.2.7 using two theorems, Theorems 5.5.2 and 5.5.3, which will be

proved in Sections 5.7 and 5.8 respectively.

Definition 5.5.1. Given G = (V,w) and i, j, k ∈ N, an (i, j, k)-triangle in G is a set of three vertices

x, y, z ∈ V such that {w(xy), w(yz), w(xz)} = {i, j, k}. Say that G omits (i, j, k)-triangles if there is

no (i, j, k)-triangle in G. Given n ∈ N, let Ai,j,k(n) = {G ∈ F (n, 4, 15) : G omits (i, j, k)-triangles}.

Given n ∈ N, let F≤3(n, 4, 15) = {G ∈ F (n, 4, 15) : µ(G) ≤ 3}, and let

C(n) = F≤3(n, 4, 15) ∩ F (n, 3, 8) ∩A3,1,1(n) ∩A2,1,1(n) ∩A3,2,1(n).

Observe that for all n, W (n) ⊆ C(n) ⊆ F (n, 4, 15). The proof of Theorem 5.2.7 relies on under-

standing the structure of (4, 15)-graphs which are product-extremal subject to certain constraints.

Given a set F of multigraphs, let

P(F) = {G ∈ F : P (G) ≥ P (G′) for all G′ ∈ F} and S(F) = {G ∈ F : S(G) ≥ S(G′) for all G′ ∈ F}.

Theorem 5.5.2. There is an M such that for all n ≥M , P(C(n)) ⊆W (n).

Theorem 5.5.3. There is an M such that for all n ≥M , P(C(n)) ⊆ P(n, 4, 15).

Recall that if G = ([n], w) ∈ W (n), then there is a partition L,R of [n] such that w(xy) = 1 if and

only if xy ∈
(
L
2

)
. Given G ∈W (n), we let L(G) and R(G) denote this L and R respectively. Recall

the definition of γ from Theorem 5.2.7.

Lemma 5.5.4. For all G ∈ P(W (n)), we have P (G) = 2γn
2+O(n).

Proof. Let G = ([n], w) ∈ W (n). Set h(y) = 2(y2)3y(n−y) and observe that if |L(G)| = n − y

and |R(G)| = y, then P (G) = h(y). Thus it suffices to show that maxy∈[n] h(y) = 2γn
2+O(n).

Basic calculus shows that h(y) has a global maximum at τ = βn− (log 2)/(2(2 log 3− log 2)), where

β = log 3
2 log 3−log 2 is as in Theorem 5.2.7. This implies maxy∈N h(y) = max{h(bτc), h(dτe)}. It is

straightforward to check max{h(bτc), h(dτe)} = max{h(bβn, c), h(dβne)}. By definition of γ and h,

this implies maxy∈[n] h(y) = 2γn
2+O(n). �
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Proof of Theorem 5.2.7. Fix n sufficiently large and G ∈ P(W (n)). Since W (n) ⊆ C(n), Theorem

5.5.2 implies P(C(n)) = P(W (n)), so G ∈ P(C(n)). Theorem 5.5.3 implies G ∈ P(n, 4, 15). Thus

P(W (n)) ⊆ P(n, 4, 15) holds. Consequently exΠ(n, 4, 15) = P (G) = 2γn
2+O(n) by Lemma 5.5.4. �

5.6. A Key Lemma

In this section we prove a key lemma for Theorem 5.5.2, Lemma 5.6.2 below. Given multigraphs

G = (V,w) and G′ = (V ′, w′), G′ is a submultigaph of G if V ′ ⊆ V and G′ = G[V ′].

Definition 5.6.1. Given t ≥ 3, define Ct(3, 2) to be the multigraph ([t], w) such that

w(12) = w(23) = . . . = w((t− 1)t) = w(t1) = 3,

and w(ij) = 2 for all other pairs i 6= j. For n ≥ 3, set NC(n) (NC=“no cycles”) to be the set of

G ∈ C(n) which contain no submultigraph isomorphic to Ct(3, 2) for any t ≥ 3.

If G contains a submultigraph isomorphic to Ct(3, 2), we will write Ct(3, 2) ⊆ G, if not, we will write

Ct(3, 2) * G.

Lemma 5.6.2. There is M such that for n > M , P(NC(n)) ⊆W (n).

We begin with some definitions. A vertex-weighted graph is a triple (V,E, f) where (V,E) is graph

and f : V → N>0. Given a multigraph G = (V,w), let ∼G be the binary relation on V defined by

x ∼G y ⇔ wG(xy) = 1.

Definition 5.6.3. A multigraph G is neat if µ(G) ≤ 3 and G contains no (i, j, k)-triangle for

(i, j, k) ∈ {(1, 1, 2), (1, 1, 3), (1, 2, 3)}.

Observe that all multigraphs in C(n) are neat. Neat multigraphs have the property that we can

“mod out” by ∼G in a coherent way.

Proposition 5.6.4. Suppose G = (V,w) is a neat multigraph. Then ∼G forms an equivalence

relation on V . Moreover, if Ṽ = {V1, . . . , Vt} is the set of equivalence classes of V under ∼G, then

for each i 6= j, there is wij ∈ {2, 3} such that for all (x, y) ∈ Vi × Vj, w(xy) = wij.

The proof is straightforward and left to the reader. Suppose G = (V,w) is a neat multigraph,

Ṽ = {V1, . . . , Vt} is the set of equivalence classes of V under ∼G, and for each i 6= j, wij ∈ {2, 3} is
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from Proposition 5.6.4. Define the vertex-weighted graph associated to G and ∼G to be G̃ = (Ṽ , Ẽ, f)

where Ẽ = {ViVj ∈
(
Ṽ
2

)
: wij = 3} and f(Vi) = |Vi| for all i ∈ [t]. We will use the notation | · |G to

denote this vertex-weight function f , and we will drop the superscript when G is clear from context.

If H = (V,E) is a graph and X ⊆ V , then let H[X] = (X,E ∩
(
X
2

)
).

Lemma 5.6.5. Suppose G is a neat multigraph with vertex set [n]. Then G ∈ NC(n) if and only if

G̃ is a forest.

Proof. Suppose G̃ is not a forest. Then there is X = {Vi1 , . . . , Vik} ⊆ Ṽ such that G̃[X] is a cycle

of length k ≥ 3. Choose some yj ∈ Vij for each 1 ≤ i ≤ k and let Y = {y1, . . . , yk}. Then by

definition of G̃, we must have G[Y ] ∼= Ck(3, 2). Thus G /∈ NC(n).

On the other hand, suppose G /∈ NC(n). Then because G is neat, we must have that either

G /∈ F (n, 4, 15) or Ct(3, 2) ⊆ G for some t ≥ 3. Suppose G /∈ F (n, 4, 15). Then there is some

Y ∈
(

[n]
4

)
such that SG(Y ) > 15. Since µ(G) ≤ 3, this implies that either

(i) {w(xy) : xy ∈
(
Y
2

)
} = {3, 3, 3, 3, 2, 2} or

(ii) {w(xy) : xy ∈
(
Y
2

)
} = {3, 3, 3, 3, 3, j}, some j ∈ {1, 2, 3}.

Let X be the set of equivalence classes intersecting Y , that is X = {Vi ∈ Ṽ : Y ∩ Vi 6= ∅}. In Case

(i), because Y spans no edges of multiplicity 1 in G, the elements of Y must be in pairwise distinct

equivalence classes under ∼G. Thus in G̃, |X| = 4 and X spans exactly 4 edges. This implies G̃[X]

is either a 4-cycle or contains a triangle. In Case (ii), if j = 1, then |X| = 3 and G̃[X] is a triangle.

If j 6= 1, then |X| = 4 and spans at least 5 edges. This implies G̃[X] contains a triangle. �

Definition 5.6.6. Given a vertex-weighted graph G̃ = (Ṽ , E, | · |), set

fπ(G̃) =
∏

UV ∈E
3|U ||V |

∏
UV ∈(Ṽ2)\E

2|U ||V |.

Note that we have P (G) = fπ(G̃) for all G ∈ C(n).

Two vertex-weighted graphs (G1, E1, f1) and (G2, E2, f2), are isomorphic if there is a graph isomor-

phism g : V (G1)→ V (G2) such that for all v ∈ V (G1), f1(v) = f2(g(v)).

Lemma 5.6.7. Let H = (Ṽ , E, | · |) be a vertex-weighted forest such that
∑
V ∈Ṽ |V | = n. Then there

is a multigraph G ∈ NC(n) such that G̃ is isomorphic to H.
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Proof. Let Ṽ = {V1, . . . , Vt} and for each i, let xi = |Vi|. Since
∑t
i=1 xi = n, it is clear there exists

a partition P1, . . . , Pt of [n] such that for each i ∈ [t], |Pi| = xi. Fix such a partition P1, . . . , Pt.

Define G = ([n], w) as follows. For each xy ∈
(

[n]
2

)
,

w(xy) =


1 if xy ∈

(
Pi
2

)
for some i ∈ [t]

3 if xy ∈ E(Pi, Pj) for some i 6= j such that ViVj ∈ E

2 if xy ∈ E(Pi, Pj) for some i 6= j such that ViVj /∈ E.

By construction, G is a neat multigraph and G̃ is isomorphic to H. Because H ∼= G̃ is a forest,

Lemma 5.6.5 implies G ∈ NC(n). �

Given a vertex-weighted graph, H = (Ṽ , E, | · |) and V ∈ Ṽ , let dH(V ) to denote the degree of V in

the graph (Ṽ , E). Given a graph (Ṽ , E) and disjoint subsets X̃, Ỹ of Ṽ , let E(X̃) = E ∩
(
X̃
2

)
and

E(X̃, Ỹ ) = E ∩ {XY : X ∈ X̃, Y ∈ Ỹ }.

Lemma 5.6.8. Suppose H = (Ṽ , E, | · |) is a vertex-weighted forest such that (Ṽ , E) is not a star.

Then there is a vertex-weighted graph H ′ = (Ṽ , E′, | · |) such that (Ṽ , E′) is a star, and

fπ(H ′) ≥ fπ(H).

Moreover, if fπ(H ′) = fπ(H), then |V | = |W | where V is the center of the star (Ṽ , E′) and W ∈ Ṽ

is some vertex distinct from V .

Proof. Let H = (Ṽ , E, | · |) be a vertex-weighted forest. Fix V ∈ Ṽ with |V | = max{|X| : X ∈ Ṽ }.

We now define a sequence H0, H1, . . . ,Hk, where for each i, Hi = (Ṽ , Ei, | · |).

Step 0: Let X̃ be the set of isolated points in H. If X̃ = ∅ set H0 = H and go to the next step. If

X̃ 6= ∅, let E0 = E ∪ {V X : X ∈ X̃} and H0 = (Ṽ , E0, | · |). Clearly (Ṽ , E0) is still a forest, since

any cycle must contain a new edge, i.e. an edge of the form V X, some X ∈ X̃. But dH0(X) = 1 for

all X ∈ X̃ implies no X ∈ X̃ can be contained in a cycle in H0. Further, note

fπ(H0) = fπ(H)
(3

2

)∑
X∈X̃ |V ||X|

> fπ(H).

If H0 is a star, end the construction and let k = 0, otherwise go to the next step.

Step i + 1: Suppose by induction we have defined H0, . . . ,Hi such that (Ṽ , Ei) is forest but not a

star and contains no isolated points. Since (Ṽ , Ei) is not a star, it is in particular, not a star with

center V . This implies the set Ỹi := Ṽ \ ({V } ∪ dHi(V )) 6= ∅. We show there is Y ∈ Ỹi such that
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dHi(Y ) = 1. Since there are no isolated points in (Ṽ , Ei), every Y ∈ Ỹi has dHi(Y ) ≥ 1. Suppose

towards a contradiction that every Y ∈ Ỹi had dHi(Y ) ≥ 2. Choose a maximal sequence of points

Ȳ = (Y1, . . . , Yu) from Ỹi with the property that Y1Y2, . . . , Yu−1Yu ∈ Ei. Since Y1 and Yu have

degree at least two in (Ṽ , Ei) and because (Ṽ , Ei) is a forest, there are Z1, Zu ∈ Ṽ \ Ȳ such that

Y1Z1, YuZu ∈ Ei. Since Y1, Yu ∈ Yi, Z1, Zu 6= V and since Ȳ was maximal, Z1, Zu /∈ Ỹi. Thus

Z1, Zu ∈ Ṽ \ (Ỹi ∪ {V }) which implies V Z1, V Zu ∈ Ei. This yields that V,Z1, Y1, . . . , Yu, Zu, V is a

cycle in (Ṽ , Ei), a contradiction. Thus there exists Y ∈ Ỹi such that dHi(Y ) = 1. Fix such a Y ∈ Ỹi

and let W be the unique neighbor of Y in (Ṽ , Ei). Define

Ei+1 = (Ei \ {YW}) ∪ {V Y }.

and let Hi+1 = (Ṽ , Ei+1, | · |). We first check (Ṽ , Ei+1) is a forest. Since (Ṽ , Ei) is a forest, any

cycle in (Ṽ , Ei+1) will contain V Y . However, dHi+1(Y ) = 1, so Y cannot be contained in a cycle.

Note

fπ(Hi+1) = fπ(Hi)3
|V ||Y |−|Y ||W |2|Y ||W |−|V ||Y | = fπ(Hi)

(3

2

)|Y |(|V |−|W |)
≥ fπ(Hi),

where the inequality holds because |V | ≥ |W | by choice of V . Further, note that the inequality is

strict unless |V | = |W |.

Clearly this process must end after some 0 ≤ k < |Ṽ | steps. If k = 0, then H0 = Hk is a star and

fπ(Hk) > fπ(H). If k ≥ 1, then the resulting Hk = (Ṽ , Ek, | · |) will have the property that (Ṽ , Ek)

is a star with center V . Since k ≥ 1, one of the following holds.

• fπ(H1) > fπ(H0), so fπ(Hk) > fπ(H), or

• fπ(H0) = fπ(H1) and at step 1, we found a vertex W 6= V with |V | = |W |.

�

Lemma 5.6.9. Suppose G ∈ NC(n) and G̃ = (Ṽ , E, | · |) is the vertex-weighted graph associated to

G and ∼G. Suppose (Ṽ , E) is a star with center V and there is W ∈ Ṽ \ {V } such that |W | > 1.

Then G /∈ P(NC(n)).

Proof. Let Ṽ ′ = (Ṽ \ {W}) ∪ {W1,W2} and E′ = (E \ {VW}) ∪ {VW1, V W2}, where W1,W2 are

new vertices. Let H = (Ṽ ′, E′, | · |′) where the vertex-weight function | · |′ is defined by |U |′ = |U | for

all U ∈ Ṽ \ {W}, |W1|′ = |W | − 1, and |W2|′ = 1. By definition of H,
∑
U∈Ṽ ′ |U |′ =

∑
U∈Ṽ |U | = n.

Since H is obtained from G̃ by splitting the degree one vertex W into W1 and W2, and G̃ is a forest,

H is also a forest. Thus H satisfies the hypotheses of Lemma 5.6.7, so there is an G′ ∈ NC(n)
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such that G̃′ is isomorphic to H. This and Definition 5.6.6 implies fπ(H) = fπ(G̃′) = P (G′). Let

Z̃ = Ṽ \ {V,W}. Then

fπ(H) =
( ∏
U∈Z̃

3|U ||V |
∏

UU ′∈(Z̃2)

2|U ||U
′|
)( ∏

U∈Z̃

2|W1||U |+|W2||U |
)

3|V ||W1|′+|V ||W2|′2|W1|′|W2|′

=
( ∏
U∈Z̃

3|U ||V |
∏

UU ′∈(Z̃2)

2|U ||U
′|
)( ∏

U∈Z̃

2|W ||U |
)

3|V ||W |2|W |−1

= fπ(G̃)2|W |−1 ≥ 2fπ(G̃).

So G′ ∈ NC(n) and P (G′) = fπ(H) > fπ(G̃) = P (G) imply G /∈ P(NC(n)). �

Proof of Lemma 5.6.2. Let G = ([n], w) ∈ P(NC(n)). Suppose first that G contains no edges of

multiplicity 1. Then the graph H = ([n], E) where E = {xy ∈
(

[n]
2

)
: w(xy) = 3} is C4-free. By [28],

|E| < 2n3/2, so

P (G) ≤ 32n3/2

2(n2)−2n3/2

≤
(

32/
√
n21/2−2/

√
n
)n2

.

Choose M1 sufficiently large so that n > M1 implies 32/
√
n21/2−2/

√
n < 1.42. Since 2γ > 1.43 we

can choose M2 sufficiently large so that max{h(bβnc), h(dβne)} > 1.43n
2

for n > M2. Then if

n > max{M1,M2} and G1 ∈ P(W (n)),

P (G) < 1.42n
2

< 1.43n
2

< max{h(bβnc), h(dβne)} = P (G1).

This shows G /∈ P(NC(n)), a contradiction. So we may assume G contains some xy with w(xy) = 1.

Consider now the vertex-weighted graph G̃ = (Ṽ , E, | · |) associated to G and ∼G. Suppose (Ṽ , E)

is a star with center V . If |W | = 1 for all W ∈ Ṽ \ {V }, then G ∈ W (n) and we are done. If there

is W ∈ Ṽ \ {V } such that |W | > 1, then Lemma 5.6.9 implies G /∈ P(NC(n)), a contradiction.

Suppose now (Ṽ , E) is not a star. Then Lemma 5.6.8 implies there is a vertex-weighted graph

H = (Ṽ , E′, | · |) such that (Ṽ , E′) is a star and fπ(H) ≥ fπ(G̃). Since (Ṽ , E′) is a star, it is a

forest. Since (Ṽ , E, | · |) is the vertex-weighted graph associated to G and ∼G,
∑
U∈Ṽ |U | = n.

Thus H satisfies the hypotheses of Lemma 5.6.7, so there is G′ ∈ NC(n) such that G̃′ ∼= H. Thus

P (G′) = fπ(H) ≥ fπ(G̃), where the equality holds by Definition 5.6.6. Suppose fπ(H) > fπ(G̃).

Then

P (G′) = fπ(H) > fπ(G̃) = P (G),
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contradicting that G ∈ P(NC(n)). Thus we must have fπ(H) = fπ(G̃). By Lemma 5.6.8, this only

happens if there is some W 6= V ∈ Ṽ such that |V | = |W |, where V is the center of the star (Ṽ , Ẽ′).

Note that because G contains some xy with w(xy) = 1, there is some vertex U ∈ Ṽ such that |U | > 1.

If U 6= V , then U ∈ Ṽ \ {V } and |U | > 1. If U = V , then W ∈ Ṽ \ {V } and |W | = |V | = |U | > 1.

In either case Lemma 5.6.9 implies that G′ /∈ P(NC(n)). Since P (G) = fπ(G̃) = fπ(H) = P (G′),

this implies G /∈ P(NC(n)), a contradiction. �

5.7. Proof of Theorem 5.5.2.

In this section we prove Theorem 5.5.2. We first prove the following lemma.

Lemma 5.7.1. There is an M > 0 such that for n ≥M , P(C(n)) ⊆ NC(n).

Note that if G ∈ C(n), then C3(3, 2) * G (since C(n) ⊆ F (n, 3, 8)) and C4(3, 2) * G (since

S(C4(3, 2)) = 16). So to show some G ∈ C(n) is in NC(n), we only need to show Ct(3, 2) * G for

t ≥ 5.

Lemma 5.7.2. Let 5 ≤ t ≤ n and G = ([n], w) ∈ C(n). Suppose Ct(3, 2) ⊆ G, and for all 5 ≤ t′ < t,

Ct′(3, 2) * G. If X ∈
(

[n]
t

)
is such that G[X] ∼= Ct(3, 2), then for all z ∈ [n] \X either

(1) |{x ∈ X : w(zx) = 3}| ≤ 1 and Pz(X) ≤ 3 · 2t−1 or

(2) |{x ∈ X : w(zx) = 3}| ≥ 2 and Pz(X) ≤ 322t−3 < 3 · 2t−1.

Proof. Let X = {x1, . . . , xt} where w(xixi+1) = w(x1xt) = 3 for each i ∈ [t− 1] and w(xixj) = 2

for all other pairs ij ∈
(

[t]
2

)
. Since G ∈ C(n), C3(3, 2), C4(3, 2) * G. Combining this with our

assumptions, we have that for all 3 ≤ t′ < t, Ct′(3, 2) * G. We will use throughout that µ(G) ≤ 3

(since G ∈ C(n)). Fix z ∈ [n] \X and let Z = {x ∈ X : w(zx) = 3}. If |Z| ≤ 1, then clearly 1 holds.

So assume |Z| ≥ 2 and i1 < . . . < i` are such that Z = {xi1 , . . . , xi`}. Without loss of generality,

assume i1 = 1. Set

I = {(xij , xij+1
) : 1 ≤ j ≤ `− 1} ∪ {(xi1 , xi`)}.

Given (x, y) ∈ I, let

d(x, y) =


ij+1 − ij if (x, y) = (xij , xij+1) some 1 ≤ j ≤ `− 1

t− i` + 1 if (x, y) = (xi1 , xi`).

Note that because C3(3, 2) * G, 2 ≤ d(x, y) ≤ t − 2 for all (x, y) ∈ I. Suppose first that there is

some (u, v) ∈ I such that d(u, v) = t − 2. Then since d(x, y) ≥ 2 for all (x, y) ∈ I we must have
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that |I| = 1 and either (u, v) = (xi1 , xi`) = (x1, xt−1) or (u, v) = (xi1 , xi`) = (x1, x3). Without

loss of generality, assume (u, v) = (x1, x3). Then we must have that w(zx2) ≤ 1 since otherwise

G[{z, x1, x2, x3}] ∼= C4(3, 2), a contradiction. This shows that Pz(X) ≤ 32 · 1 · 2t−3 < 3 · 2t−1.

Suppose now that for all (x, y) ∈ I, d(x, y) ≤ t− 3. Given (x, y) ∈ I, say an element xk is between x

and y if either (x, y) = (xij , xij+1) and ij < k < ij+1 or (x, y) = (xi1 , xi`) and i` < k. Then for each

(x, y) ∈ I, there must be a xk between x and y such that w(zxk) ≤ 1, since otherwise

{z, x, y} ∪ {u : u is between x and y}

is a copy of Cd(x,y)+2(3, 2) in G, a contradiction since d(x, y) + 2 < t. This implies there are at least

` elements u in X \ Z such that w(zu) ≤ 1, so Pz(X) ≤ 3`2t−2` ≤ 322t−4 < 3 · 2t−1. �

Given n, t ∈ N set

fπ(n, t) = min
{

2(dβte2 )+dβtec3dβteb(1−β)tc+cb(1−β)tc+dβte(n−t−c) : c ∈ {bβ(n− t)c, dβ(n− t)e}
}
.

Given t ≤ n, G ∈ F (n, 4, 15), and X ∈
(

[n]
t

)
, define the multigraph GX = ([n], w) as follows. Choose

B ∈W (t) so that |R(B)| = dβte and |L(B)| = b(1−β)tc, then define w on
(
X
2

)
to make GX [X] ∼= B.

Let Y = [n] \ X. Choose A ∈ P(W (n − t)) and define w on
(
Y
2

)
to make GX [Y ] ∼= A. Define w

on the remaining pairs of vertices so that GX ∈ W (n) as follows. Let LA, RA and LB , RB be the

partitions of Y and X respectively such that w(xy) = 1 for all xy ∈
(
LA
2

)
∪
(
LB
2

)
. Set w(xy) = 3 if

xy ∈ E(LB , RA) ∪ E(LA, RB), w(xy) = 2 if xy ∈ E(RA, RB), and w(xy) = 1 if xy ∈ E(LA, LB).

We claim the following holds.

For any A′ ∈ P(W (n− t)), P (GX) ≥ P (A′)fπ(n, t).(47)

By choice of B, |LB | = b(1 − β)tc and |RB | = dβte. Let c = |RA|. By definition, |LA| = n − t − c,

and since A ∈ P(W (n− t)), c ∈ {bβ(n− t)c, dβ(n− t)e} (by the proof of Lemma 5.5.4). Combining

these observations with the definition of fπ(n, t) implies

2(|RB |2 )+|RA||RB |3|LB ||RB |+|RB ||LA|+|LB ||RA| = 2(dβte2 )+dβtec3dβteb(1−β)tc+cb(1−β)tc+dβte(n−t−c) ≥ fπ(n, t).

Combining this with the definition of GX , we have

P (GX) = P (A)2(|RB |2 )+|RA||RB |3|LB ||RB |+|RB ||LA|+|LB ||RA| ≥ P (A)fπ(n, t).

Since P (A) = P (A′) for all A′ ∈ P(W (n− t)), this finishes the proof of (47).
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Definition 5.7.3. Given n, t ∈ N, let hπ(n, t) = 3n2(t2)+t(n−t)−n.

Lemma 5.7.4. Let 5 ≤ t ≤ n, G ∈ C(n), and ν > 0. Suppose X ∈
(

[n]
t

)
, G[X] ∼= Ct(3, 2), and there is

some A ∈ P(W (n−t)) such that P (G[[n]\X]) ≤ νP (A). Then P (G) ≤ ν((hπ(n, t))/fπ(n, t))P (GX).

Proof. Let Y = [n] \ X. Because G[X] ∼= Ct(3, 2), P (G) = P (G[Y ])3t2(t2)−t
∏
z∈Y Pz(X). By

Lemma 5.7.2, for each z ∈ Y , Pz(X) ≤ 3 · 2t−1. This implies

P (G) ≤ P (G[Y ])3t2(t2)−t
(

3 · 2t−1
)n−t

= P (G[Y ])3n2(t2)+t(n−t)−n = P (G[Y ])hπ(n, t).(48)

By assumption, P (G[Y ]) ≤ νP (A), so (48) implies P (G) ≤ νP (A)hπ(n, t). Combining this with

(47) yields

P (G) ≤ νP (A)hπ(n, t) = νP (A)fπ(n, t)
hπ(n, t)

fπ(n, t)
≤ νP (GX)

hπ(n, t)

fπ(n, t)
.

�

The following will be proved in the Appendix.

Lemma 5.7.5. There are γ > 0, K > 5 and M1 such that the following holds.

(1) For all K ≤ t ≤ n, hπ(n, t) < fπ(n, t).

(2) For all 5 ≤ t ≤ K and n ≥M1, hπ(n, t) < 2−γnfπ(n, t).

Lemma 5.7.6. Assume K is from Lemma 5.7.5 and K ≤ t ≤ n. Then the for all G ∈ C(n) the

following holds. If Ct(3, 2) ⊆ G and Ct′(3, 2) * G for all t′ < t, then for all G1 ∈ P(W (n)),

P (G) < P (G1).

Proof. Let t ≥ K and n = t+ i. We proceed by induction on i. If i = 0, then G ∼= Ct(3, 2) and so

P (G) = 3t2(t2)−t = hπ(t, t). Let H ∈ W (n) have |L(H)| = dβne and |R(H)| = b(1− β)nc. Then by

definition of fπ(n, t),

P (H) = 2(|L(H)|
2 )3|L(H)||R(H)| = fπ(t, t) > hπ(t, t) = P (G),

where the inequality is by part (1) of Lemma 5.7.5. Since H ∈ W (n), this implies P (G) < P (G1)

for all G1 ∈ P(W (n)).

For the induction step, suppose that the results holds for all 0 ≤ j < i and we wish to prove it for

i. Let X ⊆ [n] be such that G[X] ∼= Ct(3, 2).

Claim 5.7.7. For any A ∈ P(W (n− t)), P (G[[n] \X]) ≤ P (A).
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Proof. Note that Ct′(3, 2) * G[[n] \X] for all 3 ≤ t′ < t. We have two cases.

(1) If Ct′(3, 2) * G[[n]\X] for all t′ ≥ t, then G[[n]\X] is isomorphic to an element D ∈ NC(n− t).

By Lemma 5.6.2, for any A ∈ P(W (n− t)), P (G[[n] \X]) = P (D) ≤ P (A).

(2) If Ct′(3, 2) ⊆ G[[n] \X] for some t′ ≥ t, then fix t0 the smallest such t′. Our assumptions imply

t0 ≥ t and t0 ≤ |[n] \X| = n− t = i, so

n− t = t0 + (n− t− t0) = t0 + i− t0 = t0 + j,

where 0 ≤ i − t0 = j < i. Thus G[[n] \X] is isomorphic to some D ∈ C(n − t) and D satisfies

the hypotheses of the Lemma for n0 = n− t, t0, and j. So by induction, this means that for any

A ∈ P(W (n0)) = P(W (n− t)), P (G[[n] \X]) = P (D) < P (A).�

Claim 5.7.7 and Lemma 5.7.4 with ν = 1 imply P (G) ≤ (hπ(n, t)/fπ(n, t))P (GX). Since K ≤ t ≤ n,

Lemma 5.7.5 part (1) implies (hπ(n, t)/fπ(n, t)) < 1, so this shows P (G) < P (GX). Since GX ∈

W (n), we have P (G) < P (GX) ≤ P (G1) for all G1 ∈ P(W (n)). �

Lemma 5.7.8. Let M1 and K be as in Lemma 5.7.5. There is M2 such that for all 5 ≤ t ≤ K,

n ≥ M1 + K, and G ∈ C(n), the following holds. If Ct(3, 2) ⊆ G and Ct′(3, 2) * G for all t′ < t,

then for all G1 ∈ P(W (n)), P (G) ≤ 2M2(hπ(n, t)/fπ(n, t))P (G1).

Proof. ChooseM2 so that for all 5 ≤ t ≤ K and t ≤ n ≤M1+K, exΠ(n, 4, 15) ≤ 2M2(hπ(n, t)/fπ(n, t)).

Set M = M1 + K and fix 5 ≤ t ≤ K. We show the lemma holds for all n ≥ M by induction. If

n = M , then by assumption,

P (G) ≤ exΠ(n, 4, 15) ≤ 2M2(hπ(n, t)/fπ(n, t)) ≤ 2M2(hπ(n, t)/fπ(n, t))P (G1),

for all G1 ∈ P(W (n)). If n > M , let X ∈
(

[n]
t

)
be such that G[X] ∼= Ct(3, 2).

Claim 5.7.9. For any A ∈ P(W (n− t)), P (G[[n] \X]) ≤ 2M2P (A).

Proof. Note that Ct′(3, 2) * G[[n] \X] for all t′ < t and n− t ≥M1. We have two cases.

(1) If Ct′(3, 2) * G[[n]\X] for all t′ ≥ t, then G[[n]\X] is isomorphic to an element D ∈ NC(n− t).

By Lemma 5.6.2, for any A ∈ P(W (n− t)), P (G[[n] \X]) = P (D) ≤ P (A).

(2) Suppose Ct′(3, 2) ⊆ G[[n] \X] for some t′ ≥ t. If n− t < M , then t ≤ t′ ≤ n− t < M = M1 +K

and our choice of M2 implies

P (G[[n] \X]) ≤ exΠ(n− t, 4, 15) ≤ 2M2
hπ(n− t, t)
fπ(n− t, t)

< 2M2P (A).
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where the last inequality is because Lemma 5.7.5 part (2) implies hπ(n−t,t)
fπ(n−t,t) ≤ 2−γ(n−t) < 1 (note

we are using that n− t ≥M1). If n− t ≥M , then our induction hypothesis implies

P (G[[n] \X]) ≤ 2M2
hπ(n− t, t)
fπ(n− t, t)

P (A) < 2M2P (A),

where the last inequality holds because Lemma 5.7.5 part (2) implies hπ(n−t,t)
fπ(n−t,t) ≤ 2−γ(n−t) ≤ 1.

�

Claim 5.7.9 and Lemma 5.7.4 with ν = 2M2 imply P (G) ≤ 2M2(hπ(n, t)/fπ(n, t))P (GX). Since

GX is in W (n), we have P (G) ≤ 2M2(hπ(n, t)/fπ(n, t))P (GX) ≤ 2M2(hπ(n, t)/fπ(n, t))P (G1) for all

G1 ∈ P(W (n)). �

Proof of Lemma 5.7.1. Let γ, K, and M1 be as in Lemma 5.7.5 and let M2 be as in Lemma 5.7.8.

Choose M ≥ M1 + K sufficiently large so that 2M2−γn < 1 for all n ≥ M . Suppose n > M and

G /∈ NC(n). We show G /∈ P(C(n)). Clearly if G /∈ C(n) we are done, so assume G ∈ C(n). Since

W (n) ⊆ C(n), it suffices to show there is G1 ∈ W (n) such that P (G1) > P (G). Since G /∈ NC(n),

there is 5 ≤ t ≤ n such that Ct(3, 2) ⊆ G and for all t′ < t, Ct′(3, 2) * G. If t ≥ K, then Lemma

5.7.6 implies that for any G1 ∈ P(W (n)), P (G) < P (G1). If 5 ≤ t < K, then Lemma 5.7.8 implies

that for any G1 ∈ P(W (n)),

P (G) ≤ 2M2(hπ(n, t)/fπ(n, t))P (G1) ≤ 2M2−γnP (G1),

where the second inequality is because of Lemma 5.7.5 part (2). By our choice of M , this implies

that for all G1 ∈W (n), P (G) < P (G1). �

Proof of Theorem 5.5.2. Suppose n is suffciently large. By Lemma 5.7.1, P(C(n)) ⊆ NC(n).

By definition, NC(n) ⊆ C(n), so this implies P(C(n)) = P(NC(n)). Thus Lemma 5.6.2 implies

P(C(n)) = P(NC(n)) ⊆W (n) and Theorem 5.5.2 holds. �

5.8. Proof of Lemma 5.8.1

In this section we prove the following lemma, which will be used in the proof of Theorem 5.5.3.

Lemma 5.8.1. For all n, there is G ∈ C(n) such that G ∈ P(F≤3(n, 4, 15) ∩ F (n, 3, 8)).

Suppose G = (V,w) and x 6= y ∈ V . Define Gxy = (V,w′) to be the multigraph such that

• Gxy[V \ {x, y}] = G[V \ {x, y}],
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• w′(xy) = 1, and

• for all u ∈ V \ {x, y}, w′(xu) = w(yu).

The idea is that Gxy is obtained from G by making the vertex x “look like” the vertex y. Given

xy, vu ∈
(
V
2

)
, define

Gvu,xy = (Guv)vu.

Given G = (V,w) and y ∈ V , set p(y) =
∏
x∈V \{y} w(xy). We will use the following two equations

for any xy ∈
(
V
2

)
and {u, v, z} ∈

(
V
3

)
.

P (Gxy) =
p(y)

p(x)w(xy)
P (G) and(49)

P (Gvu,zu) =
p(u)2w(vz)

p(v)p(z)w(uz)2w(uv)2
P (G).(50)

Lemma 5.8.2. Let G ∈ F≤3(n, 4, 15) ∩ F (n, 3, 8) and uv, xy ∈
(

[n]
2

)
. Then Guv and Guv,xy are both

in F≤3(n, 4, 15) ∩ F (n, 3, 8).

Proof. Let G = ([n], w) and G′ := Guv = ([n], w′), and given X ⊆ [n], let S(X) =
∑
xy∈(X2 ) w(xy)

and S′(X) =
∑
xy∈(X2 ) w

′(xy). We first show G′ ∈ F≤3(n, 4, 15) ∩ F (n, 3, 8). By definition of Guv

and because G ∈ F≤3(n, 4, 15), µ(G′) ≤ 3. We now check that G′ ∈ F (n, 4, 15). Suppose X ∈
(

[n]
4

)
.

If u /∈ X, then S′(X) = S(X) ≤ 15. If X ∩ {u, v} = {u}, then S′(X) = S((X \ {u}) ∪ {v}) ≤ 15.

So assume {u, v} ⊆ X, say X = {u, v, z, z′}. Because G ∈ F (n, 3, 8) and definition of Guv, we must

have that S′({v, z, z′}) = S({v, z, z′}) ≤ 8. Combining this with the facts that w′(uv) = 1 and

µ(G′) ≤ 3,

S′(X) = S′({v, x, y}) + w′(uv) + w′(ux) + w′(uy) ≤ 8 + 1 + 3 + 3 = 15.

We now verify that G′ ∈ F (n, 3, 8). Suppose X ∈
(

[n]
3

)
. If u /∈ X, then S′(X) = S(X) ≤ 8. If

X ∩ {u, v} = {u}, then S′(X) = S((X \ {u}) ∪ {v}) ≤ 8. So assume {u, v} ⊆ X, say X = {u, v, z}.

Because µ(G′) ≤ 3,

S′(X) ≤ w′(uv) + 3 + 3 = 1 + 3 + 3 = 7 ≤ 8.

Consequently, G′ ∈ F≤3(n, 4, 15) ∩ F (n, 3, 8). Repeating the proof yields (G′)xy ∈ F≤3(n, 4, 15) ∩

F (n, 3, 8). �

Lemma 5.8.3. Suppose G ∈ P(F≤3(n, 4, 15) ∩ F (n, 3, 8)). Then G contains no (3, 1, 1)-triangle or

(2, 1, 1)-triangle.
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Proof. Suppose towards a contradiction that G = ([n], w) ∈ P(F≤3(n, 4, 15)∩F (n, 3, 8)) but there

is a set {u, v, z} ⊆ V (G) which is a (3, 1, 1)-triangle or a (2, 1, 1)-triangle. Assume w(uv) = w(uz) = 1

and w(vz) ∈ {2, 3}. Without loss of generality assume p(v) ≥ p(z). Note that by Lemma 5.8.2, Guv

and Gvu,zu are in F≤3(n, 4, 15)∩F (n, 3, 8). If p(v) > p(u), then using (49) and w(uv) = 1 we obtain

P (Guv) =
p(v)

p(u)
P (G) > P (G),

which implies G /∈ P(F≤3(n, 4, 15) ∩ F (n, 3, 8)). Therefore we may assume p(z) ≤ p(v) ≤ p(u).

Using (50) and w(vz) ≥ 2, we obtain

P (Gvu,zu) =
w(vz)p(u)2

p(v)p(z)
P (G) ≥ w(vz)P (G) ≥ 2P (G) > P (G),

a contradiction. �

Given G ∈ F (n, 4, 15), set Γ(G) = {Y ∈
(

[n]
3

)
: Y is a (1, 2, 3)-triangle in G}.

Lemma 5.8.4. Suppose G = ([n], w) ∈ F≤3(n, 4, 15) ∩ F (n, 3, 8) and u, v, z ∈ [n] are such that

w(uv) = 1, w(uz) = 2 and w(vz) = 3. Then either |Γ(Guv)| < |Γ(G)| or |Γ(Gvu)| < |Γ(G)|.

Proof. Let X = {u, v, z}. Given y, y′ ∈ X, set

Γy = {x, x′ ∈ [n] \X : {y, x, x′} ∈ Γ(G)} and Γyy′ = {x ∈ [n] \X : {y, y′, x} ∈ Γ(G)}.

Observe that

Γ(G) = Γ(G[[n] \X]) ∪ Γu ∪ Γv ∪ Γz ∪ Γuv ∪ Γvz ∪ Γuz ∪ {X},

so |Γ(G)| = |Γ(G[[n] \ X])| + |Γu| + |Γv| + |Γz| + |Γuv| + |Γvz| + |Γuz| + 1. Let Guv = ([n], wGuv )

and Gvu = ([n], wGvu). Note that for all x ∈ [n] \ {u, v}, we have wGuv (vx) = wGuv (ux) and

wGvu(vx) = wGvu(ux), so there are no (1, 2, 3)-triangles in Guv or Gvu of the form {u, v, x}. If

x ∈ [n]\X is such that {x, v, z} ∈ Γ(G), then {x, v, z}, {x, u, z} ∈ Γ(Guv). Similarly, if x, y ∈ [n]\X

are such that {x, y, v} ∈ Γ(G), then {x, y, v}, {x, y, u} ∈ Γ(Guv). Combining these observations,

we have that |Γ(Guv)| = |Γ(G[[n] \X])|+ |Γz|+ 2|Γv|+ 2|Γvz|. The same argument with the roles

of u and v switched implies |Γ(Gvu)| = |Γ(G[[n] \ X])| + |Γz| + 2|Γu| + 2|Γuz|. Suppose first that

|Γv|+ |Γvz| ≤ |Γu|+ |Γuz|. Then

|Γ(Guv)| ≤ |Γ(G[[n] \X])|+ |Γz|+ |Γu|+ |Γv|+ |Γuz|+ |Γvz| ≤ |Γ(G)| − 1.
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If on the other hand, |Γv|+ |Γvz| ≥ |Γu|+ |Γuz|, then the same argument with the roles of u and v

switched implies |Γ(Gvu)| ≤ |Γ(G)| − 1. �

Lemma 5.8.5. For any G ∈ F≤3(n, 4, 15)∩F (n, 3, 8) there is H ∈ F≤3(n, 4, 15)∩F (n, 3, 8)∩A1,2,3(n)

such P (H) ≥ P (G).

Proof. Suppose G ∈ F≤3(n, 4, 15)∩ F (n, 3, 8) satisfies Γ(G) 6= ∅. We give a procedure for defining

H(G) ∈ F≤3(n, 4, 15) ∩ F (n, 3, 8) such that either P (H(G)) > P (G) or P (G) = P (H(G)) and

|Γ(H(G))| < |Γ(G)|. Choose some {u, v, z} ∈ Γ(G), say w(uv) = 1, w(uz) = 2, and w(vz) = 3.

Suppose p(v) < p(u). Then Lemma 5.8.2 implies Guv ∈ F≤3(n, 4, 15) ∩ F (n, 3, 8), and (49) and

w(uv) = 1 imply P (Guv) = (p(v)/p(u))P (G) > P (G), so set H(G) = Guv. If p(u) < p(v), the

same argument with the roles of u and v switched implies Gvu ∈ F≤3(n, 4, 15) ∩ F (n, 3, 8) and

P (Gvu) > P (G), so set H(G) = Gvu. If p(u) = p(v), use Lemma 5.8.4 to choose H(G) = Guv or

H(G) = Gvu such that |Γ(H(G))| < |Γ(G)| and set P (G) = P (H(G)).

Now fix G ∈ F≤3(n, 4, 15) ∩ F (n, 3, 8). Define a sequence G1, . . . , Gk as follows. Set G1 = H(G).

Suppose i > 1 and G1, . . . , Gi have been defined. If Γ(Gi) = ∅, set k = i. If Γ(Gi) 6= ∅, set

Gi+1 = H(Gi). Clearly this algorithm will end after at some finite number of steps. The resulting

Gk will contain no (1, 2, 3)-triangles and will satisfy P (Gk) ≥ P (G). �

Proof of Lemma 5.8.1. Suppose G ∈ P(F≤3(n, 4, 15) ∩ F (n, 3, 8)). Lemma 5.8.5 implies there

is H ∈ F≤3(n, 4, 15) ∩ F (n, 3, 8) ∩ A1,2,3(n) such that P (H) ≥ P (G). Since G ∈ P(F≤3(n, 4, 15) ∩

F (n, 3, 8)), this implies H ∈ P(F≤3(n, 4, 15) ∩ F (n, 3, 8)). Lemma 5.8.3 implies H ∈ A2,1,1(n) ∩

A3,1,1(n). Therefore H ∈ C(n). �

5.9. Proof of Theorem 5.5.3

In this section we prove Theorem 5.5.3. We will need the following computational lemma, which is

proved in the appendix. Given n, t, let kπ(n, t) = 15t2(t2)+t(n−t)−t.

Lemma 5.9.1. There is M such that for all n ≥M and 2 ≤ t ≤ n, kπ(n, t) < fπ(n, t).

Proof of Theorem 5.5.3. We first prove the following.

There is M such that for all n ≥M , P(F (n, 4, 15)) ⊆ F≤3(n, 4, 15) ∩ F (n, 3, 8).(51)

Let M be from Lemma 5.9.1. Let n > M and G ∈ P(F (n, 4, 15)) \ (F≤3(n, 4, 15) ∩ F (n, 3, 8)). If

G /∈ F (n, 3, 8), let D1, . . . , Dk be a maximal collection of pairwise disjoint elements of
(

[n]
3

)
such that
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S(Di) ≥ 9 for each i, and set D =
⋃k
i=1Di. If G ∈ F (n, 3, 8), set D = ∅. If µ(G[[n]\D]) > 3, choose

e1, . . . , em a maximal collection of pairwise disjoint elements of
(

[n]\D
2

)
such that S(ei) ≥ 4 for each

i and set C =
⋃m
i=1 ei. If µ(G[[n] \ D]) ≤ 3, set C = ∅. Let X = D ∪ C and ` = |X| = 3k + 2m.

Note that by assumption X is nonempty, so we must have ` ≥ 2. We now make a few observations.

If D 6= ∅, then for each Di and z ∈ [n] \Di,

Sz(Di) ≤ S(Di ∪ {z})− S(Di) ≤ 15− 9 = 6 = 2 · 3,

which implies Pz(Di) ≤ 23. By maximality of the collection D1, . . . , Dk, G[[n] \D] is a (3, 8)-graph.

Thus if C 6= ∅, then for each i and z ∈ [n] \ (D ∪ ei),

Sz(ei) ≤ S(ei ∪ {z})− 4 ≤ 8− 4 = 4 = 2 · 2,

which implies Pz(ei) ≤ 22. Since µ(G) ≤ 15, for each Di and ej , P (Di) ≤ 153 and P (ej) ≤ 15. Let

Y = [n] \X. Our observations imply that P (G) is at most the following.

P (Y )
( k∏
i=1

P (Di)
)( m∏

i=1

P (ei)
)

2(`2)+`(n−`)−|X| ≤ P (Y )153k+m2(`2)+`(n−`)−` ≤ P (Y )kπ(n, `).(52)

Note that G[Y ] is isomorphic to an element of F≤3(n − `, 4, 15) ∩ F (n − `, 3, 8). By Lemma 5.8.1,

Lemma 5.7.1, and Lemma 5.5.4, P(W (n− `)) ⊆ P(F≤3(n, 4, 15− `) ∩ F (n, 3, 8− `)), which implies

that for any A ∈ P(W (n − `)), P (G[Y ]) ≤ P (A). Combining this with (47) yields P (GX) ≥

P (G[Y ])fπ(n, `). This, along with the bound on P (G) in (52), implies

P (G)

P (GX)
≤ P (G[Y ])kπ(n, `)

P (G[Y ])fπ(n, `)
=
kπ(n, `)

fπ(n, `)
< 1

where the last inequality is by choice of M and Lemma 5.9.1. So P (G) < P (GX), a contradiction.

Thus (7.2.5) holds. Combining this with Lemma 5.8.1 we have that for sufficiently large n,

P(n, 4, 15) ⊆ P(F≤3(n, 4, 15) ∩ F (n, 3, 8)) ⊆ P(C(n)).

�

5.10. Concluding Remarks

The arguments used to prove Theorem 5.2.7 can be adapted to prove a version for sums. Straight-

forward calculus shows that for G ∈W (n), the sum S(G) is maximized when |L(G)| ≈ (2/3)n.
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Theorem 5.10.1. There is M such that for all n ≥ M , we have P(W (n)) ⊆ S(n, 4, 15). Conse-

quently

exΣ(n, 4, 15) = max
{

2

(
b 2n

3 c
2

)
+ 3
(⌊2n

3

⌋)(⌈n
3

⌉)
, 2

(
d 2n

3 e
2

)
+ 3
(⌈2n

3

⌉)(⌊n
3

⌋)}
=

8

3

(
n

2

)
+O(n).

We would like to point out that the asymptotic value for exΣ(n, 4, 15) was already known as a

consequence of [53]. Our contribution is in determining the exact value for large n. We have not

been able to prove a stability result here, but one can prove the following result that shows nearly

product-extremal (n, 4, 15)-graphs are far from nearly sum-extremal ones.

Corollary 5.10.2. There is δ > 0 such that for all sufficiently large n, the following holds. Suppose

G ∈ P(n, 4, 15) and G′ ∈ S(n, 4, 15). Then G and G′ are δ-far from one another.

Proof. Assume M is sufficiently large and δ is sufficiently small. Let n ≥M and suppose towards

a contradiction that G ∈ P(n, 4, 15) and G′ ∈ S(n, 4, 15) are δ-close. Since µ(G), µ(G′) ≤ 15, this

implies

S(G) ≥ S(G′)− 15|∆(G,G′)| ≥ S(G′)− 15δn2.

Using the assymptotic value of exΣ(n, 4, 15), this implies S(G) ≥ 8
3

(
n
2

)
− 15δn2. On the other hand,

fix H ∈ P(W (n)) and let L = L(H) and R = R(H). Theorem 5.2.7 implies P (G) = P (H). Note

(7.2.5) implies that µ(G) ≤ 3. Thus P (G) = P (H) = 2(|R|2 )3|L||R| = 2|E2(G)|3|E3(G)|. Since 2 and 3

are relatively prime, this implies |E2(G)| =
(|R|

2

)
, |E3(G)| = |L||R|, and |E1(G)| =

(|L|
2

)
. So

S(G) =

(
|L|
2

)
+ 2

(
|R|
2

)
+ 3|L||R| =

(
n

2

)
+

(
|R|
2

)
+ 2|L||R|.

Because H ∈ P(W (n)), |R(H)| ≤ βn+ 1 and |L(H)| ≤ (1− β)n+ 1. Therefore

S(G) ≤
(
n

2

)
+

(
βn+ 1

2

)
+ 2(βn+ 1)((1− β)n+ 1) = n2

(1

2
+ 2β − 3

2
β2
)
− n

(4 + β

2

)
+ 2.

But a straightforward computation shows 1
2 + 2β − 3β2/2 < 8/6, so since n is large and δ is small,

S(G) < n2
(1

2
+ 2β − 3

2
β2
)
<

8

3

(
n

2

)
− 15δn2,

a contradiction. �
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5.11. Appendix

For ease of notation, we will write x = β for the rest of this section. For any r ∈ R,
(
r
2

)
= r2−r

2 .

Recall that given n, t ∈ N

fπ(n, t) = min
{

2(dβte2 )+dβtec3dβteb(1−β)tc+cb(1−β)tc+dβte(n−t−c) : c ∈ {bβ(n− t)c, dβ(n− t)e}
}
.

Given 2 ≤ t ≤ n, let

f∗(n, t) = 2(xt2 )+x2t(n−t)32xt(1−x)(n−t)+x(1−x)t2 .

Proposition 5.11.1. For all 2 ≤ t ≤ n, fπ(n, t) ≥ f∗(n, t)2−xt−3/23−t−1.

Proof. By definition of x, x(2 log 3 − log 2) = log 3. Dividing both sides of this by log 2 and

rearranging yields

−x− log2 3 + 2x log2 3 = 0.(53)

Fix 2 ≤ t ≤ n and let a = dxte − xt. Define η(u, v, z, w) = 2(u2)+uz3uw+vz+uv and observe that

fπ(n, t) = min{η(dxte, b(1− x)tc, y, n− t− y) : y ∈ dx(n− t)e, bx(n− t)c}}

= min{η(xt+ a, (1− x)t− a, y, n− t− y) : y ∈ dx(n− t)e, bx(n− t)c}}.(54)

Note that for all y ∈ {dx(n − t)e, bx(n − t)c}, y ≥ x(n − t) − 1 and n − t − y ≥ (1 − x)(n − t) − 1.

Combining this with (54) and the definition of η(u, v, z, w), we have

fπ(n, t) ≥ η(xt+ a, (1− x)t− a, x(n− t)− 1, (1− x)(n− t)− 1).(55)

We leave it to the reader to verify that the righthand side of (55) is equal to f∗(n, t)2
g1(n,t)3g2(n,t),

where g1(n, t) = a2

2 −
3a
2 − xt+ axn and g2(n, t) = −2axn+ an− t− a2. Observe

g1(n, t) + g2(n, t) log2 3 = an
(
x+ log2 3− 2x log2 3

)
+
a2

2
− 3a

2
− xt− (t+ a2) log2 3

=
a2

2
− 3a

2
− xt− (t+ a2) log2 3,

where the second equality is by (53). Since 0 ≤ a ≤ 1, a2

2 −
3a
2 = a

2 (a − 3) ≥ a
2 (−3) ≥ −3/2 and

−a2 ≥ −1. So

g1(n, t) + g2(n, t) log2 3 ≥ −3

2
− xt− (t+ 1) log2 3.

Thus fπ(n, t) ≥ f∗(n, t)2g1(n,t)3g2(n,t) ≥ f∗(n, t)2−
3
2−xt3−t−1, as desired. �
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Recall that given n, t ∈ N, let hπ(n, t) = 3n2(t2)+t(n−t)−n.

Proposition 5.11.2. Let 2 ≤ t ≤ n. Then hπ(n, t)/fπ(n, t) ≤ 2C1(n,t)3C2(n,t), where

C1(n, t) =
t2

2
(x2−1)+

t

2
(3x−1)+tn(1−x2)−n+

3

2
and C2(n, t) = n−2x(1−x)tn+x(1−x)t2+t+1.

Proof. Fix 2 ≤ t ≤ n. Proposition 5.11.1 and the definition of hπ(n, t) implies

hπ(n, t)

fπ(n, t)
≤ 3n2(t2)+t(n−t)−n

f∗(n, t)2−3/2−xt3−t−1
.(56)

Plugging in f∗(n, t) to the right hand side of (56) yields that hπ(n, t)/fπ(n, t) ≤ 2C1(n,t)3C2(n,t)

where

C1(n, t) =

(
t

2

)
+ t(n− t)− n−

((xt
2

)
+ x2t(n− t)− 3/2− xt

)
and

C2(n, t) = n−
(
x(1− x)t2 + 2x(1− x)t(n− t)− t− 1

)
.

Simplifying these expressions finishes the proof. �

We now prove the following three inequalities.

(I) 21−x2

< 31.5x(1−x).

(II) 3(2/3)x(1−x) < 2(1−x2)/2.

(III) 5(1− x2 − 2x(1− x) log2 3) + log2 3− 1 < 0.

We will use the following bounds for log 2 and log 3 which come from the On-Line Encyclopedia

of Integer Sequences, published electronically at http://oeis.org (Sequences A002162 and A002391

respectively).

.693 < log 2 < .694 and 1.098 < log 3 < 1.099.(57)

For (I), note that 21−x2

= 2(1−x)(1+x) < 31.5x(1−x) ⇔ 21+x < 31.5x ⇔ (1 + x) log 2 < 1.5x log 3.

Solving for x yields that this is equivalent to

log 2

1.5 log 3− log 2
=

2 log 2

3 log 3− 2 log 2
< x =

log 3

2 log 3− log 2
.(58)

Clearling out the denominators, (58) holds if and only if

4 log 3 log 2− 2(log 2)2 < 3(log 3)2 − 2 log 2 log 3⇔ 6 log 2 log 3− 3(log 3)2 − 2(log 2)2 < 0.(59)
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By (57), 6 log 2 log 3 − 3(log 3)2 − 2(log 2)2 < 6(.694)(1.099) − 3(1.098)2 − 2(.693)2 < 0. Thus the

righthand inequality in (59) holds, which finishes the proof of (I). For (II), note that

3(2/3)x(1−x) < 2(1−x2)/2 = 2(1−x)(1+x)/2 ⇔ 32x/3 < 2(1+x)/2 ⇔ 2x

3
log 3 <

(1 + x) log 2

2
.

Rearranging and plugging in for x, this becomes

log 3

2 log 3− log 2
= x <

3 log 2

4 log 3− 3 log 2
.

By clearing denominators, we have that this inequality holds if and only if

4(log 3)2 − 3 log 3 log 2 < 6 log 3 log 2− 3(log 2)2 ⇔ 4(log 3)2 − 9 log 2 log 3 + 3(log 2)2 < 0.(60)

By (57), 4(log 3)2 − 9 log 2 log 3 + 3(log 2)2 < 4(1.099)2 − 9(.693)(1.098) + 3(.694)2 < 0. Thus the

righthand inequality in (60) holds, which finishes the proof of (II). We now prove (III). By rearranging

the left hand side, (III) is equivalent to

5x2(2 log2 3− 1)− 10x log2 3 + log2 3 + 4 < 0.

Multiplying by log 2, this becomes 5x2(2 log 3 − log 2) − 10x log 3 + log 3 + 4 log 2 < 0. Plugging in

for x and simplifying, this is equivalent to

−5(log 3)2

2 log 3− log 2
+ log 3 + 4 log 2 < 0⇔ −3(log 3)2 + 7 log 2 log 3− 4(log 2)2 < 0,(61)

where the “⇔” is from clearing the denominators of, then rearranging the lefthand inequality. By

(57), −3(log 3)2 + 7 log 2 log 3 − 4(log 2)2 < −3(1.098)2 + 7(.694)(1.099) − 4(.693)2 < 0, thus the

righthand inequality in (61) holds, which finishes the proof of (III).

Proof of Lemma 5.7.5. Given n, t ∈ N, let p(n, t) = (−x6 (1− x)t+ 2)n+ 2. Choose K sufficiently

large so that n ≥ t ≥ K implies p(n, t) ≤ p(n,K) < 0. We prove part 1 for this K. By Proposition

5.11.2, hπ(n, t)/fπ(n, t) ≤ 2C1(n,t)3C2(n,t). Note that

C1(n, t) = (1− x2)tn+D1(n, t) and C2(n, t) = −1.5x(1− x)tn+D2(n, t)

where D1(n, t) = t2

2 (x2−1)+ t
2 (3x−1)−n+3/2 and D2(n, t) = −.5x(1−x)tn+x(1−x)t2 +n+t+1.

Therefore

2C1(n,t)3C2(n,t) =
( 21−x2

31.5x(1−x)

)tn
2D1(n,t)3D2(n,t) ≤ 2D1(n,t)3D2(n,t),
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where the inequality is because by (I), 21−x2

31.5x(1−x) ≤ 1. Now note that

D1(n, t) =
t2

2
(x2 − 1) + E1(n, t) and D2(n, t) = −(x/3)(1− x)tn+ x(1− x)t2 + E2(n, t),

where E1(n, t) = t
2 (3x− 1)− n+ 3/2 and E2(n, t) = −(x/6)(1− x)tn+ n+ t+ 1. Since n ≥ t, we

have

−(x/3)(1− x)tn+ x(1− x)t2 ≤ −(x/3)(1− x)t2 + x(1− x)t2 = (2x/3)(1− x)t2,

so D2(n, t) ≤ (2x/3)(1− x)t2 + E2(n, t). Thus

2D1(n,t)3D2(n,t) ≤
(3(2/3)x(1−x)

2(1−x2)/2

)t2
2E1(n,t)3E2(n,t) ≤ 2E1(n,t)3E2(n,t),

where the last inequality is because by (II), 3(2/3)x(1−x)

2(1−x2)/2
≤ 1. Note that since 3x− 1 < 2, n ≥ t and

3/2 ≤ log2 3,

E1(n, t) =
t

2
(3x− 1)− n+ 3/2 ≤ t− t+ log2 3 = log2 3.

Since 5 ≤ t ≤ n, E2(n, t) = −(x/6)(1− x)tn+ n+ t+ 1 ≤ −(x/6)(1− x)tn+ 2n+ 1. Therefore,

2E1(n,t)3E2(n,t) ≤ 2log2 33−(x/6)(1−x)tn+2n+1 = 3−(x/6)(1−x)tn+2n+2 = 3p(n,t) < 1.

where the inequality is by assumption on K ≤ t ≤ n. This finishes the proof of part 1. For part 2,

set

γ = −1

2

(
5(1− x2 − 2x(1− x) log2 3) + log2 3− 1

)
.

Observe that (III) implies γ > 0. Fix 5 ≤ t ≤ K and n ≥ t. By Proposition 5.11.2, for any 5 ≤ t ≤ n,

hπ(n, t)/fπ(n, t) ≤ 2C1(n,t)3C2(n,t). Clearly there are polynomials q1(t) and q2(t) such that

C1(n, t) = tn(1− x2)− n+ q1(t) and C2(n, t) = n− 2x(1− x)tn+ q2(t).

Let q(t) = q1(t) + q2(t) log2 3 and let T be sufficiently large so that for all 5 ≤ t ≤ K, |q(t)| ≤ T .

Then for all 5 ≤ t ≤ K and n ≥ t,

2C1(n,t)3C2(n,t) = 2n(t(1−x2−2x(1−x) log2 3)+log2 3−1)+q(t) ≤ 2n(t(1−x2−2x(1−x) log2 3)+log2 3−1)+T .

By (III), (1− x2 − 2x(1− x) log2 3) < 1− log2 3 < 0 so for all t ≥ 5,

t(1− x2 − 2x(1− x) log2 3) + log2 3− 1 ≤ 5(1− x2 − 2x(1− x) log2 3) + log2 3− 1 = −2γ.
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Combining all this, we have that for all 5 ≤ t ≤ K and n ≥ t, hπ(n, t)/fπ(n, t) ≤ 2−2γn+T . Choose

M1 sufficiently large so that for all 5 ≤ t ≤ K and n > M1, −2γn+ T ≤ −γn. Then for all n ≥M1

and 5 ≤ t ≤ K, hπ(n, t)/fπ(n, t) ≤ 2−γn. This finishes the proof of part 2. �

Proof of Lemma 5.9.1. Recall we want to show there is M such that for all n ≥M and 2 ≤ t ≤ n,

kπ(n, t) < fπ(n, t), where kπ(n, t) = 15t2(t2)+t(n−t)−t. Let K be from Lemma 5.7.5 and recall the

proof of Lemma 5.7.5 showed that for all K ≤ t ≤ n, hπ(n, t)/fπ(n, t) ≤ 3p(n,t), where

p(n, t) = −(x/6)(1− x)tn+ 2n+ 2.

Choose K ′ ≥ K such that K ′ ≤ t ≤ n implies p(n, t) < −100n + 2 < −98n. Suppose now that

K ′ ≤ t ≤ n. Then by definition of kπ(n, t) and since hπ(n, t)/fπ(n, t) ≤ 3p(n,t) < 3−98n,

kπ(n, t)

fπ(n, t)
=

(15/2)t(2/3)nhπ(n, t)

fπ(n, t)
≤ (15/2)t(2/3)n3p(n,t) ≤ 3p(n,t)+4n < 3−94n < 1.

Thus the Lemma holds for all K ′ ≤ t ≤ n. Suppose now that 2 ≤ t ≤ K ′ and n ≥ t. By Proposition

5.11.1 and definition of kπ(n, t),

kπ(n, t)

fπ(n, t)
≤ 15t2(t2)+t(n−t)−t

f∗(n, t)2−xt−3/23−t−1
= 2G1(n,t)3G2(n,t),

where G1(n, t) and G2(n, t) are the appropriate polynomials in n and t. Using the definition of

f∗(n, t), we see that for some polynomials r1(t) and r2(t) in t,

G1(n, t) = tn− x2tn+ r1(t) and G2(n, t) = −2x(1− x)tn+ r2(t).

Let r(t) = r1(t) + r2(t) log2 3 and let T ′ be such that for all 2 ≤ t′ ≤ K ′, |r(t)| ≤ T ′ . Then for all

2 ≤ t ≤ K ′,

G1(n, t) +G2(n, t) log2 3 ≤ tn(1− x2 − 2x(1− x) log2 3) + T ′.

By (III), 1− x2 − 2x(1− x) log2 3 < 0, so we can choose M sufficiently large so that if n > M , then

n(1− x2 − 2x(1− x) log2 3) + T ′ < 0. Then for all 2 ≤ t ≤ K ′ and n ≥M, t,

kπ(n, t)

fπ(n, t)
≤ 2nt(1−x

2−2x(1−x) log2 3)+T ′ < 2n(1−x2−2x(1−x) log2 3)+T ′ < 1.

Thus the lemma holds for all n ≥ max{M,K ′} and 2 ≤ t ≤ n. �



CHAPTER 6

Hereditary Properties of First-Order Structures

6.1. Introduction

Given a first-order language L, we say a class H of L-structures has the hereditary property if for

all A ∈ H, B ⊆L A implies B ∈ H. Suppose L is a finite relational language. A hereditary L-

property is a nonempty class of L-structures which has the hereditary property and which is closed

under isomorphisms. This is the natural generalization of existing notions of hereditary properties of

various combinatorial structures. Indeed, for appropriately chosen L, all of the examples mentioned

Chapter 2 are hereditary properties of L-structures. These include hereditary properties of graphs

(studied in [2, 3, 11, 12, 13, 26, 27, 93]), hereditary properties of k-uniform hyergraphs (studied in

[45]), hereditary properties of colored k-uniform hypergraphs (studied in [61]), hereditary properties

of directed graphs and of posets (studied in [8, 9]), as well as the specific families of directed graphs

from [73], metric spaces from [22, 82], and H-free hypergraphs from [19, 20, 83, 89]. In this

chapter, we unify under a general framework, certain definitions, theorems, and proof techniques

which have arisen from the study of these examples. We now give a brief description of our results.

Given a finite relational language L and a hereditary L-property H, we define an invariant associated

to H, called the asymptotic density of H. Our main theorem, Theorem 6.4.4, gives an asymptotic

enumeration of Hn in terms of the asymptotic density of H, where Hn denotes the set of elements

from H with domain [n]. We will show in Chapter 7 that this generalizes enumeration theorems for

hereditary properties of combinatorial structures appearing in [20, 45, 61, 66, 73, 82]. The tools

we use include a new adaptation of the hypergraph containers theorem to the setting of arbitrary

L-structures (Theorem 6.4.9) and a version of the graph removal lemma for L-structures which was

proved by Aroskar and Cummings in [6] (Theorem 6.7.5). Our proof strategy is based on a series of

enumeration results for combinatorial structures which employ the hypergraph containers theorem,

namely results in [18, 92] for H-free graphs, in [73] for directed graphs, in [22] for metric spaces,

and in [81] for graphs. We will also define generalizations of extremal graphs and graph stability

theorems, and prove the existence of a stability theorem implies the existence of an approximate

106
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structure theorem. This result, Theorem 6.4.7, generalizes arguments appearing in many papers, for

just a few examples see [19, 20, 73, 85] and Chapter 4 of this thesis.

We end this introduction by pointing out that while our main theorem, Theorem 6.4.4, gives an

enumeration theorem for a hereditary L-property in terms of its asymptotic density, determining

its asymptotic density is often a hard combinatorial problem. Similarly, while Theorem 6.4.7 shows

that a stability theorem and an understanding of extremal structure implies an approximate struc-

ture theorem, proving a specific family H has a stability theorem and understanding its extremal

structures are difficult problems which must usually be solved for each H individually.

6.2. Preliminaries

In this section we give preliminaries required to state our main theorems.

6.2.1. Notation and Setup. In this section we fix some notational conventions and defini-

tions. We will use the word “collection” to denote either a set or a class. Suppose ` ≥ 1 is an integer

and X is a set. Let Perm(`) be the set of permutations of [`]. We let P(X) or 2X denote the power

set of X. Given a finite tuple x̄ = (x1, . . . , x`) and µ ∈ Perm(`), let ∪x̄ = {x1, . . . , x`}, |x̄| = `,

and µ(x̄) = (xµ(1), . . . , xµ(`)). An enumeration of X is a tuple x̄ = (x1, . . . , x|X|) such that ∪x̄ = X.

Given x 6= y ∈ X, we will write xy as shorthand for the set {x, y}. Set

X` = {(x1, . . . , x`) ∈ X` : xi 6= xj for each i 6= j} and

(
X

`

)
= {Y ⊆ X : |Y | = `}.

Suppose L is a finite relational first-order language. Let rL denote the maximum arity of any relation

symbol in L. Given a formula φ and a tuple of variables x̄, we write φ(x̄) to denote that the free

variables in φ are all in the set ∪x̄. Similarly, if p is a set of formulas, we will write p(x̄) if every

formula in p has free variables in the set ∪x̄. We will sometimes abuse notation and write x̄ instead

of ∪x̄ when it is clear from context what is meant.

Suppose M is an L-structure. Then dom(M) denotes the underlying set of M , and the size of M

is |dom(M)|. If L′ ⊆ L, M �L′ is the L′-structure with underlying set dom(M) such that for all

` ≥ 1, if ā ∈ dom(M)` and R is an `-ary relation symbol from L′, then M �L′ |= R(ā) if and only if

M |= R(ā). We call M �L′ the reduct of M to L′. Given X ⊆ dom(M), M [X] is the L-structure

with domain X such that for all ` ≥ 1, if ā ∈ X` and R is an `-ary relation symbol from L, then

M [X] |= R(ā) if and only if M |= R(ā). We call M [X] the L-structure induced by M on X. Given
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a tuple ā ∈ dom(M)`, the quantifier-free type of ā is

qftpML (ā) = {φ(x1, . . . , x`) : φ(x1, . . . , x`) is a quantifier-free L-formula and M |= φ(ā)}.

If x̄ = (x1, . . . , x`) and p(x̄) is a set of quantifier-free L-formulas, then p is called a quantifier-free

`-type if there is some L-structure N and a tuple ā ∈ dom(N)` such that N |= φ(ā) for all φ(x̄) ∈ p.

In this case we say ā realizes p in N . If there is some ā ∈ dom(N)` realizing p in N , we say p

is realized in N . A quantifier-free `-type p(x̄) is complete if for every quantifier-free formula φ(x̄),

either φ(x̄) or ¬φ(x̄) is in p(x̄). Note that any type of the form qftpML (ā) is complete. All types and

formulas we consider will be quantifier-free, so for the rest of the chapter, any use of the words type

and formula means quantifier-free type and quantifier-free formula.

If X and Y are both L-structures, let X ⊆L Y denote that X is a L-substructure of Y . Given an

L-structure H, we say that M is H-free if there is no A ⊆L M such that A ∼=L H. Suppose H is

a collection of L-structures. We say M is H-free if M is H-free for all H ∈ H. For each positive

integer n, let H(n) denote the collection of all elements in H of size `, and let Hn denote the set

of elements in H with domain [n]. H is trivial if there is N such that H(n) = ∅ for all n ≥ N .

Otherwise H is non-trivial.

We now define a modified version of the traditional type space, which is appropriate for working with

families of finite structures instead of with complete first-order theories. Given x̄ = (x1, . . . , x`), an

`-type p(x̄) is proper if it contains the formulas xi 6= xj for each i 6= j.

Definition 6.2.1. Suppose F is a collection of L-structures and ` ≥ 1 is an integer. Define S`(F)

to be the set of all complete, proper, quantifier-free `-types which are realized in some element of

F . Let S`(L) denote the set of all complete, proper, quantifier-free `-types.

We would like to emphasize some important differences between this and the usual type space. First,

the elements of these type spaces are proper and contain only quantifier-free formulas. Second, these

type spaces are defined relative to families of finite structures instead of complete first-order theories.

It will at times be convenient to expand our languages to contain constant symbols naming elements

of the structures under consideration. If V is a set, let CV denote the set of constant symbols

{cv : v ∈ V }. Given v̄ = (v1, . . . , v`) ∈ V `, let cv̄ = (cv1 , . . . , cv`). Suppose M is an L-structure. The

diagram of M , denoted Diag(M), is the following set of sentences in the language L ∪ Cdom(M).

Diag(M) = {φ(cā) : φ(x̄) is a quantifier-free L-formula, ∪ ā ⊆ dom(M), and M |= φ(ā)}.
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If A ⊆ dom(M), the diagram of A in M is the following set of sentences in the language L ∪ CA.

DiagM (A) = {φ(cā) : φ(x̄) is a quantifier-free L-formula, ∪ ā ⊆ A, and M |= φ(ā)}.

Observe that if A = {a1, . . . , ar} ⊆ dom(M) and p(x̄) ∈ Sr(L) is such that p(x̄) = qftpML (a1, . . . , ar),

then DiagM (A) = p(ca1 , . . . , car ). Given a set of constants C, a collection of L-structures F , and

` ≥ 1, set

S`(C) = {p(c̄) : p(x̄) ∈ S`(L) and c̄ ∈ C`} and S`(C,F) = {p(c̄) : p(x̄) ∈ S`(F) and c̄ ∈ C`}.

We would like to emphasize that if p(c̄) ∈ S`(C), then c̄ ∈ C` is a tuple of ` distinct constants. Note

that by this definition, if A ∈
(
dom(M)

`

)
, then DiagM (A) ∈ S`(Cdom(M)).

6.2.2. Facts about hereditary properties. Suppose L is a finite relational language. In

this subsection we state some well known facts about hereditary L-properties. First we recall that

hereditary L-properties are the same as families of structures with forbidden configurations. This

fact will be used throughout the chapter.

Definition 6.2.2. If F is a collection of finite L-structures, let Forb(F) be the class of all finite

L-structures which are F-free.

It is easy to check that for any collection F of finite L-structures, Forb(F) is a hereditary L-

property. The converse to this statement is also true in the sense of Observation 6.2.3 below. This

fact is standard, but we include a proof for completeness.

Observation 6.2.3. If H is a hereditary L-property, then there is a class of finite L-structures F

which is closed under isomorphism and such that H = Forb(F).

Proof. Let F be the class of all finite L-structures F such that prob(F,M) = 0 for all M ∈ H.

Clearly F is closed under L-isomorphism. We show H = Forb(F). Suppose M ∈ H but M /∈

Forb(F). Then there is some F ′ ⊆L M and F ∈ F such that F ∼=L F ′. Since F is closed under

L-isomorphism, F ′ ∈ F . But then M ∈ H and F ′ ⊆L M implies F ′ /∈ F by definition of F , a

contradiction. Conversely, suppose M ∈ Forb(F) but M /∈ H. Because M is F-free, we must have

M /∈ F . By definition of F , this implies there is some M ′ ∈ H such that M ⊆L M ′. Because H has

the hereditary property, this implies M ∈ H, a contradiction. �

A sentence φ is universal if it is of the form ∀x̄ψ(x̄) where ψ(x̄) is quantifier-free. The following well

known fact is another reason hereditary L-properties are natural objects of study. Given a finite
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L-structure F , let x̄ ∼=L F be short hand for the L-formula φ(x1, . . . , x|dom(F )|) which says x̄ is a

copy of F .

Observation 6.2.4. H is a hereditary L-property if and only if there is a set of universal sentences

Φ such that H is the class of finite models of Φ.

Proof. Suppose first H is a hereditary L-property. Let F be as in Observation 6.2.3 such that

H = Forb(F). Let {Fi : i ∈ ω} contain one representative of each isomorphism class in F , and let

θi be the sentence saying ∀x̄¬(x̄ ∼=L Fi). Then clearly H = Forb(F) is the class of all finite models

of Φ := {θi : i ∈ ω}. Conversely, suppose Φ is a set of universal sentences and H is the class of all

finite models of Φ. Clearly H is closed under isomorphism. Suppose now B ∈ H and A ⊆L B. Let

φ ∈ Φ. Then B |= φ by assumption. Since φ is universal, it is preserved under substructures, so

A |= φ. Thus A |= φ for all φ ∈ Φ, so A ∈ H. This shows H has the hereditary property, and thus

is a hereditary L-property. �

6.2.3. Distance between first-order structures. In this section we define a notion of dis-

tance between finite first-order structures. The following is based on definitions in [6].

Definition 6.2.5. Suppose L is a first-order language, B is a finite L-structure of size `, and M is

a finite L-structure of size L.

• The set of copies of B in M is cop(B,M) = {A : A ⊆L M and A ∼=L B}.

• The induced structure density of B in M is prob(B,M) = |cop(B,M)|/
(
L
`

)
• If B is a set of finite L-structures, let

cop(B,M) =
⋃
B∈B

cop(B,M) and prob(B,M) = max{p(B,M) : B ∈ B}.

If B is a class of finite L-structures, define cop(B,M) = cop(B′,M) and prob(B,M) = prob(B′,M),

where B′ is any set containing one representative of each isomorphism type in B.

We now state our definition for the distance between two finite first-order structures. It is a simplified

version of the distance notion appearing in [6]. We will discuss the relationship between the two

notions in Section 6.7.
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Definition 6.2.6. Let L be a finite relational first-order language with r` = r ≥ 2. Suppose M and

N are two finite L-structures with the same underlying set V of size n. Let

diff(M,N) = {A ∈
(
V

r

)
: for some (equivalently, any) enumeration ā of A, qftpM (ā) 6= qftpN (ā)} and

dist(M,N) =
|diff(M,N)|(

n
r

)
We say that M and N are δ-close if dist(M,N) ≤ δ.

Observe that in the notation of Definition 6.2.6, diff(M,N) = {A ∈
(
V
r

)
: DiagM (A) 6= DiagN (A)}.

6.3. LH-structures

From now on, L is a fixed finite relational language and r := rL ≥ 2. For this section, H is

a nonempty collection of finite L-structures. In this section we introduce a language LH associated

to L and H. Structures in this new language play key roles in our main theorems.

Definition 6.3.1. Define LH = {Rp(x̄) : p(x̄) ∈ Sr(H)} to be the relational language with one

r-ary relation for each p(x̄) in Sr(H).

The goal of this section is to formalize how an LH-structure M with the right properties can serve as

a “template” for building L-structures with the same underlying set as M . We now give an example

or a hereditary property and its corresponding auxiliary language as in Definition 6.3.1.

Example 6.3.2. To avoid confusion, we will use P to refer to specific hereditary properties in

example settings. Suppose L = {R1(x, y), R2(x, y), R3(x, y)}. Let P be the class of all finite metric

spaces with distances in {1, 2, 3}, considered as L-structures in the natural way (i.e. Ri(x, y) if

and only if d(x, y) = i). It is easy to see that P is a hereditary L-property. Since rL = 2,

LP = {Rp(x, y) : p(x, y) ∈ S2(P)}. For each i ∈ [3], set

qi(x, y) := {x 6= y} ∪ {Ri(x, y), Ri(y, x)} ∪ {¬Rj(x, y),¬Rj(y, x) : j 6= i},

and let pi(x, y) be the unique quantifier-free 2-type containing qi(x, y). Informally, the type pi(x, y)

says “the distance between x and y is equal to i.” We leave it as an exercise to check S2(P) =

{pi(x, y) : i ∈ [3]} (recall S2(P) contains only proper types). Thus LP = {Rpi(x, y) : i ∈ [3]}.

Observe that in an arbitrary LH-structure may, the relation symbols in LH have nothing to do

with the properties of the type space Sr(H). For instance, in the notation of Example 6.3.2, we
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can easily build an LP -structure M so that for some a, b ∈ dom(M), M |= Rp1(a, b) ∧ ¬Rp1(b, a),

even though p1(x, y) = p1(y, x) in S2(P). This kind of behavior will be an undesirable for various

technical reasons. We now define the class of LH-structures which are most nicely behaved for our

purposes, and where in particular, this bad behavior does not happen.

Definition 6.3.3. An LH-structure M with domain V is complete if for all A ∈
(
V
r

)
there is an

enumeration ā of A and Rp ∈ LH such that M |= Rp(ā).

Definition 6.3.4. An LH-structure M with domain V is an LH-template if it is complete and the

following hold.

(1) If p(x̄) ∈ Sr(H) and ā ∈ V r \ V r, then M |= ¬Rp(ā).

(2) If p(x̄), p′(x̄) ∈ Sr(H) and µ ∈ Perm(r) are such that p(x̄) = p′(µ(x̄)), then for every

ā ∈ V r, M |= Rp(ā) if and only if M |= Rp′(µ(ā)).

The idea behind this definition is that LH-templates are LH-structures which most accurately reflect

the properties of Sr(H).

Example 6.3.5. Let L and P be as in Example 6.3.2. We now define an LP -structure G with

domain V = {u, v, w}. Define G |=
∧3
i=1(Rpi(u, v) ∧Rpi(v, u)),

G |= ¬Rp3(w, v) ∧ ¬Rp3(v, w) ∧
2∧
i=1

(Rpi(w, v) ∧Rpi(v, w)),

G |= Rp1(w, u) ∧Rp1(w, u) ∧
3∧
i=2

(¬Rpi(w, u) ∧ ¬Rpi(u,w)),

and for x ∈ V , define G |=
∧3
i=1 ¬Rpi(x, x). We leave it to the reader to verify G is a LP -template.

While LH-templates are important for the main results of this chapter, many of the definitions and

facts in the rest of this section will be presented for LH-structures with weaker assumptions.

6.3.1. Choice functions and subpatterns. In this subsection, we give crucial definitions for

how we can use LH-structures to build L-structures.

Definition 6.3.6. Suppose M is an LH-structure with domain V .

(1) Given A ∈
(
V
r

)
, the set of choices for A in M is

ChM (A) = {p(ca1 , . . . , car ) ∈ Sr(CV ,H) : {a1, . . . , ar} = A and M |= Rp(a1, . . . , ar)}.
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(2) A choice function for M is a function χ :
(
V
r

)
→ Sr(CV ,H) such that for each A ∈

(
V
r

)
,

χ(A) ∈ ChM (A). Let Ch(M) denote the set of all choice functions for M .

In the notation of Definition 6.3.6, clearly there exists a choice function for M if and only if

ChM (A) 6= ∅ for all A ∈
(
V
r

)
. Observe that ChM (A) 6= ∅ for all A ∈

(
V
r

)
if and only if M is

complete. Therefore Ch(M) 6= ∅ if and only if M is complete. This is why LH-templates are defined

to be complete.

Example 6.3.7. Recall that if x and y are distinct elements of a set, then xy is shorthand for the

set {x, y}. Let L, P, V , and G be as in Example 6.3.5. Note that CV = {cu, cv, cw} and

S2(CV ,P) = {pi(cu, cv) : i ∈ [3]} ∪ {pi(cv, cw) : i ∈ [3]} ∪ {pi(cu, cw) : i ∈ [3]}.

By definition ofG, ChG(uv) = {p1(cu, cv), p2(cu, cv), p3(cu, cv)}, ChG(vw) = {p1(cv, cw), p2(cv, cw)},

and ChG(uw) = {p1(cu, cw)}. Therefore choice functions for G are all the functions

χ : {uv, vw, uw} → {pi(cu, cv) : i ∈ [3]} ∪ {pi(cv, cw) : i ∈ [3]} ∪ {pi(cu, cw) : i ∈ [3]}

with the properties that χ(uv) ∈ {p1(cu, cv), p2(cu, cv), p3(cu, cv)}, χ(vw) ∈ {p1(cv, cw), p2(cv, cw)}

and χ(uw) = p1(cu, cw). Clearly there are six choice functions for G.

The following observation is immediate from the definition of LH-template.

Observation 6.3.8. If M is an LH-template with domain V , then for all ā ∈ V r and Rp ∈ LH,

M |= Rp(ā) if and only if | ∪ ā| = r and p(cā) ∈ ChM (∪ā).

The following fact is one reason why LH-templates are convenient.

Proposition 6.3.9. Suppose M1 and M2 are LH-templates with domain V such that for all A ∈
(
V
r

)
,

ChM1
(A) = ChM2

(A). Then M1 and M2 are the same LH-structure.

Proof. We show that for all ā ∈ V r and Rp ∈ LH, M1 |= Rp(ā) if and only if M2 |= Rp(ā). Fix

ā ∈ V r and Rp ∈ LH. Suppose first that | ∪ ā| < r. By part (1) of Definition 6.3.4, M1 |= ¬Rp(ā)

and M2 |= ¬Rp(ā). So assume | ∪ ā| = r. By Observation 6.3.8, M1 |= Rp(ā) if and only if

p(cā) ∈ ChM1(∪ā) and M2 |= Rp(ā) if and only if p(cā) ∈ ChM2(∪ā). Since ChM1(∪ā) = ChM2(∪ā),

this implies M1 |= Rp(ā) if and only if M2 |= Rp(ā). �

The next example shows Proposition 6.3.9 can fail when we are not dealing with LH-templates.



6.3. LH-STRUCTURES 114

Example 6.3.10. Let L, P, V , and G be as in Example 6.3.13. Let G′ be the LP -structure with

domain V which agrees with G on V 2 \ {(v, u), (w, v), (w, u)} and where

G′ |=
3∧
i=1

(¬Rpi(v, u) ∧ ¬Rpi(w, v) ∧ ¬Rpi(w, u)).

We leave it to the reader to check that for all xy ∈
(
V
2

)
, ChG′(xy) = ChG(xy). However, G and

G′ are distinct LP -structures because, for instance, G |= Rp1(v, u) while G′ |= ¬Rp1(v, u). Observe

that G′ is not an LP -template because G′ |= Rp1(u, v) ∧ ¬Rp1(v, u) while p1(x, y) = p1(y, x).

The definition shows how choice functions give rise to L-structures.

Definition 6.3.11. Suppose M is a complete LH-structure with domain V , N is an L-structure

such that dom(N) ⊆ V , and χ ∈ Ch(M) is a choice function for M .

(1) N is a χ-subpattern of M , denoted N ≤χ M , if for every A ∈
(
dom(N)

r

)
, χ(A) = DiagN (A).

(2) N is a full χ-subpattern of M , denoted N EχM , if N ≤χ M and dom(N) = V .

When N EχM , we say χ chooses N . We say N is a subpattern of M , denoted N ≤p M , if N ≤χ M

for some choice function χ for M . We say N is a full subpattern of M , denoted N EpM , if N EχM

for some choice function χ for M . The subscript in ≤p and Ep is for “pattern.”

Observation 6.3.12. Suppose M is a complete LH-structure, χ ∈ Ch(M), and G is an L-structure

such that G Eχ M . If G′ is another L-structure such that G′ Eχ M , then G and G′ are the same

L-structure. If χ′ ∈ Ch(M) satisfies GEχ′ M , then χ = χ′.

Proof. By definition, G Eχ M and G′ Eχ M imply that DiagG(A) = χ(A) = DiagG
′
(A) for all

A ∈
(
V
r

)
. This implies

Diag(G) =
⋃

A∈(Vr )

DiagG(A) =
⋃

A∈(Vr )

DiagG
′
(A) = Diag(G′),

which clearly implies G and G′ are the same L-structure. Similarly, G Eχ M and G Eχ′ M imply

that for all A ∈
(
V
r

)
, χ(A) = DiagG(A) = χ′(A). Thus χ = χ′. �

Example 6.3.13. Let L, P, V and G be as in Example 6.3.5. We give two examples of subpatterns of

G. Let χ be the function from
(
V
2

)
→ S2(CV ,P) defined by χ(uv) = p1(cu, cv), χ(vw) = p2(cv, cw),

and χ(uw) = p1(cu, cw). Clearly χ is a choice function for G′. Let H be the L-structure with domain

V such that H |= p1(u, v) ∪ p2(v, w) ∪ p1(u,w). Then by definition of H, DiagH(uv) = p1(cu, cv),
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DiagH(vw) = p2(v, w) and DiagH(uw) = p1(cu, cw). In other words, H ≤χ G. Since dom(H) =

dom(G) = V , H Eχ G. Note that H is a metric space, that is, H ∈ P.

Let χ′ be the function from
(
V
2

)
→ S2(CV ,P) defined by χ′(uv) = p3(cu, cv), χ

′(vw) = p1(cv, cw),

and χ′(uw) = p1(cu, cw). Clearly χ′ is a choice function for G. Let H ′ be the L-structure with

domain V such that H ′ |= p3(u, v) ∪ p1(v, w) ∪ p1(u,w). Then as above, it is easy to see that

H ′ ≤χ′ G, and since dom(H ′) = V , H ′ Eχ′ G. However, H ′ is not a metric space, that is, H ′ /∈ P.

This example demonstrates although LH-templates are well behaved in certain ways, an LH-template

can have full subpatterns that are not in H. We will give further definitions to address this in Section

6.3.3.

6.3.2. Errors and counting subpatterns. In this subsection we characterize when an LH-

structure has the property that every choice function gives rise to a subpattern. This is important

for counting subpatterns of LH-structures.

Definition 6.3.14. Given r < ` < 2r, an error of size ` is a complete LH-structure M of size `

with the following properties. There are ā1, ā2 ∈ dom(M)r such that dom(M) = ∪ā1

⋃
∪ā2 and for

some p1(x̄), p2(x̄) ∈ Sr(H), M |= Rp1(ā1) ∧Rp2(ā2) but p1(cā1) ∪ p2(cā2) is unsatisfiable.

Example 6.3.15. Let L = {E(x, y, z), R1(x, y), R2(x, y), R3(x, y)} consist of one ternary relation E

and three binary relations R1, R2, R3. Suppose P is the class of all finite L-structuresM such that the

restriction of M to {R1, R2, R3} is a metric space with distances in {1, 2, 3} (we put no restrictions

on how E must behave). Let pi(x, y) be the quantifier-free {R1, R2, R3}-types from Examples 6.3.2,

6.3.5, and 6.3.13. Let x̄ = (x1, x2, x3) and set q0(x̄) = {E(xi, xj , xk) : {xi, xj , xk} ⊆ {x1, x2, x3}}.

Then set q1(x̄) and q1(x̄) to be the complete quantifier-free types satisfying the following.

q0(x̄) ∪ p1(x1, x2) ∪ p1(x1, x3) ∪ p1(x2, x3) ⊆ q1(x̄) and

q0(x̄) ∪ p2(x1, x2) ∪ p1(x1, x3) ∪ p1(x2, x3) ⊆ q2(x̄).

It is easy to check that qi(x̄) ∈ S3(P) for i = 1, 2. Note q1 and q2 agree about how E behaves, but

disagree on how the binary relations in L behave. Let V = {t, u, v, w} be a set of size 4. Choose

G to be the LP -structure which satisfies G |= Rq1(x, y, z) if and only if x, y and z are distinct,

G |= Rq2(x, y, z) if and only if (x, y, z) = (t, u, v), and G |= ¬Rq(x, y, z) for all q ∈ S3(P) \ {p1, p2}.

By construction, G is a complete LP -structure. Let ā1 = (u, v, w) and ā2 = (t, u, v). Then dom(G) =

∪ā1

⋃
∪ā2 and G |= Rp1(ā1)∧Rp2(ā2). However, p1(cu, cv) ⊆ q1(cu, cv, cw) = q1(cā1) implies q1(cā1)
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contains the formula R1(cu, cv) while p2(cu, cv) ⊆ q2(cu, cv, cw) = q2(cā2) implies q2(cā2) contains

the formula ¬R1(cu, cv) . Therefore q1(cā1) ∪ q2(cā2) is unsatisfiable, and G is an error of size 4.

Definition 6.3.16. Let E be the class of LH-structures which are errors of size ` for some r < ` < 2r.

An LH-structure M is error-free if it is E-free. Error-free LH-structures will be important for the

following reason.

Proposition 6.3.17. Suppose M is a complete LH-structure with domain V . Then M is error-free

if and only if for every choice function χ for M , there is an L-structure N such that N EχM .

Proof. Suppose first that there exists a choice function χ :
(
V
r

)
→ Sr(CV ,H) such that there are

no χ-subpatterns of M . This means Γ :=
⋃
A∈(Vr )

χ(A) is not satisfiable. So there is an atomic

formula ψ(x̄) and a tuple c̄ ⊆ CrV such that ψ(c̄) ∈ Γ and ¬ψ(c̄) ∈ Γ. For each A ∈
(
V
r

)
, because

χ(A) ∈ Sr(CA,H), exactly one of ψ(c̄) or ¬ψ(c̄) is in χ(A). This implies there must be distinct

A1, A2 ∈
(
V
r

)
such that ∪c̄ ⊆ A1 ∩ A2 and ψ(c̄) ∈ χ(A1) and ¬ψ(c̄) ∈ χ(A2). Note A1 6= A2 and

A1∩A2 6= ∅ imply that if ` := |A1∪A2|, then r < ` < 2r. Let N be the LH-structure M [A1∪A2]. We

show N is an error of size `. By definition of χ being a choice function, there are p1, p2 ∈ Sr(CV ,H),

ā1 and ā2 such that ∪ā1 = A1, ∪ā2 = A2, p1(cā1) = χ(A1), p2(cā2) = χ(A2), M |= Rp1(ā1), and

M |= Rp2(ā2). By definition, N ⊆LH M , thus N |= Rp1(ā1) ∧Rp2(ā2). Note

{ψ(c̄),¬ψ(c̄)} ⊆ χ(A1) ∪ χ(A2) = p1(cā1) ∪ p2(cā2)

implies p1(cā1) ∪ p2(cā2) is unsatisfiable. Thus N ∈ E and N ⊆LH M implies M is not error-free.

Suppose on the other hand that M is not error-free. Say r < ` < 2r and N is an error of size `

in M . Then N ⊆LH M and there are ā1, ā2 ∈ dom(N)r and types p1(x̄), p2(x̄) ∈ Sr(H) such that

dom(N) = ∪ā1

⋃
∪ā2, N |= Rp1(ā1) ∧ Rp2(ā2), and p1(cā1) ∪ p2(cā2) is unsatisfiable. We define

a function χ :
(
V
r

)
→ Sr(CV ,H) as follows. Set χ(∪ā1) = p1(cā1) and χ(∪ā2) = p2(cā2). For

every A′ ∈
(
V
r

)
\ {A1, A2}, choose χ(A′) to be any element of ChM (A′) (note ChM (A′) is nonempty

since M is complete). By construction, χ is a choice function for M . Suppose there is G Eχ M .

Then p1(cā1) = DiagG(∪ā1) and p2(cā2) = DiagG(∪ā2) implies G |= p1(ā1) ∪ p2(ā2), contradicting

that p1(cā1) ∪ p2(cā2) is unsatisfiable. Thus χ is a choice function for M such that there are no

χ-subpatterns of M . This finishes the proof. �

Definition 6.3.18. Given a finite LH-structure M , let sub(M) = |{G : GEpM}| be the number of

full subpatterns of M .
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This definition and the following observation will be crucial to our enumeration theorem.

Observation 6.3.19. If M is a complete LH-structure with finite domain V , then

sub(M) ≤
∏

A∈(Vr )

|ChM (A)|,

and equality holds if and only if M is error-free.

Proof. By definition of a choice function, |Ch(M)| =
∏
A∈(Vr )

|ChM (A)|. By definition of subpat-

tern, for each GEpM , there is χG ∈ Ch(M) which chooses G. Observation 6.3.12 implies the map

f : G 7→ χG is a well-defined injection from {G : GEpM} to Ch(M). Thus

sub(M) = |{G : GEpM}| ≤ |Ch(M)| =
∏

A∈(Vr )

|ChM (A)|.

We now show equality holds if and only if M is error-free. Suppose first M is error-free. We claim f is

surjective. Fix χ ∈ Ch(M). Since M is error-free, Lemma 6.3.17 implies that there is an L-structure

Gχ such that GχEχM . So Gχ ∈ {G : GEpM} implies f(Gχ) exists. By Observation 6.3.12, we must

have f(Gχ) = χ. Thus f is surjective, and consequently sub(M) = |Ch(M)| =
∏
A∈(Vr )

ChM (A).

Conversely, suppose equality holds. Then f is an injective map from a finite set to another finite

set of the same size, thus it must be surjective. This implies that for all χ ∈ Ch(M), there is an

L-structure G such that GEχM . By Lemma 6.3.17, this implies M is error-free. �

Remark 6.3.20. Suppose L contains no relations of arity less than r. If M is a complete LH-

structure with finite domain V , then sub(M) =
∏
A∈(Vr )

|ChM (A)|.

Proof. Our assumption on L implies E = ∅ by definition. Thus, if M is a complete LH-structure

with finite domain V , it is error-free, so Observation 6.3.19 implies sub(M) =
∏
A∈(Vr )

|ChM (A)|. �

Remark 6.3.20 applies to most examples we are interested in, including graphs, (colored) k-uniform

hypergraphs for any k ≥ 2, directed graphs, and discrete metric spaces.

6.3.3. H-random LH-structures and LH-templates. In this subsection we consider LH-

structures with the property that all choice functions give rise to subpatterns in H.

Definition 6.3.21. An LH-structure M is H-random if it is complete and for every χ ∈ Ch(M),

there is an L-structure N ∈ H such that N EχM .
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Observe that by Proposition 6.3.17, anyH-random LH-structure is error-free. The difference between

being error-free and being H-random is as follows. If an LH-structure is error-free, then it must

have at least one full subpattern, however some or all its subpatterns may not be in H. On the other

hand, if an LH-structure is H-random, then it must have at least one full subpattern, and further,

all its full subpatterns must also be in H.

Example 6.3.22. Let L, P, V , H ′ and G be as in Example 6.3.13. Observe that G is not P-random,

since H ′ Ep G, but H ′ /∈ P. We now define an LP -structure G′′ which is P-random. Let G′′ be any

LP -structure with domain V such that for all (x, y) ∈ V 2,

G′′ |= Rp1(x, y) ∧Rp2(x, y) ∧ ¬Rp3(x, y) ∧
3∧
i=1

¬Rpi(x, x).

It is easy to check that G′′ is a LP -template and for all xy ∈
(
V
2

)
, ChG′′(xy) = {p1(cx, cy), p2(cx, cy)}.

Suppose χ′′ ∈ Ch(G′′). Then for all xy ∈
(
V
2

)
, χ′′(xy) ∈ {p1(cx, cy), p2(cx, cy)}. Let M be the L-

structure such that M Eχ′′ G′′, that is, dom(M) = V and for each xy ∈
(
V
2

)
, M |= pi(x, y) if and

only if χ′′(xy) = pi(cx, cy). Then for all xy ∈
(
V
2

)
, M |= p1(x, y) or M |= p2(x, y). Since there is no

way to violate the triangle inequality using distances in {1, 2}, M is a metric space. Thus we have

shown that for every χ′′ ∈ Ch(G′′), there is an L-structure M ∈ P such that M Eχ′′ G′′. Thus G′′

is P-random.

The most important LH-structures for the rest of the chapter are H-random LH-templates. We now

fix notation for these special LH-structures.

Definition 6.3.23. Suppose V is a set, and n is an integer. Then

• R(V,H) is the set of all H-random LH-templates with domain V and

• R(n,H) is the class of all H-random LH-templates of size n.

In the above notation, R is for “random.” Note that if H(n) = ∅ for some n, then R(n,H) = ∅.

6.4. Main Results

In this section we state the main results of this chapter. Recall that L is a fixed finite relational

language of maximum arity r ≥ 2. We now define our generalization of extremal graphs. By

convention, set max ∅ = 0.
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Definition 6.4.1. Suppose H is a collection of finite L-structures. Given n, set

ex(n,H) = max{sub(M) : M ∈ R(n,H)}.

We say M ∈ R(n,H) is extremal if sub(M) = ex(n,H). If V is a set and n ∈ N, then

• Rex(V,H) is the set of extremal elements of R(V,H) and

• Rex(n,H) is the class of extremal elements of R(n,H).

The main idea is that when H is a hereditary L-property, ex(n,H) is the correct generalization of

the extremal number of a graph, and elements of Rex(n,H) are the correct generalizations extremal

graphs of size n.

Definition 6.4.2. Suppose H is a nonempty collection of finite L-structures. When it exists, set

π(H) = lim
n→∞

ex(n,H)1/(nr)

Using techniques similar to those in [26] we will show the following.

Theorem 6.4.3. If H is hereditary L-property, then π(H) exists.

We now state our approximate enumeration theorem in terms of the asymptotic density.

Theorem 6.4.4 (Enumeration). Suppose H is a hereditary L-property. Then the following hold.

(1) If π(H) > 1, then |Hn| = π(H)(
n
r)+o(nr).

(2) If π(H) ≤ 1, then |Hn| = 2o(n
r).

The notion π(H) is related to many existing notions of asymptotic density for various combinatorial

structures, and Theorem 6.4.4 can be seen as generalizing many existing enumeration theorems.

Some of these connections will be discussed in Chapter 7. We say a hereditary L-property H is

fast-growing if π(H) > 1. In this case, we informally say M ∈ R(n,H) is almost extremal if

sub(M) ≥ ex(n,H)1−ε for some small ε. Our next theorem shows that almost all elements in a fast-

growing hereditary L-property H are close to subpatterns of almost extremal elements of R(n,H).

Given ε > 0, n, and a collection H of L-structures, let

E(n,H) = {G ∈ Hn : GEpM for some M ∈ Rex(n,H)} and

E(ε, n,H) = {G ∈ Hn : GEpM for some M ∈ R(n,H) with sub(M) ≥ ex(n,H)1−ε}.
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Given δ > 0, let Eδ(n,H) and Eδ(ε, n,H) denote the set of G ∈ Hn which are δ-close to any element

of E(n,H) and E(ε, n,H), respectively.

Theorem 6.4.5. Suppose H is a fast-growing hereditary L-property. For all ε, δ > 0 there is β > 0

such that for sufficiently large n,

|Hn \ Eδ(ε, n,H)|
|Hn|

≤ 2−β(nr).

We now define our generalization of a graph stability theorem.

Definition 6.4.6. Suppose H is a nontrivial collection of L-structures. We say H has a stability

theorem if for all δ > 0 there is ε > 0 and N such that n > N implies the following. If M ∈ R(n,H)

satisfies sub(M) ≥ ex(n,H)1−ε, then M is δ-close to some M ′ ∈ Rex(n,H).

Our next result, Theorem 6.4.7 below, shows that if a fast-growing hereditary L-property H has a

stability theorem, we can strengthen Theorem 6.4.5 to say that that almost all elements in Hn are

approximately subpatterns of elements of Rex(n,H).

Theorem 6.4.7. Suppose H is a fast growing hereditary L-property with a stability theorem. Then

for all δ > 0, there is a β > 0 such that for sufficiently large n,

|Hn \ Eδ(n,H)|
|Hn|

≤ 2−β(nr).

When one has a good understanding of the structure of elements in Rex(n,H), Theorem 6.4.7 gives

us a good description of the approximate structure asymptotic structure of Hn. The main new

tool we will use to prove our main theorems is Theorem 6.4.9 below, which is an adaptation of the

hypergraph containers theorem to the setting of L-structures.

Definition 6.4.8. If F is an L-structure, let F̃ be the set of LH-structures M such that F EpM .

If F is a collection of L-structures, let F̃ =
⋃
F∈F F̃ .

Theorem 6.4.9. Suppose 0 < ε < 1 and k ≥ r is an integer. Then there exist positive constants

c = c(k, r,L, ε) and m = m(k, r) > 1 such that for all sufficiently large n the following holds.

Assume F is a collection of finite L-structures each of size at most k and B := Forb(F) 6= ∅. For

any n-element set W , there is a collection C of LB-templates with domain W such that

(1) For all F-free L-structures M with domain W , there is C ∈ C such that M Ep C,

(2) For all C ∈ C, prob(F̃ , C) ≤ ε and prob(E , C) ≤ ε.
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(3) log |C| ≤ cnr− 1
m log n.

We will combine Theorem 6.4.9 with a general version of the graph removal lemma proved by Aroskar

and Cummings in [6] to prove a supersaturation theorem for hereditary L-properties (Theorem 6.4.10

below), and a version of the hypergraph containers theorem for hereditary L-properties (Theorem

6.4.11 below).

Theorem 6.4.10 (Supersaturation). Suppose H is a non-trivial hereditary L-property and F is as

in Observation 6.2.3 so that H = Forb(F). Then for all δ > 0 there are ε > 0 and K such that for

all sufficiently large n, if M is an LH-template of size n such that prob(F̃(K)∪E(K),M) < ε, then

(1) If π(H) > 1, then sub(M) ≤ ex(n,H)1+δ.

(2) If π(H) ≤ 1, then sub(M) ≤ 2δ(
n
r).

Theorem 6.4.11. Suppose H is a hereditary L-property. Then there is m = m(H, rL) > 1 such that

the following holds. For every δ > 0 there is a constant c = c(H,L, δ) such that for all sufficiently

large n there is a set of LH-templates C with domain [n] satisfying the following properties.

(1) For every H ∈ Hn, there is C ∈ C such that H Ep C.

(2) For every C ∈ C, there is C ′ ∈ R([n],H) such that dist(C,C ′) ≤ δ.

(3) log |C| ≤ cnr− 1
m log n.

6.5. Proofs of Main Theorems

In this section we prove our main results using Theorems 6.4.9, 6.4.10, and 6.4.11. For the rest of

the section, H is a fixed hereditary L-property.

Lemma 6.5.1. Suppose N is an L-structure and Ñ is the LH-structure such that dom(Ñ) = dom(N)

and for each ā ∈ dom(Ñ)r and p(x̄) ∈ Sr(H), Ñ |= Rp(ā) if and only if N |= p(ā). Then Ñ is an

LH-template and N is the unique full subpattern of Ñ .

Proof. Let V = dom(N) = dom(Ñ). We first verify Ñ is an LH-template. By the definition of Ñ ,

for all A ∈
(
V
r

)
, ChÑ (A) = {DiagN (A)}. Therefore Ñ is complete. If ā ∈ V r \ V r and p ∈ Sr(H),

then because p is a proper type, N 2 p(ā). Thus by definition of Ñ , Ñ |= ¬Rp(ā) and Ñ satisfies part

(1) of Definition 6.3.4. Suppose p(x̄), p′(x̄) ∈ Sr(H) and µ ∈ Perm(r) are such that p(x̄) = p′(µ(x̄)).

Then for all ā ∈ V r, Ñ |= Rp(ā) if and only if N |= p(ā) if and only if N |= p′(µ(ā)) if and only

if Ñ |= Rp′(µ(ā)). Thus Ñ satisfies part (2) of Definition 6.3.4, so Ñ is an LH-template. Define
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χ :
(
V
r

)
→ Sr(CV ,H) by setting χ(A) = DiagN (A) for each A ∈

(
V
r

)
. It is clear that χ is a choice

function for Ñ , and N Eχ Ñ . By definition of Ñ , χ is the only choice function for Ñ , so any full

subpattern of Ñ must be chosen by χ. By Observation 6.3.12, χ chooses at most one L-structure,

so N is the unique full subpattern of Ñ . �

We now prove Theorem 6.4.4. The proof is based on the method of proof in [26].

Proof of Theorem 6.4.3. Let bn = ex(n,H)1/(nr). If H is trivial, then for sufficiently large n,

R(n,H) = ∅ so by convention, ex(n,H) = 0. Thus, for sufficiently large n, bn = 0 and π(H) exists

and is equal to zero.

Assume now H is nontrivial. We show that the sequence bn is bounded below and non-increasing.

Since H is non-trivial and has the hereditary property, Hn 6= ∅ for all n. Fix n ≥ 1 and choose any

N ∈ Hn. Let Ñ be the LH-structure defined as in Lemma 6.5.1 for N . Then Ñ is an LH-template,

and its only full subpattern is N . Since N ∈ H, this implies Ñ ∈ R(n,H) and sub(Ñ) = 1. So we

have shown bn ≥ 1 for all n ≥ 1.

We now show the bn are non-increasing. Fix n ≥ 2 and let M ∈ R(n,H) be such that sub(M) ≥ 1.

Let V = dom(M). Fix a ∈ V and set Va = V \ {a} and Ma = M [Va]. We claim Ma ∈ R(n− 1,H).

Because M is an LH-template, the definition of Ma implies Ma is also an LH-template. Suppose

χ ∈ Ch(Ma). We want to show there exists Na ∈ H with Na EχMa. Define a function χ′ :
(
V
r

)
→

Sr(CV ,H) as follows. For A ∈
(
Va
r

)
, set χ′(A) = χ(A), and for A ∈

(
V
r

)
\A ∈

(
Va
r

)
, choose χ′(A) to

be any element of ChMa(A) = ChM (A) (this is possible since M is complete). Note that for each

A ∈
(
Va
r

)
, χ(A) ∈ ChM (A), so χ′ ∈ Ch(M). Because M is H-random, there is N ∈ H such that

NEχ′M . Let Na = N [Va]. Because H has the hereditary property and Na ⊆L N , Na ∈ H. For each

A ∈
(
Va
r

)
, DiagNa(A) = DiagN (A) = χ′(A) = χ(A), so NaEχMa. Thus we have verified that Ma ∈

R(n− 1,H). By definition of bn−1, this implies sub(Ma)1/(n−1
r ) ≤ bn−1. Because Ma is H-random,

Lemma 6.3.17 implies it is error-free, so Observation 6.3.19 implies sub(Ma) =
∏
A∈(Var ) |ChMa(A)|.

Then observe that

sub(M) =
( ∏
a∈V

∏
A∈(Var )

|ChMa
(A)|

)1/(n−r)
=
( ∏
a∈V

sub(Ma)
)1/(n−r)

.

Since sub(Ma) ≤ b(
n−1
r )

n−1 , this implies

sub(M) ≤
( ∏
a∈V

b
(n−1
r )

n−1

)1/(n−r)
= b

n(n−1
r )/(n−r)

n−1 = b
(nr)
n−1.
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Thus for all M ∈ R(n,H), sub(M)1/(nr) ≤ bn−1. So by definition, bn ≤ bn−1. �

The following observations follow from the proof of Theorem 6.4.3.

Observation 6.5.2. Assume H is a hereditary L-property.

(a) For all n, ex(n,H)1/(nr) ≥ π(H) (since (bn)n∈N is non-increasing and converges to π(H)).

(b) Either H is trivial and π(H) = 0 or H is non-trivial and π(H) ≥ 1.

Proof of Theorem 6.4.4. Assume H is a hereditary L-property. Recall we want to show the

following.

(1) If π(H) > 1, then |Hn| = π(H)(
n
r)+o(nr).

(2) If π(H) ≤ 1, then |Hn| = 2o(n
r).

Assume first that H is trivial. Then by Observation 6.5.2(b), π(H) = 0. Since |Hn| = 0 for all

sufficiently large n, |Hn| = 2o(n
2) holds, as desired. Assume now H is non-trivial, so π(H) ≥ 1 by

Observation 6.5.2(b). We show that for all 0 < η < 1, either π(H) = 1 and |Hn| ≤ 2ηn
r

or π(H) > 1

and π(H)(
n
2) ≤ |Hn| ≤ π(H)(

n
r)+ηnr . Fix 0 < η < 1. Let F be as in Observation 6.2.3 for H so that

H = Forb(F). Choose ε > 0 and K as in Theorem 6.4.10 for δ = η/4. Replacing K if necessary,

assume K ≥ r. Apply Theorem 6.4.9 to ε and F(K) to obtain m = m(K, r) > 1 and c = c(r,K, ε).

Assume n is sufficiently large. Theorem 6.4.9 with W = [n] and B := Forb(F(K)) implies there is

a collection C of LB-templates with domain [n] such that the following hold.

(i) For all F(K)-free L-structures M with domain [n], there is C ∈ C such that M Ep C,

(ii) For all C ∈ C, prob(F̃(K), C) ≤ ε and prob(E , C) ≤ ε.

(iii) log |C| ≤ cnr− 1
m log n.

Note that because K ≥ r, H = Forb(F) and B = Forb(F(K)) imply we must have Sr(H) =

Sr(B). Consequently all LB-templates are also LH-templates. In particular the elements in C are

all LH-templates. Therefore, (ii) and Theorem 6.4.10 imply that for all C ∈ C, either sub(C) ≤

ex(n,H)1+η/4 (case π(H) > 1) or sub(C) ≤ 2η(
n
r)/4 (case π(H) = 1). Note every element in Hn is

F-free, so is also F(K)-free. This implies by (i) that every element of Hn is a full subpattern of

some C ∈ C. Therefore we can construct every element in Hn as follows.

• Choose a C ∈ C. There are at most |C| ≤ 2cn
r− 1

m logn choices.
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• Choose a full subpattern of C. There are at most sub(C) ≤ ex(n,H)1+η/4 choices if π(H) > 1

and at most sub(C) ≤ 2η(
n
r)/4 choices if π(H) = 1.

This implies

|Hn| ≤


2cn

r− 1
m lognex(n,H)1+η/4 if π(H) > 1

2cn
r− 1

m logn2η(
n
r)/4 if π(H) = 1.

(62)

If π(H) > 1, then we may assume n is sufficiently large so that ex(n,H) ≤ π(H)(1+η/4)(nr) (see

Observation 6.5.2(a)). Combining this with (62), we have that when π(H) > 1,

|Hn| ≤ 2cn
r− 1

m lognπ(H)(1+η/4)2(nr) ≤ π(H)(
n
r)+η(nr),

where the last inequality is because π(H) > 1, (1 + η/4)2 < 1 + η, and n is sufficiently large. If

π(H) = 1, then (62) implies

|Hn| ≤ 2cn
r− 1

m logn2η(
n
r)/2 ≤ 2η(

n
r),

where the last inequality is because n is sufficiently large. Thus, we have shown |Hn| ≤ 2ηn
r

when

π(H) = 1 and |Hn| ≤ π(H)(
n
r)+ηnr when π(H) > 1. We just have left to show that when π(H) > 1,

then |Hn| ≥ π(H)(
n
r). This holds because for any M ∈ Rex([n],H), all ex(n,H) many subpatterns

of M are in Hn. Thus |Hn| ≥ ex(n,H) ≥ π(H)(
n
r), where the second inequality is by Observation

6.5.2(a). This finishes the proof. �

We now prove lemmas needed for Theorems 6.4.5 and 6.4.7.

Lemma 6.5.3. Suppose C and C ′ are LH-templates with the same domain V . Then for all A ∈
(
V
r

)
,

A ∈ diff(C,C ′) if and only if ChC(A) 6= ChC′(A).

Proof. Fix A ∈
(
V
r

)
. Suppose first A ∈ diff(C,C ′). Then there is p ∈ Sr(H) and an enumeration

ā of A such that C |= Rp(ā) and C ′ |= ¬Rp(ā). This implies p(cā) ∈ ChC(A). Suppose by

contradiction p(cā) were in ChC′(A). Then there is p′(x̄) ∈ Sr(H) and µ ∈ Perm(r) such that

p′(µ(x̄)) = p(x̄) and C ′ |= Rp′(µ(ā)). Because C ′ is an LH-template, this implies C ′ |= Rp(ā), a

contradiction.

Suppose now ChC(A) 6= ChC′(A). Then there is p(x̄) ∈ Sr(H) and an enumeration ā of A such

that p(cā) ∈ ChC(A) and p(cā) /∈ ChC′(A). Since p(cā) ∈ ChC(A), by definition there is p′(x̄)

and µ ∈ Perm(r) such that p′(µ(x̄)) = p(x̄) and C |= Rp′(µ(ā)). Since p(cā) /∈ ChC′(A) and C ′
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is an LH-template, C ′ |= ¬Rp′(µ(ā)). This shows qftpCLH(ā) 6= qftpC
′

LH(ā), so A ∈ diff(C,C ′), as

desired. �

Lemma 6.5.4. Suppose H is a non-trivial hereditary L-property. Then there is γ = γ(H) > 0 such

that for all δ > 0 and n ≥ r, if C and C ′ are LH-templates with domain [n] such that C ′ is error-free

and dist(C,C ′) ≤ δ, then the following holds.

(1) If π(H) > 1, then sub(C) ≤ sub(C ′)ex(n,H)γδ.

(2) If π(H) = 1, then sub(C) ≤ sub(C ′)2γδ(
n
r).

Proof. Fix n ≥ r and assume C and C ′ are LH-templates with domain [n] such that C ′ is error-free

and dist(C,C ′) ≤ δ. Then by definition of dist(C,C ′), |diff(C,C ′)| ≤ δ
(
n
r

)
. By Lemma 6.5.3,

diff(C,C ′) = {A ∈
(
V

r

)
: ChC(A) 6= ChC′(A)}.(63)

Note that for every A ∈
(
V
r

)
, |ChC(A)| ≤ |Sr(H)| (by definition of ChC(A)) and 1 ≤ |ChC′(A)|

(since C ′ is complete). Thus |ChC(A)|
|ChC′ (A)| ≤ |Sr(H)|. By Observation 6.3.19 and (63),

sub(C) ≤
∏

A∈(Vr )

|ChC(A)| =
( ∏
A/∈diff(C,C′)

|ChC′(A)|
)( ∏

A∈diff(C,C′)

|ChC(A)|
)

=
( ∏
A∈(Vr )

|ChC′(A)|
)( ∏

A∈diff(C,C′)

|ChC(A)|
|ChC′(A)|

)
.

Combining this with |ChC(A)|
|ChC′ (A)| ≤ |Sr(H)| and |diff(C,C ′)| ≤ δ

(
n
r

)
yields

sub(C) ≤
( ∏
A∈(Vr )

|ChC′(A)|
)
|Sr(H)|δ(

n
r) = sub(C ′)|Sr(H)|δ(

n
r),(64)

where the equality is by Observation 6.3.19 and because C ′ is error-free. If π(H) > 1, choose

γ > 0 such that |Sr(H)| = π(H)γ (this is possible since π(H) > 1 implies Sr(H) > 1). Recall from

Observation 6.5.2(a) that for all n, ex(n,H) ≥ π(H)(
n
r). Combining this with our choice of γ and

(64), we have

sub(C) ≤ sub(C ′)|Sr(H)|δ(
n
r) = sub(C ′)π(H)γδ(

n
r) ≤ sub(C ′)ex(n,H)γδ.

If π(H) = 1, choose γ > 0 such that |Sr(H)| ≤ 2γ (this is possible since H nontrivial implies

|Sr(H)| ≥ 1). Combining our choice of γ with (64) implies

sub(C) ≤ sub(C ′)|Sr(H)|δ(
n
r) = sub(C ′)2γδ(

n
r).
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�

Lemma 6.5.5. Suppose C is an LH-template with domain W of size n ≥ r and G Ep C. If D ∈

R(W,H) is such that dist(C,D) ≤ δ, then there is G′ ∈ H such that G′ Ep D and dist(G,G′) ≤ δ.

Proof. Fix C and D satisfying the hypotheses Because dist(C,D) ≤ δ, we have |diff(C,D)| ≤ δ
(
n
r

)
.

By Lemma 6.5.3,

diff(C,D) = {A ∈
(
W

r

)
: ChC(A) 6= ChD(A)}.(65)

Define a function χ :
(
W
r

)
→ Sr(CW ) as follows. For each A ∈

(
W
r

)
\diff(C,D), set χ(A) = DiagG(A).

For each A ∈ diff(C,D), choose χ(A) to be any element of ChD(A) (which is nonempty because D

is an LH-template). Since GEp C, for all A ∈
(
W
r

)
, DiagG(A) ∈ ChC(A). Thus, by definition of χ

and (65), for all A ∈
(
W
r

)
\ diff(C,D), χ(A) = DiagG(A) ∈ ChC(A) = ChD(A). For A ∈ diff(C,D),

χ(A) ∈ ChD(A) by assumption. Thus χ ∈ Ch(D). Because D is H-random, there is G′ ∈ H such

that G′ Eχ D. We show dist(G,G′) ≤ δ. By definition of χ and since G′ Eχ D, we have that for all

A ∈
(
W
r

)
, if A /∈ diff(C,D), then DiagG

′
(A) = χ(A) = DiagG(A), which implies A /∈ diff(G,G′).

Thus diff(G,G′) ⊆ diff(C,D) so |diff(G,G′)| ≤ δ
(
n
r

)
and dist(G,G′) ≤ δ by definition. �

Proof of Theorem 6.4.5. Let H be a fast-growing hereditary L-property. Fix ε and δ > 0. Given

n, let A(n, ε, δ) = Hn \Eδ(ε, n,H). Recall, we want to show there is β > 0 such that for sufficiently

large n,

|A(n, ε, δ)|
|Hn|

≤ 2−β(nr).(66)

Let γ > 0 be as in Lemma 6.5.4 forH. Choose K > 2r sufficiently large so that 1−ε+γδ/K < 1−ε/2.

Apply Theorem 6.4.11 to δ
K to obtain constants c and m > 1. Assume n is sufficiently large. Then

Theorem 6.4.11 implies there is a collection C of LH-templates with domain [n] such that the following

hold.

(i) For every H ∈ Hn, there is C ∈ C such that H Ep C.

(ii) For every C ∈ C, there is C ′ ∈ R([n],H) such that dist(C,C ′) ≤ δ.

(iii) log |C| ≤ cnr− 1
m log n.

Suppose G ∈ A(n, ε, δ). By (i), there is C ∈ Cn such that GEp C. By (ii), there is MC ∈ R([n],H)

such that dist(C,MC) ≤ δ
K . By Lemma 6.5.5, there is G′ Ep MC such that dist(G,G′) ≤ δ

K ≤ δ.

Since dist(G,G′) ≤ δ, G′EpMC , and G ∈ A(n, ε, δ) = Hn\Eδ(ε, n,H), we must have by definition of
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Eδ(ε, n,H) that sub(MC) < ex(n,H)1−ε. Note MC ∈ R([n],H) implies MC is error-free, so Lemma

6.5.4 and the fact that dist(C,MC) ≤ δ/K imply sub(C) ≤ sub(MC)ex(n,H)γδ/K . Combining this

with the fact that sub(MC) < ex(n,H)1−ε we have that

sub(C) < ex(n,H)1−εex(n,H)γδ/K = ex(n,H)1−ε+γδ/K ≤ ex(n,H)1−ε/2,

where the second inequality is by assumption on K. Therefore every G ∈ A(n, ε, δ) can be con-

structed as follows.

• Choose C ∈ Cn with sub(C) < ex(n,H)1−ε/2. There are at most |Cn| ≤ 2cn
r− 1

m logn ways

to do this, where the bound is by (iii). Since n is large and π(H) > 1, we may assume

2cn
r− 1

m logn ≤ π(H)ε(
n
r)/4.

• Choose a full subpattern of C. There are at most sub(C) < ex(n,H)1−ε/2 ways to do this.

Combining these bounds we have that |A(n, ε, δ)| ≤ π(H)ε(
n
r)/4ex(n,H)1−ε/2. Recall that |Hn| ≥

ex(n,H) holds since for any M ∈ Rex([n],H), all ex(n,H)-many full subpatterns of M are all in

Hn. Therefore

|A(n, ε, δ)|
|Hn|

≤ π(H)ε(
n
r)/4ex(n,H)1−ε/2

ex(n,H)
= π(H)ε(

n
r)/4ex(n,H)−ε/2 ≤ π(H)−ε(

n
r)/4,(67)

where the last inequality is because π(H)(
n
r) ≤ ex(n,H). Therefore we have |A(n, ε, δ)|/|Hn| ≤

2−β(nr), where β = ε log π(H)
4 log 2 . Note β > 0 since π(H) > 1. �

Proof of Theorem 6.4.7. Suppose H is a fast growing hereditary L-property with a stability

theorem. Fix δ > 0. Given n, let B(n, δ) = Hn \ Eδ(n,H). Recall we want to show there is β > 0

such that for sufficiently large n,

|B(n, δ)|
|Hn|

≤ 2−β(nr)

By Theorem 6.4.5, it suffices to show that there are ε1, δ1 > 0 such that for all sufficiently large n,

B(n, δ) ⊆ A(n, ε1, δ1) = Hn \ Eδ1(ε1, n,H).

Because H has a stability theorem, there is N and ε such that if n ≥ N and H ∈ R([n],H) satisfies

sub(H) ≥ ex(n,H)1−ε, then there is H ′ ∈ Rex([n],H) with dist(H,H ′) ≤ δ
4 . Fix n > N . We

claim B(n, δ) ⊆ A(n, ε, δ/2). Suppose G ∈ Hn \ A(n, ε, δ/2). Then G is δ/2-close to some G′ such

that G′ Ep H ′, for some H ∈ R([n],H) satisfying sub(H) ≥ ex(n,H)1−ε. By choice of ε and N ,

this implies there H ′ ∈ Rex([n],H) such that dist(H,H ′) ≤ δ
4 . Lemma 6.5.5 implies there is some
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G′′ Ep H ′ such that dist(G′, G′′) ≤ 2 δ4 = δ
2 . Then

dist(G,G′′) ≤ dist(G,G′) + dist(G′, G′′) ≤ δ

2
+
δ

2
= δ.

This implies that G /∈ B(n, δ). So Hn \A(n, ε, δ/2) ⊆ Hn \B(n, δ) implies B(n, δ) ⊆ A(n, ε, δ/2), as

desired. �

6.6. Characterization of H-random LH-templates

In this section we give an equivalent characterization for when an LH-structure is an H-random

LH-template, where H is a hereditary L-property. The results in this section will be used in the

proofs of our remaining results, Theorems 6.4.9, 6.4.10, and 6.4.11. For the rest of this section, H is

a fixed nonempty collection of finite L-structures.

Definition 6.6.1. Define FLAW to be the class of all LH-structures of size r which are not LH-

templates. Elements of FLAW are called flaws.

Lemma 6.6.2. An LH-structure M is an LH-template if and only if its FLAW-free.

Proof. Let dom(M) = V . It is straightforward from Definition 6.3.4 to check that M is an LH-

template if and only if for all A ∈
(
V
r

)
, M [A] is an LH-template. By definition of FLAW, M is

FLAW-free if and only if for all A ∈
(
V
r

)
, M [A] is an LH-template. This finishes the proof. �

We are now ready to prove the main result of this section.

Proposition 6.6.3. Suppose H is a hereditary L-property, and F is the class of finite L-structures

from Observation 6.2.3 such that Forb(F) = H. Then a complete LH-structure M is H-random if

and only if M is F̃-free and error-free.

Proof. By Observation 6.2.3, F is closed under isomorphism. Fix a complete LH-structure M and

let V = dom(M). Suppose first that M is H-random. Then M is complete and for every choice

function χ for M , there is N ∈ H such that N Eχ M . This implies by Proposition 6.3.17 that

M is error-free. Suppose by contradiction M is not F̃-free. Combining the assumption that F is

closed under isomorphism and the definition of F̃ , this implies there is B ⊆ V and F ∈ F such that

M [B] ∈ F̃ . By definition of F̃ , there is χB ∈ Ch(M [B]) such that F EχB M [B]. Define a function

χ :
(
V
r

)
→ Sr(CV ,H) as follows. For each A ∈

(
B
r

)
, set χ(A) = χB(A). Clearly, χB ∈ Ch(M [B])

implies that for all A ∈
(
B
r

)
, χB(A) ∈ ChM (A). For each A ∈

(
V
r

)
\
(
B
r

)
, define χ(A) to be
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any element of ChM (A) (this is possible since M is complete by assumption). By construction,

χ ∈ Ch(M). Because M is H-random, there is D ∈ H such that D EχM . By choice of F , D ∈ H

implies D is F-free, which implies D is F -free since F ∈ F . We claim D[B] ∼=L F , a contradiction.

For each A ∈
(
B
r

)
, D EχM , F EχB M [B], and the definition of χ imply

DiagD(A) = χ(A) = χB(A) = DiagF (A).

Thus Diag(D[B]) =
⋃
A∈(Br)

DiagD(A) =
⋃
A∈(Br)

DiagF (A) = Diag(F ) implies D[B] ∼=L F .

For the converse, suppose M is a complete LH-structure which is F̃-free and error-free. Suppose by

contradiction M is not H-random. Then there is a choice function χ for M such that there is no

N ∈ H with N Eχ M . Since M is error-free, Proposition 6.3.17 implies there is some L-structure

N such that N Eχ M . Thus we must have N /∈ H. By choice of F from Observation 6.2.3, N is

not F-free. This along with the fact that F is closed under isomorphism implies there is B ⊆ V

such that N [B] ∈ F . But N EpM implies N [B] EpM [B] (this is straightforward to check). Since

N [B] ∈ F , this implies M [B] ∈ F̃ by definition of F̃ , contradicting that M is F̃-free. �

Corollary 6.6.4. Suppose H is a hereditary L-property, and F is the class of finite L-structures

from Observation 6.2.3 such that Forb(F) = H. Let M be an LH-structure. Then M ∈ R(dom(M),H)

if and only if M is F̃-free, error-free, and FLAW-free.

Proof. By definition, M ∈ R(dom(M),H) if and only if M is an H-random LH-template. By

Lemma 6.6.2 and Proposition 6.6.3, this holds if and only if M is F̃-free, error-free, and FLAW -

free. �

6.7. Graph Removal and Proofs of Theorems 6.4.10 and 6.4.11.

In this section we will use a version of the graph removal lemma from [6] to prove Theorem 6.4.10 and

to prove Theorem 6.4.11 from Theorem 6.4.9. We now state definitions required to quote the graph

removal lemma from [6]. Throughout the rest of this section, L0 is a fixed finite relational language

with rL0
= r. Note L0 is not necessarily the same as L, although we are assuming rL0

= rL = r.

Given a partition p of a finite set X, let ||p|| denote the number of parts in p.

Definition 6.7.1. Let Index = {(R, p) : R ∈ L0 and p is a partition of [`] where ` is the arity of

R}. Suppose (R, p) ∈ Index and R has arity `.
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(1) Cp(x1, . . . , x`) is the subtuple of (x1, . . . , x`) obtained by replacing each xi with xp(i) where

p(i) = min{j : xj is in the same part of p as i}, then deleting all but the first occurance of

each variable in the tuple (xp(1), . . . , xp(`)).

(2) Rp(C(x̄)) is the ||p||-ary relation obtained from R(x1, . . . , x`) by replacing each xi with

xp(i) where p(i) = min{j : xj is in the same part of p as i}.

(3) If N is an L0-structure, define DHR
p (N) = {ā ∈ dom(N)||p|| : N |= Rp(ā)}.

Now we can define the notion of distance between two L0-structures from [6].

Definition 6.7.2. Given (R, p) ∈ Index and M , N two finite L0-structures with the same universe

W , set

dRp (M,N) =
|DHR

p (M)∆DHR
p (N)|

|W |||p||
and set d(M,N) =

∑
(R,p)∈Index

dRp (M,N).

We will see below in Lemma 6.7.4 that this notion of distance, d(M,N), is related to our notion of

distance, dist(M,N). We first state the graph removal lemma from [6], as it appears there.

Theorem 6.7.3 (Theorem 2 from [6]). Suppose A is a collection of finite L0-structures. For every

δ > 0 there exists ε > 0 and K such that the following holds. For all sufficiently large finite L0-

structures M , if prob(A(K),M) < ε, then there is an L0-structure M ′ with dom(M ′) = dom(M)

such that d(M ′,M) < δ and prob(A,M ′) = 0.

The following relationship between d(M,N) and dist(M,N) will allow us to restate this graph

removal lemma. Given a tuple x̄ = (x1, . . . , x`), a subtuple of x̄ is any tuple x̄′ = (xi1 , . . . , xi`′ )

where 1 ≤ i1 < . . . < i`′ ≤ `. If `′ < `, we say x̄′ is a proper subtuple of x̄, and denote this by x̄′ ( x̄.

Lemma 6.7.4. If M and N are L0-structures with the same domain finite W of size at least 2r, then

dist(M,N) ≤ (r!)32rd(M,N).

Proof. Let n = |W |. Note that n ≥ 2r implies for all 1 ≤ ` ≤ r,

n!

(n− `)!
= n · (n− 1) · · · (n− `+ 1) ≥ (n− `+ 1)` ≥ (n/2)` = n`/2`.(68)

Given 1 ≤ ` ≤ r, define

diff`(M,N) = {ā ∈W ` : qftpML0
(ā) 6= qftpNL0

(ā) and for all ā′ ( ā, qftpML0
(ā′) = qftpNL0

(ā′)}.
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Observe that elements in diff(M,N) are sets of elements from W , while elements in diff`(M,N) are

tuples of elements of W . Clearly if A ∈ diff(M,N), there is some ` ∈ [r] and a tuple ā ∈ A` such

that ā ∈ diff`(M,N). Define Ψ : diff(M,N) →
⋃
`∈[r] diff`(M,N) to be any map which sends each

A ∈ diff(M,N) to some such tuple. Given ` ∈ [r] and ā = (a1, . . . , a`) ∈ diff`(M,N), note that

Ψ−1(ā) ⊆ {A ∈
(
W

r

)
: ∪ā ⊆ A}.

Since the right hand side has size
(
n−`
r−`
)
, we have that for all ā ∈ diff`(M,N), |Ψ−1(ā)| ≤

(
n−`
r−`
)
.

For each ` ∈ [r], we now define a map f` : diff`(M,N) →
⋃

(R,p)∈Index,||p||=`DH
R
p (M)∆DHR

p (N).

Let ā ∈ diff`(M,N). Since ā ∈ diff`(M,N), there is a relation R(x1, . . . , xt) ∈ L0 and a map

h : [`] → [t] such that M |= R(ah(1), . . . , ah(t)) and N |= ¬R(ah(1), . . . , ah(t)) or vice versa. If h

is not surjective, then some permutation of Cp(ah(1), . . . , ah(t)) is a proper subtuple ā′ of ā such

that qftpML0
(ā′) 6= qftpNL0

(ā′). But this contradicts that ā ∈ diff`(M,N). Thus h is surjective.

Let p be the partition of [t] with parts h−1({1}), . . . , h−1({`}). Since h is surjective, the parts are

all nonempty, so ||p|| = `. Then by definition, Cp(ah(1), . . . , ah(t)) ∈ DHR
p (M)∆DHR

p (N). Define

f`(ā) = Cp(ah(1), . . . , ah(t)). Observe that ∪Cp(ah(1), . . . , ah(t)) = ∪ā implies

f−1
` (f`(ā)) ⊆ {b̄ ∈W ` : ∪b̄ = ∪ā},

so |f−1
` (f`(ā))| ≤ `!. Thus f` : diff`(M,N)→

⋃
(R,p)∈Index,||p||=`DH

R
p (M)∆DHR

p (N) and

for all c̄ ∈
⋃

(R,p)∈Index,||p||=`

DHR
p (M)∆DHR

p (N), |f−1
` (c̄)| ≤ `!.(69)

Now define a map β : diff(M,N) →
⋃

(R,p)∈IndexDH
R
p (M)∆DHR

p (N) as follows. Given A ∈

diff(M,N), apply Ψ to obtain Ψ(A) ∈ diff`(M,N) for some ` ∈ [r]. Then define

β(ā) := f`(Ψ(ā)) ∈
⋃

(R,p)∈Index,||p||=`

DHR
p (M)∆DHR

p (N).

Suppose c̄ ∈
⋃

(R,p)∈IndexDH
R
p (M)∆DHR

p (N) and ` := |c̄|. Then c̄ ∈ DHR
p (M)∆DHR

p (N) for

some (R, p) ∈ Index with ||p|| = `. By definition of β, β−1(c̄) = Ψ−1(f−1
` (c̄)). Combining (69) and

the fact that |Ψ−1(ā)| ≤
(
n−`
r−`
)

for all ā ∈ diff`(M,N), we have that

|β−1(c̄)| = |Ψ−1(f−1
` (c̄))| ≤

(
n− `
r − `

)
`!.
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This shows that |diff(M,N)| ≤
∑
`∈[r]

∑
(R,p)∈Index,||p||=`

(
n−`
r−`
)
`!|DHR

p (M)∆DHR
p (N)|. Dividing

both sides of this by
(
n
r

)
, we obtain the following.

dist(M,N) ≤
∑
`∈[r]

∑
(R,p)∈Index,||p||=`

(
n−`
r−`
)
`!(

n
r

) |DHR
p (M)∆DHR

p (N)|.(70)

Note that for all 1 ≤ ` < r,(
n−`
r−`
)
`!(

n
r

) =
n!

(n− `)!
`!r!

(r − `)!
≤ 2`

n`
`!r!

(r − `)!
<

(r!)32r

n`
,

where the first inequality is by (68) and the last is because ` < r. If ` = r, then(
n−`
r−`
)
`!(

n
r

) =
r!(
n
r

) =
(r!)3(n− r)!

n!
≤ (r!)32r

nr
,

where the inequality is by (68). Thus for all ` ∈ [r],
(n−`r−`)`!

(nr)
≤ (r!)32r

nr . Combining this with (70)

yields

dist(M,N) ≤ (r!)32r
∑
`∈[r]

∑
(R,p)∈Index,||p||=`

|DHR
p (M)∆DHR

p (N)|
n`

= (r!)32rd(M,N).

�

We will use the following version of Theorem 6.7.3 adapted to our notation.

Theorem 6.7.5. Suppose A is a collection of finite L0-structures. For every δ > 0 there ex-

ists ε > 0 and K such that the following holds. For all sufficiently large finite L0-structures M ,

if prob(A(K),M) < ε, then there is an L0-structure M ′ with dom(M ′) = dom(M) such that

dist(M ′,M) < δ and prob(A,M ′) = 0.

Proof. Fix δ > 0. Let δ′ = δ
(r!)32r and choose K = K(δ′) and ε = ε(δ′) by applying Theorem 6.7.3

to δ′ and A. Suppose n is sufficiently large so that Theorem 6.7.3 applies to structures of size n.

Suppose M is an L0-structure of size n such that prob(A(K),M) < ε. Then Theorem 6.7.3 implies

there is an L0-structureM ′ with dom(M ′) = dom(M) such that d(M ′,M) < δ′ and prob(A,M ′) = 0.

Combining this with Lemma 6.7.4, we have dist(M ′,M) ≤ (r!)32rd(M ′,M) < (r!)32rδ′ = δ. �

Proof of Theorem 6.4.10. Let H be a nontrivial hereditary L-property and let F be as in

Observation 6.2.3 so that H = Forb(F ). Recall we want to show that for all δ > 0, there are ε > 0

and K such that for sufficiently large n the following holds. For any LH-template M of size n, if

prob(F̃(K) ∪ E(K),M) ≤ ε then



6.7. GRAPH REMOVAL AND PROOFS OF THEOREMS 6.4.10 AND 6.4.11. 133

(1) If π(H) > 1, then sub(M) ≤ ex(n,H)1+δ.

(2) If π(H) ≤ 1, then sub(M) ≤ 2δ(
n
r).

Fix δ > 0. Let A = F̃ ∪E ∪FLAW. Apply Lemma 6.5.4 to H to obtain γ > 0. Apply Theorem 6.7.5

to obtain K and ε for δ/2γ and A. Suppose n is sufficiently large and M is an LH-template of size n

satsifying prob(F̃(K) ∪ E(K),M) < ε. Because M is an LH-template, Lemmas 6.6.2 implies for all

B ∈ FLAW, prob(B,M) = 0. These facts imply prob(A(K),M) < ε, so by Theorem 6.7.5, there is

an LH-structure M ′ with dom(M) = dom(M ′) such that prob(A,M ′) = 0 and dist(M,M ′) ≤ δ/2γ.

Since prob(A,M ′) = 0, Corollary 6.6.4 implies M ′ ∈ R(n,H). Thus sub(M ′) ≤ ex(n,H) holds

by definition of ex(n,H). Combining this with Lemma 6.5.4 (note M ′ ∈ R(n,H) implies M ′ is

error-free), we have the following.

(1) If π(H) > 1, then sub(M) ≤ sub(M ′)ex(n,H)γ(δ/2γ) = sub(M ′)ex(n,H)δ/2 ≤ ex(n,H)1+δ/2.

(2) If π(H) = 1, then sub(M) ≤ sub(M ′)2γ(δ/2γ)(nr) = sub(M ′)2δ(
n
r)/2 ≤ ex(n,H)2δ/2(

n
r).

We are done in the case where π(H) > 1. If π(H) = 1, assume n is sufficiently large so that

ex(n,H) ≤ 2δ/2(
n
r). Then (2) implies sub(M) ≤ 2δ(

n
r) as desired. �

Proof of Theorem 6.4.11 from Theorem 6.4.9. Suppose H is a hereditary L-property. Let F

be the class of finite L-structures from Observation 6.2.3 so that H = Forb(F). Then for each n, Hn

is the set of all F-free L-structures with domain [n]. Let A = F̃ ∪ E ∪FLAW. Fix δ > 0 and choose

K and ε as in Theorem 6.7.5 for δ and the family A. By replacing K if necessary, assume K ≥ r.

Apply Theorem 6.4.9 to B := F(K) to obtain c = c(K, r,L, ε), m = m(K, r). Observe the choice of

K depended on H and r = rL, so m = m(H, rL). Let n be sufficiently large. Then Theorem 6.4.9

applied to W = [n] implies there is a collection C of LB-templates with domain [n] such that the

following hold.

(i) For all F(K)-free L-structures M with domain [n], there is C ∈ C such that M Ep C.

(ii) For all C ∈ C, prob(F̃(K), C) ≤ ε and prob(E(K), C) ≤ ε.

(iii) log |C| ≤ cnr− 1
m log n.

We show this C satisfies the conclusions of Theorem 6.4.11 with c, m and δ. Note that because K ≥ r,

Sr(H) = Sr(B), so all LB-templates are also LH-templates. In particular the elements in C are all

LH-templates. Clearly (iii) implies part (3) of Theorem 6.4.11 holds. For part (1), since any H ∈ Hn

is F-free, it is also F(K)-free, so (i) implies there is C ∈ C such that H Ep C. This shows part (1)

of Theorem 6.4.11 holds. For part (2), fix C ∈ C. Since C is an LH-template, Lemma 6.6.2 implies
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prob(G,C) = 0 for all G ∈ FLAW. Then (ii) implies that for all G ∈ F̃(K) ∪ E , prob(G,C) ≤ ε.

Since F̃(K) = F̃(K), these facts imply that for all G ∈ A(K), prob(G,C) ≤ ε. Thus Theorem 6.7.5

implies there is an LH-structure C ′ with dom(C) = dom(C ′) = [n] such that dist(C,C ′) ≤ δ and

prob(A, C ′) = 0. Since prob(A, C ′) = 0, C ′ is a FLAW-free, F̃-free, and error-free LH-structure

with domain [n], so by Corollary 6.6.4, C ′ ∈ R([n],H). This finishes the proof. �

6.8. A Reduction

We have now proved all the results in this chapter except Theorem 6.4.9. In this section we prove

Theorem 6.4.9 by reducing it to another result, Theorem 6.8.14 (which is proved in Section 6.9).

6.8.1. Preliminaries. In this subsection we give preliminaries necessary for the statement of

Theorem 6.8.14. Many of these notions are similar to definitions from Section 6.3. However, we will

see that our proofs necessitate this more syntactic treatment.

Definition 6.8.1. Suppose C is a set of constants and σ ⊆ Sr(C).

• V (σ) = {c ∈ C : c appears in some p(c̄) ∈ σ}.

• Given A ∈
(
V (σ)
r

)
, let Chσ(A) = {p(c̄) ∈ σ : ∪c̄ = A}. Elements of Chσ(A) are choices for A.

• We say σ is complete if Chσ(A) 6= ∅, for all A ∈
(
V (σ)
r

)
.

Example 6.8.2. Let L and P be as in Example 6.3.2 (i.e. metric spaces with distances in [3]). Let

W = {u, v, w} and σ = {p1(cu, cv), p2(cu, cv), p2(cu, cw)} ⊆ S2(CW ,P). Then V (σ) = {cu, cv, cw}

and it is easy to check Chσ(cucv) = {p1(cu, cv), p2(cu, cv)}, Chσ(cucw) = {p2(cu, cw)}, and Chσ(cvcw) =

∅. Observe, this σ is not complete.

Definition 6.8.3. Suppose C is a set of n constants and σ ⊆ Sr(C). Given m ≤ n, σ is a syntactic

m-diagram if |V (σ)| = m and for all A ∈
(
V (σ)
r

)
, |Chσ(A)| = 1.

Example 6.8.4. Let L and P be as in Example 6.8.2, and let W = {t, u, v, w} be a set of size 4. Set

σ′ = {p1(cu, cv), p2(cu, cw), p3(cv, cw)} ⊆ S2(CW ,P). Then V (σ′) = {cu, cv, cw} and Chσ(cucv) =

{p1(cu, cv)}, Chσ(cucw) = {p2(cu, cw)}, and Chσ(cvcw) = {p3(cv, cw)}. This shows σ′ is a syntactic

3-diagram.

Observe that if σ is a syntactic m-diagram, then by definition, |V (σ)| = m and |σ| =
(
m
r

)
. Given

a tuple of constants c̄ = (c1, . . . , ck), a first-order language L0 containing {c1, . . . , ck}, and an L0-

structure M , let c̄M denote the tuple (cM1 , . . . , cMk ) ∈ dom(M)k.
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Definition 6.8.5. Suppose C is a set of constants and σ ⊆ Sr(C).

(1) If M is an L ∪ V (σ)-structure, write M |= σM if M |= p(c̄M ) for all p(c̄) ∈ σ. Call σ

satisfiable if there exists an L ∪ V (σ)-structure M such that M |= σM .

(2) If M is an L ∪ C-structure, the type-diagram of M is the set

Diagtp(M,C) = {p(c̄) ∈ Sr(C) : M |= p(c̄M )}.

Suppose that M is an L-structure with dom(M) = W . The canonical type-diagram of M is the set

Diagtp(M) = {p(cā) ∈ Sr(CW ) : M |= p(ā)}.

In other words, Diagtp(M) = Diagtp(M,CW ) where M is considered with its natural L ∪ CW -

structure. Observe that Diatgtp(M) is always a syntactic |dom(M)|-diagram. The difference be-

tween Diagtp(M) and Diag(M) is that elements of Diagtp(M) are types (with constants plugged

in for the variables) while the elements of Diag(M) are formulas (with constants plugged in for the

variables). Clearly Diag(M) and Diagtp(M) are logically equivalent.

Example 6.8.6. Let L and P be as in Example 6.8.4. Let M be the L-structure with domain W =

{u, v, w} such thatM |= p1(u, v)∪p2(u,w)∪p3(v, w). ThenDiagtp(M) = {p1(cu, cv), p2(cu, cw), p3(cv, cw)},

while Diag(M) is the set of all L ∪ CW -sentences implied by p1(cu, cv) ∪ p2(cv, cw) ∪ p3(cu, cw).

We now make a few observations which will be used in the remainder of the chapter.

Observation 6.8.7. Suppose M is an L-structure with domain W of size n. Then the following

hold.

(1) Suppose m ≤ n, σ ⊆ Sr(CW ) is a syntactic m-diagram, and N is an L∪V (σ)-structure of

size m. Then N |= σN if and only if σ = Diagtp(N,V (σ)).

(2) Suppose N is an L ∪ CW -structure of size n and N |= Diagtp(M). Then M ∼=L N .

(3) If σ ⊆ Sr(CW ) and Diagtp(M) ⊆ σ, then σ is complete.

Proof. (1): Suppose first σ = Diagtp(N,V (σ). Then by Definition 6.8.5, N |= σN . Converesly,

suppose N |= σN . By Definition 6.8.5, this implies σ ⊆ Diagtp(N,V (σ)). To show the reverse

inclusion, suppose p(cā) ∈ Diagtp(N,V (σ)). By Definition 6.8.5, N |= p(c̄N ). Let A = ∪c̄N ∈(
dom(N)

r

)
(since p ∈ Sr(L) is proper and N |= p(c̄N ), the coordinates of c̄N must all be distinct).

Since σ is a syntactic m-diagram, |Chσ(A)| = 1, so there is p′(x̄) ∈ Sr(L) and µ ∈ Perm(r) such that
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p′(µ(c̄)) ∈ σ. Since N |= σN , this implies N |= p′(µ(c̄N )). Clearly N |= p(c̄N ) and N |= p′(µ(c̄N ))

implies p(c̄N ) = p′(µ(c̄N )). So we have p(c̄) ∈ σ as desired.

(2): Clearly the map f : W → dom(N) sending a 7→ cNa is an elementary embedding of M into N .

Since by assumption, M and N both have size n, it must be a bijection, and thus an L-isomorphism.

(3): Observe that for each A ∈
(
CW
r

)
, DiagM (A) ∈ Chσ(A) implies Chσ(A) 6= ∅. �

Definition 6.8.8. Suppose A is a collection of finite L-structures and C is a set of constant symbols.

(1) We say σ ⊆ Sr(C) is A-satisfiable if there is an L∪ V (σ)-structure M such that M �L∈ A

and M |= σM .

(2) Define Diagtp(A, C) = {σ ⊆ Sr(C) : σ is a syntactic type diagram which is A-satisfiable}.

(3) Given σ ⊆ Sr(C), set Span(σ) = {σ′ ⊆ σ : σ′ is a syntactic type diagram}.

Example 6.8.9. Let L and P be as in Example 6.8.4. Let C = {c1, c2, c3} be a set of three constant

symbols. Then σ ⊆ S2(C,P) is a syntactic 3-diagram if and only if σ = {pi(c1, c2), pj(c1, c3), pk(c2, c3)}

for some i, j, k ∈ [3]. Clearly such a σ is P-satisfiable if and only if |i− j| ≤ k ≤ i+ j, that is, if and

only if the numbers i, j, k do not violate the triangle inequality. Thus Diagtp(P, C) consists of sets

of the form σ = {pi(c1, c2), pj(c1, c3), pk(c2, c3)} where i, j, k ∈ [3] satisfy |i− j| ≤ k ≤ i+ j.

Suppose now that σ = {p1(c1, c2), p2(c1, c2), p3(c1, c2), p1(c2, c3), p1(c1, c3)}. Then Span(σ) consists

of the following syntactic 3-diagrams.

(1) {p1(c1, c2), p1(c2, c3), p1(c1, c3)}.

(2) {p2(c1, c2), p1(c2, c3), p1(c1, c3)}.

(3) {p3(c1, c2), p1(c2, c3), p1(c1, c3)}.

Observe that (1) and (2) are P-satisfiable, while (3) is not.

For the rest of this subsection, H is a fixed collection of finite L-structures.

Lemma 6.8.10. Suppose X ⊆W are finite sets, M is a complete LH-structure with domain X, and

χ ∈ Ch(M). Set σ := {χ(A) : A ∈
(
V
r

)
} ⊆ Sr(CW ,H). Then

(1) σ is a syntactic |X|-diagram.

(2) If F EχM then σ = Diagtp(F ).

Proof. Clearly V (σ) = CX . Let m = |CX |. Note
(
CX
r

)
= {CA : A ∈

(
X
r

)
}. By definition of σ,

for each A ∈
(
X
r

)
, {χ(A)} = Chσ(CA). Thus |Chσ(CA)| = 1 for all A ∈

(
X
r

)
and σ is a syntactic
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m-diagram. This shows 1 holds. For 2, suppose F Eχ M . This means dom(F ) = X and for all

A ∈
(
X
r

)
, DiagF (A) = χ(A). Clearly this implies F |= σF , where F is considered with its natural

CX -structure. Part 1 of Observation 6.8.7 then implies σ = Diagtp(F ). �

Definition 6.8.11. Given an integer ` and a set of constants C, set

Err`(C) = {σ ⊆ Sr(C) : |V (σ)| = ` and σ is complete and unsatisfiable}.

We call the elements of Err`(C) syntactic C-errors of size `.

Example 6.8.12. Let L = {R,E} and P be as in Example 6.3.15. Let C = {c1, c2, c3, c4} be a set of

constants. Recall from Example 6.8.12, that p1(c2, c3, c4)∪p2(c1, c2, c3) is unsatisfiable. Therefore an

example of a syntactic C-error of size 4 is the set {p1(c2, c3, c4), p2(c1, c2, c3), p1(c1, c3, c4), p1(c1, c2, c4)}.

Lemma 6.8.13. Suppose W is finite a set, r+ 1 ≤ ` < 2r, and M is a complete LH-structure which

is an error of size ` and with domain X ⊆ W . Then there is a choice function χ ∈ Ch(M) such

that {χ(A) : A ∈
(
X
r

)
} is a syntactic CW -error of size `.

Proof. Since M is an error of size ` then there are ā1, ā2 ∈ V r such that ∪ā1

⋃
∪ā2 = V and

p1(x̄), p2(x̄) ∈ Sr(H) such that M |= Rp1(ā1)∧Rp2(ā2) but p1(cā1)∪ p2(cā2) is unsatisfiable. Define

a function χ :
(
V
r

)
→ Sr(CV ,H) as follows. Set χ(∪ā1) = p(cā1) and χ(∪ā2) = p(cā2). For all other

A ∈
(
V
r

)
choose any χ(A) ∈ ChM (A) (this is possible because M is a complete). By construction,

χ ∈ Ch(M). By part 1 of Lemma 6.8.10, σ := {χ(A) : A ∈
(
V
r

)
} is a syntactic `-diagram. Because

σ contains p1(cā1) ∪ p2(cā2), it is unsatisfiable. Thus by definition, σ is a syntactic CW -error of size

`. �

6.8.2. Proof of Theorem 6.4.9. In this section we state Theorem 6.8.14 and use it to prove

Theorem 6.4.9.

Theorem 6.8.14. Let 0 < ε < 1. For all k ≥ r, there is a positive constant c = c(k, r,L, ε) and

m = m(k, r) > 1 such that for all sufficiently large n the following holds. Suppose F is a collection

of finite L-structures, each of size at most k, and H = Forb(F) 6= ∅. For any set W of size n, there

is a set Σ ⊆ P(Sr(CW ,H)) such that the following hold.

(1) For all F-free L-structures M with domain W , there is σ ∈ Σ such that Diagtp(M) ⊆ σ.

(2) For all σ ∈ Σ the following hold. For each 1 ≤ ` ≤ k, |Diagtp(F(`), CW )∩Span(σ)| ≤ ε
(
n
`

)
,

and for each r + 1 ≤ ` ≤ 2r, |Err`(CW ) ∩ Span(σ)| ≤ ε
(
n
`

)
.
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(3) log |Σ| ≤ cnr− 1
m log n.

Given a collection H of finite L-structures, we now define a way of building an LH-template from a

complete subset of Sr(CW ,H).

Definition 6.8.15. Suppose H is a nonempty collection of L-structures, W is a set, and σ ⊆

Sr(CW ,H) is such that V (σ) = CW . Define an LH-structure Dσ as follows. Set dom(Dσ) = W and

for each ā ∈W r, define Dσ |= Rp(ā) if and only if p(cā) ∈ Chσ(∪ā).

In the notation of Definition 6.8.15, note that for all A ∈
(
W
r

)
, ChDσ (A) = Chσ(A) (here ChDσ (A)

is in the sense of Definition 6.3.6 and Chσ(A) is in the sense of Definition 6.8.1). We now prove two

lemmas.

Lemma 6.8.16. Suppose F is collection of finite L-structures and H = Forb(F) 6= ∅. For any set

W and complete σ ⊆ Sr(CW ,H), Dσ is an LH-template.

Proof. First, observe that Dσ is a complete LH-structure since for each A ∈
(
W
r

)
, ChDσ (A) =

Chσ(CA), and Chσ(CA) 6= ∅ because σ is complete by assumption (in the sense of Definition

6.8.1). Suppose now ā ∈ W r \W r. Then because Sr(H) contains only proper types, there is no

p(x̄) ∈ Sr(H) such that p(cā) ∈ Sr(CW ,H). Thus Dσ |= ¬Rp(ā) for all p(x̄) ∈ Sr(H), so Dσ

satisfies part (1) of Definition 6.3.4. Suppose p(x̄), p′(x̄) ∈ Sr(H) and µ ∈ Perm(r) are such that

p(x̄) = p′(µ(x̄)). Suppose a ∈ W r. Then by definition of Dσ, Dσ |= Rp(ā) if and only if p(cā) ∈ σ.

Since p(cā) = p′(cµ(ā)), p(cā) ∈ σ if and only if p′(cµ(ā)) ∈ σ. By definition of Dσ, p′(cµ(ā)) ∈ σ if

and only if Dσ |= Rp′(µ(ā)). Thus we’ve shown Dσ |= Rp(ā) if and only if Dσ |= Rp′(µ(ā)), so Dσ

satisfies part (2) of Definition 6.3.4. This finishes the verification that Dσ is an LH-template. �

Lemma 6.8.17. Suppose k ≥ r, W is a finite set, H is a nonempty collection of finite L-structures,

and σ ⊆ Sr(CW ,H) is complete. Suppose F is a collection of finite L-structures, each of size at

most k. Then for each 1 ≤ ` ≤ k, there is an injection

Φ : cop(F̃(`), Dσ)→ Diagtp(F(`), CW ) ∩ Span(σ).

and for each r + 1 ≤ ` ≤ 2r, there is an injection

Θ : cop(E(`), Dσ)→ Err`(CW ) ∩ Span(σ).

Proof. Without loss of generality, assume F is closed under isomorphism (we can do this because

it does not change either the sets cop(F̃(`), Dσ) or Diagtp(F(`), CW )∩Span(σ)). Suppose 1 ≤ ` ≤ k
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and G ∈ cop(F̃(`), Dσ). Then G ⊆LH Dσ and G ∼=LH B, for some B ∈ F̃(`). It is straightforward to

check that since F is closed under isomorphism, this implies G ∈ F̃(`). So without loss of generality

we may assume that B = G. This implies there is some F ∈ F(`) such that F Ep G. Choose any

such F and let χ ∈ Ch(G) be such that F EχG. Define Φ(G) = {χ(A) : A ∈
(
dom(G)

r

)
}. By part 2 of

Lemma 6.8.10, Φ(G) = Diagtp(F ). Thus by definition, Φ(G) ∈ Diagtp(F(`), CW ). By definition of

Dσ and because χ ∈ Ch(G), G ⊆LH Dσ implies Φ(G) ⊆ σ, so Φ(G) ∈ Diagtp(F(`), CW )∩Span(σ),

as desired. To see that Φ is injective, note that for all G ∈ cop(F̃(`), Dσ), V (Φ(G)) = dom(G).

Therefore if G1 6= G2 ∈ cop(F̃(`), Dσ), dom(G1) 6= dom(G2) implies V (Φ(G1)) 6= V (Φ(G2)), so

Φ(G1) 6= Φ(G2).

Suppose now r + 1 ≤ ` ≤ 2r and G ∈ cop(E(`), Dσ). Then G is a complete LH-structure

which is an error of size `. Lemma 6.8.13 implies there is χ ∈ Ch(G) such that {χ(A) : A ∈(
dom(G)

r

)
} is a syntactic CW -error of size `. Set Θ(G) = {χ(A) : A ∈

(
dom(G)

r

)
}. Then this shows

Θ(G) ∈ Err`(CW ). By definition of Dσ and because χ ∈ Ch(G), G ⊆LH Dσ implies Θ(G) ⊆ σ,

so Θ(G) ∈ Err`(CW ) ∩ Span(σ), as desired. To see that Θ is injective, note that for all G ∈

cop(E(`), Dσ), V (Θ(G)) = dom(G). Therefore if G1 6= G2 ∈ cop(E(`), Dσ), dom(G1) 6= dom(G2)

implies V (Θ(G1)) 6= V (Θ(G2)), so Θ(G1) 6= Θ(G2). �

Proof of Theorem 6.4.9 from Theorem 6.8.14. Let 0 < ε < 1 and let k ≥ r be an integer.

Choose the constants c = c(k, r,L, ε) and m = m(k, r) to be the ones given by Theorem 6.8.14.

Suppose F is a collection of finite L-structures, each of size at most k, and B := Forb(F) 6= ∅.

Suppose n is sufficiently large and W is a set of size n. Theorem 6.8.14 applied to B implies there

exists a set Σ ⊆ P(Sr(CW ,B)) such that the following hold.

(i) For all F-free L-structures M with domain W , there is σ ∈ Σ such that Diagtp(M) ⊆ σ.

(ii) For all σ ∈ Σ the following hold. For each 1 ≤ ` ≤ k, |Diagtp(F(`), CW ) ∩ Span(σ)| ≤ ε
(
n
`

)
,

and for each r + 1 ≤ ` ≤ 2r, |Err`(CW ) ∩ Span(σ)| ≤ ε
(
n
`

)
.

(iii) log |Σ| ≤ cnr− 1
m log n.

Set D = {Dσ : σ ∈ Σ}, where for each σ ∈ Σ, Dσ is the LB-structure from Definition 6.8.15. We

claim this D satisfies conclusions of Theorem 6.4.9. First note (i) and part 3 of Observation 6.8.7

imply that every σ ∈ Σ is complete in the sense of Definition 6.8.1. Therefore Lemma 6.8.16 implies

each Dσ ∈ D is an LB-template. We now verify parts (1)-(3) of Theorem 6.4.9 hold for this D.

Clearly |D| ≤ |Σ|, so (iii) implies part (3) of Theorem 6.4.9 is satisfied. Suppose now M is an

F-free L-structure with dom(M) = W . By (i), there is σ ∈ Σ such that Diagtp(M) ⊆ σ. We
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claim that M Ep Dσ. Let A ∈
(
W
r

)
and suppose p(x̄) ∈ Sr(H) is such that M |= p(ā) for some

enumeration ā of A. Then DiagM (A) = p(cā) ∈ Diagtp(M) ⊆ σ implies by definition of Dσ,

Dσ |= Rp(ā), so p(cā) ∈ ChDσ (A). This shows M ≤p Dσ. M Ep Dσ because by assumption

dom(M) = dom(Dσ) = W . Thus part (1) of Theorem 6.4.9 is satisfied.

We now verify part (2) of Theorem 6.4.9. Let Dσ ∈ D. We need to show prob(F̃ , Dσ) ≤ ε and

prob(E , Dσ) ≤ ε. For each 1 ≤ ` ≤ k, we have

|cop(F̃(`), Dσ)| ≤ |Diagtp(F(`), CW ) ∩ Span(σ)| ≤ ε
(
n

`

)
,

where the first inequality is because of Lemma 6.8.17 and the second inequality is by (ii). This

implies that for all 1 ≤ ` ≤ k, |cop(F̃(`), Dσ)| ≤ ε
(
n
`

)
, so prob(F̃(`), Dσ) ≤ ε. Since every element

in F̃ has size at most k, we have prob(F̃ , Dσ) ≤ ε. Similarly, for each r + 1 ≤ ` ≤ 2r,

|cop(E(`), Dσ)| ≤ |Err`(CW ) ∩ Span(σ)| ≤ ε
(
n

`

)
,

where the first inequality is by Lemma 6.8.17 and the second inequality is by (ii). This implies for

all r + 1 ≤ ` ≤ 2r, |cop(E(`), Dσ)| ≤ ε
(
n
`

)
, so prob(E(`), Dσ) ≤ ε. Since every element in E has size

at least r + 1 and at most 2r, we have prob(E , Dσ) ≤ ε. This finishes the proof. �

6.9. Applying Hypergraph Containers to Prove Theorem 6.8.14

In this section we prove Theorem 6.8.14. We will use the hypergraph containers theorem. We begin

with a definition.

Definition 6.9.1. Suppose K is a positive integer and A is a collection of finite L-structures each

of size at most K. Set

clK(A) = {M : M is an L-structure of size K such that prob(A,M) > 0}.

Observe that in the above notation, an L-structure of size at least K is A-free if and only if it is

clK(A)-free. We now state a key lemma.

Lemma 6.9.2. Assume k ≥ r and F is a nonempty collection of L-structures, each of size at most

k. Suppose H := Forb(F) 6= ∅ and W is a finite set of size n for some n ≥ k. Fix 0 < ε < 1/2.

Suppose σ ⊆ Sr(CW ,H) is complete and satisfies V (σ) = CW . Then

|(Diagtp(clk(F), CW ) ∪ Errk(CW )) ∩ Span(σ)| ≤ ε
(
n

k

)
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implies that for all ` ≤ k, |(Diagtp(F(`), CW ) ∪ Err`(CW )) ∩ Span(σ)| ≤ ε
(
n
`

)
.

Proof. For ` < k, set Γ(`) = (Diagtp(F(`), CW ) ∪ Err`(CW )) ∩ Span(σ) and let

Γ(k) = (Diagtp(clk(F), CW ) ∪ Errk(CW )) ∩ Span(σ).

We want to show that |Γ(k)| ≤ ε
(
n
k

)
implies that for all ` ∈ [k], |Γ(`)| ≤ ε

(
n
`

)
. Fix ` ∈ [k]. We claim

the following holds.

For all S0 ∈ Γ(`), |{S1 ∈ Γ(k) : S0 ⊆ S1}| ≥
(
n− `
r − `

)
.(71)

Suppose S0 ∈ Γ(`). Consider the following procedure for constructing a set S1 ⊆ Sr(CW ,H).

• Choose X ∈
(
CW
k

)
such that V (S0) ⊆ X. There are

(
n−`
k−`
)

choices.

• For each A ∈
(
X
r

)
\
(
V (S0)
r

)
, choose some pA ∈ Chσ(A) (this is possible since σ is complete).

• Set S1 = S0 ∪ {pA : A ∈
(
X
r

)
\
(
V (S0)
r

)
}.

Suppose S1 is constructed from S0 in this way. We claim S1 ∈ Γ(k). By construction, S1 is

a syntactic k-diagram and S1 ⊆ σ, so S1 ∈ Span(σ). If S1 is unsatisfiable, then by definition

S1 ∈ Errk(CW ) ∩ Span(σ) ⊆ Γ(k), so we are done. Suppose now S1 is satisfiable and M is an

L ∪ V (S1)-structure such that M |= SM1 . Let N = M [V (S0)M ]. Then considered as an L ∪ V (S0)-

structure, N |= SN0 , so part 1 of Observation 6.8.7 implies Diagtp(N) = S0. On the other hand,

S0 ∈ Diagtp(F(`), CW ) implies there is F ∈ F (`) which can be made into an L ∪ V (S0)-structure

such that F |= SF0 . Part (2) of Observation 6.8.7 then implies N ∼=L F . Since M has size k and

contains N as a substructure, there is F ′ ∈ clk(F) such that M ∼=L F ′. Clearly this implies that

there is an expansion of F ′ into an L ∪ V (S1)-structure such that F ′ |= SF
′

1 . Thus by definition,

S1 ∈ Diagtp(clk(F), CW ), and we have shown that S1 is in Γ(k). Observe that every distinct choice

of X produces a distinct S1, this construction produces at least
(
n−`
k−`
)

distinct S1 ∈ Γ(k) such that

S0 ⊆ S1, so we have proved (71) holds for all ` ∈ [k]. Then (71) implies the following procedure

constructs every element in S0 ∈ Γ(`) at least
(
n−`
k−`
)

times:

• Choose S1 ∈ Γ(k). There are |Γ(k)| choices.

• Choose S0 ⊆ S1 such that S0 ∈ Γ(`) (if one exists). There are at most
(
V (S1)
`

)
=
(
k
`

)
choices.
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This gives an upper bound of |Γ(`)| ≤ |Γ(k)|
(
k
`

)
, and since each element of Γ(`) gets counted at least(

n−`
k−`
)

times, we have

|Γ(`)| ≤ |Γ(k)|
(
k

`

)/(n− `
k − `

)
≤ ε
(
n

k

)(
k

`

)/(n− `
k − `

)
= ε

(
n

`

)
,

where the second inequality is because |Γ(k)| ≤ ε
(
n
k

)
by assumption. �

We now present a computational lemma which will be used in the proof of Theorem 6.8.14.

Lemma 6.9.3. For all integers 2 ≤ x < y, m(y, x) := max
{

(`x)−1

`−x : x < ` ≤ y
}
> 1.

Proof. We show that for all 2 ≤ x < y,
(
y
x

)
> y − x+ 1. Since by definition, m(y, x) ≥ (yx)−1

y−x , this

will imply m(y, x) > 1, as desired. Fix x ≥ 2. We induct on t where y = x+t. Suppose first y = x+1.

Then
(
y
x

)
= (x+1)!

x! = x+1. By assumption on x, x+1 ≥ 3 > 2 = y−x+1. Assume now that y > x+1

and suppose by induction the claim holds for y − 1. Then
(
y
x

)
= (y−1)!y

x!(y−x−1)!(y−x) =
(
y−1
x

)
y

y−x . By

our induction hypothesis,(
y − 1

x

)
y

y − x
≥ ((y − 1− x) + 1)

( y

y − x

)
= (y − x)

y

y − x
= y > y − x+ 1,

where the last inequality is because x ≥ 2. Thus
(
y
x

)
> y − x+ 1, as desired. �

Defining the Hypergraph.

We now give a procedure for defining a special hypergraph given a collection of L-structures and a

sufficiently large finite set satisfying certain properties. Assume we are given the following.

• A nonempty collection, F , of finite L-structures, each of size at most k, where k ≥ r is an integer.

• A set W of size n, where n ≥ k is an integer.

Let H be the class of all finite clk(F)-free L-structures. Define the hypergraph H = H(F ,W ) as

follows.

V (H) = Sr(CW ,H) and

E(H) = Diagtp(clk(F), CW ) ∪ Errk(CW ).

We now make a few observations about H. First, note that the edges of H are syntactic k-diagrams,

so H is a
(
k
r

)
-uniform hypergraph. By definition |V (H)| =

(
n
r

)
|Sr(H)|. If X and X ′ are both in(

CW
k

)
, then since relabeling constants does not change the satisfiability properties of a collection of
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L∪CW -sentences, we must have |Diagtp(Clk(F), X)∪Errk(X)| = |Diagtp(Clk(F), X ′)∪Errk(X ′)|.

Therefore, the following is well defined.

Definition 6.9.4. Let α = α(F) be such that for all X ∈
(
CW
k

)
, |Diagtp(Clk(F), X)∪Errk(X)| = α.

We claim that |E(H)| = α
(
n
k

)
. Indeed, any σ ∈ E(H) can be constructed as follows.

• Choose X ∈
(
CW
k

)
. There are

(
n
k

)
choices.

• Choose an element σ ∈ Diagtp(Clk(F), CW )∪Errk(CW ) such that V (σ) = X, i.e. choose

an element σ ∈ Diagtp(Clk(F), X) ∪ Errk(X). There are α choices.

Each of these choices lead to distinct subsets σ ∈ E(H), so this shows |E(H)| = α
(
n
k

)
. Note that

because F 6= ∅, α ≥ 1. On the other hand, there are at most |Sr(H)|(
k
r) syntactic k-diagrams σ with

V (σ) = X, so α ≤ |Sr(H)|(
k
r) ≤ |Sr(L)|(

k
r). We now make a key observation about this hypergraph.

Proposition 6.9.5. For any F-free L-structure M with domain W , Diagtp(M) is an independent

subset of V (H).

Proof. Suppose towards a contradiction that Diagtp(M) contains an edge σ ∈ E(H). Then σ is

a syntactic k-diagram which is either in Errk(CW ) or Diagtp(clk(F), CW ). Clearly σ /∈ Errk(CW ),

since M |= σM implies σ is satisfiable. Thus σ ∈ Diagtp(clk(F), CW ). So there is an L ∪ V (σ)-

structure B such that B �L∈ clk(F) and Diagtp(B, V (σ)) = σ. Let A = {a : ca ∈ V (σ)} ⊆ W

and let N = M [A]. Suppose p(cā) ∈ σ. Since σ ⊆ Diagtp(M), M |= p(ā). Since N ⊆L M and

∪ā ⊆ A = dom(N), we have N |= p(ā). This shows that with its canonical L ∪ V (σ)-structure,

N |= σN . Since σ is a syntactic k-diagram and N has size k, part 1 of Observation 6.8.7 implies

σ = Diagtp(N). Now Diagtp(N) = σ = Diagtp(B, V (σ)) implies by part 2 of Observation 6.8.7, that

N ∼=L B. But now N is an L- substructure of M isomorphic to an element of clk(F), contradicting

our assumption that M is F-free (since |dom(M)| = n ≥ k implies M is clk(F)-free if and only if

M if F-free). �

Observe that by definition of H, if S ⊆ V (H), then

E(H[S]) =
(
Diagtp(clk(F), CW ) ∪ Errk(CW )

)
∩ Span(S).(72)

We are now ready to prove Theorem 6.8.14. At this point the reader may wish to review Theorem

2.2.7 and its corresponding notation in Chapter 2, as this is the key tool used in this proof.
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Proof of Theorem 6.8.14. Clearly it suffices to show the theorem holds for all 0 < ε < 1/2. We

claim that further, it suffices to show the theorem holds for any k ≥ 2r. Indeed, suppose k < 2r

and Theorem 6.8.14 holds for all k′ ≥ 2r. Suppose F is a nonempty collection of L-structures, each

of size at most k and H := Forb(F) 6= ∅. Then F is also a collection of L-structures, each of size

at most k′ = 2r. Apply Theorem 6.8.14 to k′ = 2r implies to obtain constants c = c(2r, r,L, ε)

and m = m(2r, r). Since k < 2r, it is clear the conclusions of Theorem 6.8.14 for H and 2r

imply the conclusions of Theorem 6.8.14 for H and k. Thus we may take c(k, r, ε) = c(2r, r, ε) and

m(k, r) = m(2r, r). We now prove the theorem holds for all 0 < ε < 1/2 and k ≥ 2r.

Fix 0 < ε < 1/2 and k ≥ 2r. Apply Theorem 2.2.7 to ` =
(
k
r

)
to obtain the constant c0 = c0(

(
k
r

)
)

and set

m = m(k, r) = max
{(`

r

)
− 1

`− r
: r < ` ≤ k

}
.

By Lemma 6.9.3, since 2 ≤ r < k, m > 1. Set ε′ = ε/|Sr(L)|(
k
r) and choose 0 < γ < 1 sufficiently

small so that

2((
k
r)
2

)+1|Sr(L)|r!(k − r)k−rγ ≤ ε′

12
(
k
2

)
!
.(73)

Now set c = c(k, r,L, ε) = (c0 log( 1
ε′ ))/(|Sr(L)|γm). Observe that c depends on L, not just rL. Let

M ≥ k be such that n ≥ M implies (n − r)k−r ≥ nk−r/2, and n−
1
m γ−1 < 1/2. We show Lemma

6.8.14 holds for this c and m for all n ≥M .

Fix n ≥M . Suppose F a nonempty collection of finite L-structures, each of size at most k, such that

H := Forb(F) 6= ∅. Let W be a set of size n and let H = H(F ,W ) be the
(
k
r

)
-uniform hypergraph

described above. Set τ = n
−1
m γ−1. By our assumptions we have that 0 < ε′, τ < 1

2 . We show that

δ(H, τ) ≤ ε′

12(kr)!
so that we may apply Theorem 2.2.7 to H. Let α = α(F) be as in Definition 6.9.4

so that E(H) = α
(
n
k

)
and let N = |V (H)|. Given 2 ≤ j ≤

(
k
r

)
, set

f(j) = min{` :

(
`

r

)
≥ j}.(74)

Observe that for each 2 ≤ j ≤
(
k
r

)
, r < f(j) ≤ k. Indeed, f(j) > r holds since

(
f(j)
r

)
≥ j ≥ 2, and

f(j) ≤ k holds since k ∈ {` :
(
`
r

)
≥ j}. Thus by definition of m, for each 2 ≤ j ≤

(
k
r

)
,

m ≥
(
f(j)
r

)
− 1

f(j)− r
≥ j − 1

f(j)− r
,(75)

where the inequality is because by (74),
(
f(j)
r

)
≥ j. We now show that for all σ ⊆ V (H) with

2 ≤ |σ| ≤
(
k
r

)
, d(σ) ≤ αnk−f(|σ|). Fix σ ⊆ V (H) so that 2 ≤ |σ| ≤

(
k
r

)
.
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Observe that if |V (σ)| > k, then {e ∈ E(H) : σ ⊆ e} = ∅ since every e ∈ E(H) is a syntactic

k-diagram and therefore satisfies |V (e)| = k. So in this case d(σ) = 0 ≤ αnk−f(|σ|). Similarly, if

there is A ∈
(
V (σ)
r

)
such that |Chσ(A)| ≥ 2, then {e ∈ E(H) : σ ⊆ e} = ∅, since every e ∈ E(H) is

a syntactic k-diagram and therefore satisfies |Che(A)| = 1. So in this case, d(σ) = 0 ≤ αnk−f(|σ|).

Suppose now |V (σ)| ≤ k and |Chσ(A)| ≤ 1 for all A ∈
(
V (σ)
r

)
. This implies |σ| ≤

(|V (σ)|
r

)
, so by

(74), f(|σ|) ≤ |V (σ)|. Every edge in H containing σ can be constructed as follows.

• Choose a set X ∈
(
CW
k

)
such that V (σ) ⊆ X (this makes sense since |V (σ)| ≤ k). There

are
(
n−|V (σ)|
k−|V (σ)|

)
ways to do this.

• Choose an element of Diagtp(clk(F), X)∪Errk(X) containing σ. By definition of α, there

are at most α choices for this.

Therefore, d(σ) = |{e ∈ E(H) : σ ⊆ e}| ≤ α
(
n−|V (σ)|
k−|V (σ)|

)
≤ αnk−|V (σ)| ≤ αnk−f(|σ|), where the last

inequality is because f(|σ|) ≤ |V (σ)|. Thus we have shown that for any 2 ≤ j ≤
(
k
r

)
and σ ⊆ V (H)

such that |σ| = j, d(σ) ≤ αnk−f(j). Thus given 2 ≤ j ≤
(
k
r

)
and a vertex v ∈ V (H),

d(j)(v) = max{d(σ) : v ∈ σ, |σ| = j} ≤ αnk−f(j).

Note the average degree of H is

d =

(
k

r

)
|E(H)|/|V (H)| =

(
k
r

)
α
(
n
k

)
|Sr(H)|

(
n
r

) =
α

|Sr(H)|

(
n− r
k − r

)
≥ α

|Sr(H)|

(n− r
k − r

)k−r
.

Combining this with our assumption n, we obtain the following inequality.

d ≥ α

|Sr(H)|

(n− r
k − r

)k−r
=

α

|Sr(H)|(k − r)k−r
(n− r)k−r ≥ α

2|Sr(H)|(k − r)k−r
nk−r.(76)

Combining all of these computations we have the following.

δj =

∑
v∈V (H) d

(j)(v)

Ndτ j−1
≤ Nnk−f(j)

Ndτ j−1
=
nk−f(j)+(j−1) 1

m γj−1

d
.

Using our lower bound for d from (76), this implies

δj ≤ 2|Sr(H)|(k − r)k−rγj−1α−1nk−f(j)+ j−1
m −k+r = 2|Sr(H)|(k − r)k−rγj−1α−1nr−f(j)+ j−1

m .

By (75), j−1
m ≤ f(j)− r, so this implies δj is at most

2|Sr(H)|(k− r)k−rγj−1α−1nr−f(j)+f(j)−r = 2|Sr(H)|(k− r)k−rγj−1α−1 ≤ 2|Sr(H)|(k− r)k−rγα−1,
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where the last inequality is because j ≥ 2 and γ < 1. Therefore

δ(H, τ) = 2((
k
r)
2

)−1

(kr)∑
j=2

2−(j−1
2 )δj ≤ 2((

k
r)
2

)−12|Sr(H)|(k − r)k−rγα−1

(kr)∑
j=2

2−(j−1
2 ).(77)

Note that because F 6= ∅, α−1 ≤ 1. If t =
((kr)

2

)
, then

∑(kr)
j=2 2−(j−1

2 ) <
∑t
j=0 2−t. Using the formula

for summing finite geometric series,
∑t
j=0 2−t = 1−2−t−1

1−2−1 = 2(1 − 2−t−1) < 2. Plugging these two

bounds into (77) yields

δ(H, τ) ≤ 2((
k
r)
2

)−12|Sr(H)|(k − r)k−rγ2 = 2((
k
r)
2

)+1|Sr(H)|(k − r)k−rγ ≤ 2((
k
r)
2

)+1|Sr(L)|(k − r)k−rγ.

By (73), the right hand side above is at most ε′

12(kr)!
, so we have shown that δ(H, τ) ≤ ε′

12(kr)!
. Thus

Theorem 2.2.7 implies there is Σ0 ⊆ P(V (H)) with the following properties.

(i) For every independent set I ⊆ V (H), there is σ ∈ Σ0 such that I ⊆ σ.

(ii) For every σ ∈ Σ0, e(H[σ]) ≤ ε′e(H).

(iii) log |Σ0| ≤ c0 log(1/ε′)Nτ log(1/τ).

Define Σ = {σ ∈ Σ0 : ∃ an F-free L-structure M with domain W such that Diagtp(M) ⊆ σ}. Ob-

serve that every σ ∈ Σ is complete by part 3 of Observation 6.8.7. We show Σ satisfies the conclusions

(1)-(3) of Theorem 6.8.14. Suppose M is an F-free L-structure with domain W . Proposition 6.9.5

implies Diagtp(M) is an independent subset of V (H), so by (i) and definition of Σ, there is σ ∈ Σ

such that Diagtp(M) ⊆ σ. Thus part (1) of Theorem 6.8.14 holds.

For all σ ∈ Σ, by (72), (Diagtp(clk(F), CW ) ∪ Errk(CW )) ∩ Span(σ) = E(H[σ]). So (ii) implies

|(Diagtp(clk(F), CW ) ∪ Errk(CW )) ∩ Span(σ)| ≤ ε′e(H).

By definition of ε′ and because α ≤ |Sr(L)|(
k
r),

ε′e(H) = ε′α

(
n

k

)
=

ε

|Sr(L)|(
k
r)
α

(
n

k

)
≤ ε
(
n

k

)
.

Thus |(Diagtp(clk(F), CW ) ∪ Errk(CW )) ∩ Span(σ)| ≤ ε
(
n
k

)
. By Lemma 6.9.2, for all 1 ≤ ` ≤ k,

|(Diagtp(F(`), CW ) ∪ Err`(CW )) ∩ Span(σ)| ≤ ε
(
n

`

)
.
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Since k ≤ 2r, this immediately implies part (2) of Theorem 6.8.14 holds. By (iii), definition of c,

and because Σ ⊆ Σ0 we have that

|Σ| ≤ |Σ0| ≤ c0 log(1/ε′)Nτ log(1/τ) = c0 log(1/ε′)|Sr(H)|
(
n

r

)
τ log(1/τ)

≤ c0 log(1/ε′)|Sr(L)|
(
n

r

)
τ log(1/τ) = cγm

(
n

r

)
τ log

(1

τ

)
.

This shows |Σ| ≤ cγmnrτ log( 1
τ ). By definition of τ ,

cγmnrτ log
(1

τ

)
= cmnr−

1
m

( log n

m
+ log γ

)
= cnr−

1
m

(
log n+m log γ

)
≤ cnr− 1

m log n,

where the last inequality is because γ ≤ 1 ≤ m implies m log γ ≤ 0. This shows part (3) of Theorem

6.8.14 holds, so we are done. �

6.10. Conjectures

We end with some questions and conjectures. Returning to the metric spaces of Chapter 4, it was

shown there that the following is true.

Theorem 6.10.1 (Mubayi-Terry Chapter 4). If r ≥ 2 is even, then Mr =
⋃
n∈NMr(n) has a 0-1

law in the language Lr.

It was then conjectured in Chapter 4 that this theorem is false in the case when r is odd. In Section

7.2 of the next chapter, we will show that in the case when r is even, the hereditary property

associated to the family Mr has a stability theorem in the sense of Definition 6.4.6, while when r is

odd, this is false. These phenomena lead us to make the following conjecture.

Conjecture 6.10.2. Suppose L is a finite relational language and H is a fast-growing hereditary

L-property with rL ≥ 2, such that
⋃
n∈NHn has a 0-1 law. Then H has a stability theorem.

The idea behind this conjecture is that if H has nice asymptotic structure, it should reflect the struc-

ture of elements of Rex(n,H). Another phenomenon which can be observed from known examples

is that the structures in Rex(n,H) are not very complicated. The following questions are various

ways of asking if this is always the case.

Question 6.10.3. Suppose L is a finite relational language and H is a fast-growing hereditary L-

property with rL ≥ 2. For each n, let Pn = Rex([n],H). Does
⋃
n∈N Pn always have a 0-1 law?
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Question 6.10.4. Suppose L is a finite relational language with rL ≥ 2, and H is a fast-growing

hereditary L-property. Is there a finite k = k(H) such that for all n and M ∈ Rex(n,H), every

atomic formula φ(x; y) in LH does not have the k-order property?

A weaker version of this question is the following.

Question 6.10.5. Suppose L is a finite relational language with rL ≥ 2, and H is a fast-growing

hereditary L-property. Is there a finite k = k(H) such that for all n and M ∈ Rex(n,H), every

atomic formula φ(x; y) in LH has V C-dimension bounded by k in M?



CHAPTER 7

Examples

In this chapter we give examples of how our general framework from Chapter 6 applies to specific

examples. All the structure and enumeration results in this chapter have been previously proved

using purely combinatorial techniques, so this chapter is largely expository. Our goal is to demon-

strate that the machinery developed in Chapter 6 is sufficiently general to cover a large number of

results. In particular, we will consider examples in the setting of graphs, metric spaces, multigraphs,

digraphs, k-uniform hypergraphs, and colored k-uniform hypergraphs. We now give a restatement

of Theorem 6.4.4 which will be convenient for some of our examples.

Theorem 7.0.6 (Restatement of Theorem 6.4.4). Suppose L is a finite relational language with

r = rL ≥ 2 and H is a hereditary L-property. Then |Hn| = ex(n,H)2o(n
r).

Proof. By Theorem 6.4.4, it suffices to show

ex(n,H)2o(n
r) =


π(H)1+o(nr) if π(H) > 1.

2o(n
r) if π(H) = 1.

This is obvious by definition of π(H) = limn→∞ex(n,H)1/(nr). �

7.1. Ks-free graphs

In this section we consider structure and enumeration results by Kolaitis, Prömel, and Rothschild

from [66] for Ks-free graphs, where s ≥ 3. We begin with this example because it is well-known and

the least complicated of the examples we consider in this chapter.

7.1.1. Statements of Results from [66]. Let Forb(n,Ks) be the set of Ks-free graphs with

vertex set [n] and let Cols(n) be the set of s-colorable (i.e. s-partite) graphs with vertex set [n].

Given two graphs G = (V,E) and G′ = (V,E′) let ∆(G,G′) = E∆E′. We say that G and G′ are

δ-close in the classical sense if |∆(G,G′)| ≤ δn2. For this section, if G = (V,E) and G′ = (V ′, E′),

we will say G is a subgraph of G′ if V = V ′ and E ⊆ E′. Given δ > 0, let Colδs(n) be the set of graphs

with vertex set [n] which are δ-close in the classical sense to an element in Colδs(n). The following

149



7.1. Ks-FREE GRAPHS 150

are approximate versions of the precise enumeration and structural result appearing in [66]. They

are immediately implied by the results in [66].

Theorem 7.1.1 (Kolaitis-Prömel-Rothschild [66]). Let s ≥ 3. Then |Forb(n,Ks)| = 2ts−1(n)+o(n2).

Theorem 7.1.2 (Kolaitis-Prömel-Rothschild [66]). Let s ≥ 3. For all δ > 0 there is β > 0 such

that for sufficienlty large n,

|Forb(n,Ks) \ Colδs−1(n)|
|Forb(n,Ks)|

≤ 2−βn
2

.(78)

We will reprove these theorems using our machinery along with the stability theorem of Erdős and

Simonovits (Theorem 2.2.2) as well as Turán’s Theorem (Theorem 2.2.1).

7.1.2. Preliminaries. In this subsection we interpret the basic definitions from Chapter 6 in

the setting of graphs. Let L = {R(x, y)} be the language of graphs. Fix s ≥ 3 and let P be the class

of all finite Ks-free graphs. Since rL = 2, LP = {Rp(x, y) : p ∈ S2(P)}. Let

q1(x, y) = {x 6= y,R(x, y), R(y, x)} and

q2(x, y) = {x 6= y,¬R(x, y),¬R(y, x)}.

Then let p1(x, y) and p2(x, y) be the unique quantifier-free 2-types containing q1(x, y) and q2(x, y),

respectively. Clearly, S2(P) = {p1(x, y), p2(x, y)}, so LP = {Rp1(x, y), Rp2(x, y)}.

Definition 7.1.3. Suppose G is an LP -structure with domain V . The graph associated to G is

Ψ(G) := (V,E) where for all xy ∈
(
V
2

)
, xy ∈ E if and only if G |= Rp1(x, y) ∨ Rp1(y, x) (in other

words, xy ∈ E if and only if p1(cx, cy) ∈ ChG(xy)).

Definition 7.1.4. A complete LP -structureG is downward closed ifG |= ∀x∀yRp1(x, y)→ Rp2(x, y).

The idea is that if G is downward closed and the type which says “put an edge between x and y” is

a choice according to G, then so is the type which says “do not put an edge between x and y.”

Given a graph (V,E), define Ψ−1(V,E) to be the LP -structure G with domain V satisfying

G |= ∀x∀y(x 6= y → Rp2(x, y)),

and for each (x, y) ∈ V 2, G |= Rp1(x, y) if and only if x 6= y and xy ∈ E. We leave it to the reader

to verify that for any graph (V,E), Ψ(Ψ−1(V,E)) = (V,E), and Ψ−1(V,E) is a downward closed

LP -template.
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Lemma 7.1.5. Suppose G is an LP -structure with domain V . Then Ψ(G) Ep G and if a graph G′

satisfies G′ Ep G, then G′ is a subgraph of Ψ(G) with vertex set V . If G is also downward closed,

then any subgraph G′ of Ψ(G) satisfies G′ Ep G.

Proof. Fix Ψ(G) = (V,E). We first verify that Ψ(G) Ep G. Let xy ∈
(
V
2

)
. We want to show

DiagΨ(G)(xy) ∈ ChG(xy). If xy ∈ E, then DiagΨ(G)(xy) = p1(cx, cy) and by definition of Ψ(G),

we must have G |= Rp1(x, y) ∨ Rp1(y, x). By definition, this implies p1(cx, cy) ∈ ChG(xy), so we

are done. If xy /∈ E, then DiagΨ(G)(xy) = p2(cx, cy) and by definition of Ψ(G), we must have

G |= ¬Rp1(x, y) ∧ ¬Rp1(y, x). Since G is complete, this implies G |= Rp2(x, y) ∨ Rp2(y, x). By

definition, this implies p2(cx, cy) ∈ ChG(xy), so we are done.

Suppose G′ = (V,E′) Ep G. We want to show G′ is a subgraph of Ψ(G), that is, E′ ⊆ E. Fix

uv ∈ E′. Then DiagG
′
(u, v) = p1(cu, cv). Since G′ Ep G, this implies p1(cu, cv) ∈ ChG(uv). By

definition of Ψ(G), this implies uv ∈ E, as desired.

Suppose now G is also downward closed and G′ is a subgraph of Ψ(G). Then G′ = (V,E′) where

E′ ⊆ E. We want to show G′EpG. It suffices to check that for all uv ∈
(
V
2

)
, if p(x, y) = qftpG

′

L (u, v),

then p(cu, cv) ∈ ChG(uv). Fix uv ∈
(
V
2

)
and set p(x, y) = qftpG

′

L (u, v). Since G is a complete

downward closed LP -structure we have two possible cases:

(1) ChG(uv) = {p2(cu, cv)}.

(2) ChG(uv) = {p1(cu, cv), p2(cu, cv)}.

If Case (1) happens, then we are done since in this case ChG(uv) must contain p(cu, cv). Suppose

now Case (2) happens. Then uv /∈ E by definition of Ψ(G). Since G′ is a subgraph of Ψ(G), this

implies uv /∈ E′. Thus p(cu, cv) = p2(cu, cv) ∈ ChG(uv), as desired. �

Corollary 7.1.6. Suppose G is a complete finite LP -template. Then sub(G) ≤ 2e(Ψ(G)), and if G

is also downward closed, then equality holds.

Proof. By Lemma 7.1.5, sub(G) is at most the number of subgraphs of Ψ(G), so sub(G) ≤ 2e(Ψ(G)).

If G is also downward closed, the Lemma 7.1.5 implies sub(G) is exactly the number of subgraphs

of Ψ(G), so sub(G) = 2e(Ψ(G)). �

Corollary 7.1.7. If (V,E) is a Ks-free graph, then Ψ−1(V,E) is a downward closed, P-random

LP -template.
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Proof. We leave it to the reader to check that by definition of Ψ−1, Ψ−1(V,E) is a downward

closed LP -template. To show Ψ−1(V,E) is P-random, suppose M Ep Ψ−1(V,E). We want to show

M ∈ P. By Lemma 7.1.5, M is a subgraph of Ψ(Ψ−1(V,E)) = (V,E). Since (V,E) is Ks-free, this

implies M is Ks-free, so M ∈ P. �

7.1.3. Counting. In this subsection we prove Theorem 7.1.1. Let exedge(n,Ks) be the maximal

number of edges in a Ks-free graph with n vertices. This number is usually denoted “ex(n,Ks)”,

but we use exedge(n,Ks) to avoid confusion with our notation ex(n,P) from Definition 6.4.1. Recall

that a Ks-free graph G of size n is called extremal if e(G) = exedge(n,Ks). To avoid confusion

with the notion of extremal LP -templates from Definition 6.4.1, we will call a Ks-free graph with n

vertices edge-extremal if e(G) = exedge(n,Ks). We can now prove the following.

Proposition 7.1.8. Suppose n ≥ 2 is an integer. If V is a set of size n and G ∈ Rex(V,P), then

Ψ(G) is an edge-extremal Ks-free graph of size n. Consequently, ex(n,P) = 2exedge(n,Ks).

Proof. Suppose G ∈ Rex(V,P). By Lemma 7.1.5, Ψ(G)EpG, so since G is P-random, Ψ(G) ∈ P.

Thus Ψ(G) is Ks-free. Suppose Ψ(G) = (V,E) were not edge-extremal. Then there is a Ks-free

graph (V,E′) such that |E′| > |E|. Let G′ = Ψ−1(V,E′). By Corollary 7.1.7, G′ is a downward

element of R(V,P). Then Corollary 7.1.6 implies

sub(G) ≤ 2|E| < 2|E
′| = sub(G′),

contradicting that G is extremal. We now show ex(n,P) = 2exedge(n,Ks). Suppose G ∈ Rex([n],P),

so sub(G) = ex(n,P). By what we’ve just shown, Ψ(G) is an extremal Ks-free graph, that is,

e(Ψ(G)) = exedge(n,Ks). We claim that because G ∈ Rex(V,P), G is downward closed. Suppose

not. Then there is uv ∈
(
V
2

)
such that ChG(uv) = {p2(cu, cv)}. Let G∗ be the LP -template with

domain V which agrees with G everywhere, except on uv, where ChG∗(uv) = {p1(cu, cv), p2(cu, cv)}.

Then G∗ is also a P-random LP -template, since the only change we have made is to allow the

possibility of a subpattern taking an additional nonedge, which cannot create a Ks. But then

G∗ ∈ R([n],P) and

sub(G∗) =
|ChG∗(uv)|
|ChG(uv)|

sub(G) = 2sub(G) > sub(G),

contradicting that G ∈ Rex([n],P). Therefore, G is downward closed so Corollary 7.1.6 implies

sub(G) = 2e(Ψ(G)). Combining what we’ve shown yields

ex(n,P) = sub(G) = 2e(Ψ(G)) = 2exedge(n,Ks).
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�

Recall Turán’s Theorem says that exedge(n,Ks) = (1 − 1
s−1 + o(1))

(
n
2

)
and the only edge-extremal

Ks-free graphs on n vertices are the (s− 1)-partite Turán graphs of size n. Recall Ts−1(n) is the set

of (s− 1)-partite Turán graphs on [n]. We can now compute π(P).

Proposition 7.1.9. π(P) = 21− 1
s−1 .

Proof. Recall π(P) = limn→∞ ex(n,P)1/(n2). By Proposition 7.1.8 and Turán’s theorem,

ex(n,P) = 2exedge(n,Ks) = 2(1− 1
s−1 +o(1))(n2).

Therefore, π(P) = limn→∞ 2(1− 1
s−1 +o(1))(n2)/(

n
2) = 21− 1

s−1 , as desired. �

Proof of Theorem 7.1.1. Proposition 7.1.9 along with Theorem 6.4.4 implies

|Pn| = π(P)(1+o(1))(n2) = 2(1− 1
s−1 +o(1))(n2).

�

Thus we have shown Theorem 7.1.1 is a special case of Theorem 6.4.4.

7.1.4. Stability and Approximate Structure. In this subsection we show P has a stability

theorem and prove Theorem 7.1.2. Suppose G and G′ are two graphs with the same finite vertex

set V . Observe that considering them as L-structures,

diff2(G,G′) = {(x, y) ∈ V 2 : xy ∈ ∆(G,G′)},

so |diff2(G,G′)| = 2|∆(G,G′)|. So dist(G,G′) = 2|∆(G,G′)|/n2 and we see that G and G′ are δ-close

in the classical sense if and only if they are 2δ-close in the sense of Definition 6.2.6. When we just

say δ-close, we always mean in the sense of Definition 6.2.6.

Lemma 7.1.10. Suppose V is a finite set and G,G′ ∈ R(V,P) are downward closed. Then for all

δ > 0, G and G′ are δ-close if and only if Ψ(G) and Ψ(G′) are δ-close.

Proof. Because G and G′ are both LP -templates, Lemma 6.5.3 implies that for all (x, y) ∈ V 2,

qftpG(x, y) = qftpG
′
(x, y) if and only if ChG(x, y) = ChG′(x, y). By definition of Ψ(G) and Ψ(G′)

and because G and G′ are downward closed, this implies diff(G,G′) = diff(Ψ(G),Ψ(G′)). Clearly

this implies the desired conclusion. �
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Proposition 7.1.11. P has a stability theorem.

Proof. Fix η > 0 and set δ = η/16. Choose M and ε < η/16 so that Theorem 2.2.2 implies any

Ks-free graph with n > M vertices and at least (1 − ε)exedge(n,Ks)-many edges is δ-close (in the

classical sense) to an (s− 1)-partite Turán graph. By Proposition 7.1.9, we may assume that M is

sufficiently large so that n > M implies

2(1− 1
s−1 )(n2)+(2− s−2

s−1 )εn2+ε s−2
s−1n ≥ ex(n,P) ≥ 2(1− 1

s−1−ε/2)(n2).(79)

Suppose now that n ≥ M and G ∈ R([n],P) is such that sub(G) ≥ ex(n,P)1−ε. We want to show

there is G′ ∈ Rex([n],P) such that dist(G,G′) ≤ η. We first claim there is a downward closed

G∗ ∈ R([n],P) such that

(1) For all xy ∈
(
V
2

)
, ChG(xy) ⊆ ChG∗(xy).

(2) |diff(G,G′)| ≤ 2εn2.

Indeed, let G∗ be the LP structure with domain [n] such that G∗ |= ∀x∀y(x 6= y → Rp2(x, y) and for

all (x, y) ∈ V 2, G∗ |= Rp1(x, y) if and only if G |= Rp1(x, y). We leave it to the reader to verify that

because G ∈ R([n],P), G∗ ∈ R([n],P) and that by definition of G∗, (1) holds and G∗ is downward

closed. Suppose towards a contradiction that (2) is false. Then there is uv ∈
(
V
2

)
is such that

ChG(uv) ( ChG∗(uv). Recall from the proof of Lemma 7.1.5, the only options for ChG(uv) and

ChG∗(uv) are {p1(cu, cv)}, {p2(cu, cv)}, and {p1(cu, cv), p2(cu, cv)}. Therefore ChG(uv) ( ChG∗(uv)

implies we must have |ChG(uv)| = 1 and |ChG∗(uv)| = 2. Therefore,

sub(G∗) = sub(G)
( ∏
uv∈diff(G,G∗)

|ChG∗(uv)|
|ChG(uv)|

)
= sub(G)2

1
2 |diff(G,G∗)| ≥ ex(n,P)1−ε22εn2

,

where the last inequality is by assumption on G. Combining this with the lower bound in (79)

implies

sub(G∗) ≥ ex(n,P)1−ε22εn2

≥ 2(1− 1
s−1−ε/2)(n2)(1−ε)+2εn2

= 2(1− 1
s−1 )(n2)+(2− s−2

s−1 )εn2+ε s−2
s−1n.

But this contradicts the upper bound in (79) since G∗ ∈ R([n],P) implies sub(G∗) ≤ ex(n,P). Thus

(2) holds. Then we have by (1), our assumptions, and Proposition 7.1.8

sub(G∗) ≥ sub(G) ≥ ex(n,P)1−ε = 2exedge(n,Ks)(1−ε).(80)
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Proposition 7.1.5 implies Ψ(G∗) Ep G∗ (since Ψ(G∗) is a subgraph of itself), so because G∗ is P-

random, Ψ(G∗) ∈ P. Proposition 7.1.6 and (80) imply

e(Ψ(G∗)) = log2(sub(G∗)) ≥ exedge(n,Ks)(1− ε)

Therefore, Theorem 2.2.2 implies Ψ(G∗) is δ-close (in the classical sense) to an edge-extremal

Ks-free graph H with vertex set [n], which implies Ψ(G∗) and H are 2δ-close. By Proposition

7.1.7, Ψ−1(H) ∈ R([n],P), so Corollary 7.1.6 along with the fact that Ψ(Ψ−1(H)) = H implies

sub(Ψ−1(H)) = 2e(H) = 2exedge(n,Ks), where the second equality is because H is edge-extremal. By

Proposition 7.1.8, this shows sub(Ψ−1(H)) = ex(n,P), so Ψ−1(H) ∈ Rex([n],P). By Lemma 7.1.10,

because Ψ(G∗) and H = Ψ(Ψ−1(H)) are 2δ-close, G∗ and Ψ−1(H) are 2δ-close. Combining what

we have shown with our assumptions yields

|diff(G,Ψ−1(H))| ≤ |diff(G,G∗)|+|diff(G∗,Ψ−1(H))| ≤ 2εn2+2δn2 ≤ η/8n2+η/8n2 = η/4n2 ≤ η
(
n

2

)
,

where the last inequality is since we may assume n ≥ 2. This implies dist(G,Ψ−1(H)) ≤ η. �

Remark 7.1.12. In the notation of Theorem 6.4.7, for all δ > 0, E(n,P) ⊆ Cols−1(n).

Proof. Recall E(n,P) is the set of L-structures H with domain [n] such that H Ep G for some

G ∈ Rex([n],P). Suppose H ∈ E(n,P) and let G ∈ Rex([n],P) be such that H Ep G. Lemma 7.1.5

implies H is a subgraph of Ψ(G). Lemma 7.1.10 implies Ψ(G) is an edge-extremal Ks-free graph.

By Turán’s Theorem, Ψ(G) ∈ Ts−1(n) ⊆ Cols−1(n). Since subgraphs of (s − 1)-partite graphs are

also (s− 1)-partite, this implies H ∈ Cols−1(n). �

Proof of Theorem 7.1.2. Fix δ > 0. Choose β > 0 for δ using Theorem 6.4.7. Then Theorem 6.4.7

implies that for sufficiently large n, |Pn \ Eδ(n,P)|/|Pn| ≤ 2−β(n2). By Remark 7.1.12, E(n,P) ⊆

Cols−1(n). This implies Eδ(n,P) ⊆ Colδs−1(n), so (78) follows. �

7.2. Metric Spaces

In this section we consider the metric spaces examined in Chapter 4. We recall a few definitions from

Chapter 4. Let r ≥ 2 an integer. An r-graph is a pair (V, c) such that c :
(
V
2

)
→ 2[r]. An r-graph

(V, c) simple if for all xy ∈
(
V
2

)
, |c(xy)| ≤ 1 and is complete if for all xy ∈

(
V
2

)
, |c(xy)| ≥ 1. We

will sometimes abuse notation when (V, c) is a simple complete r-graph by thinking of c instead as a

function from
(
V
2

)
→ [r] with c(xy) = i instead of c(xy) = {i}. An r-graph (V, c) is a metric r-graph
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if it contains no violating triangles, and given an integer n, Mr(n) is the set of simple complete

metric r-graphs with vertex set [n].

7.2.1. Preliminaries. Given an integer r ≥ 2, let Lr = {R1(x, y), . . . , Rr(x, y)} be the lan-

guage of r-graphs from Chapter 4. We consider elements of Mr(n) as Lr-structures by inter-

preting Ri(x, y) if and only if d(x, y) = i. Let Mr denote the class of Lr-structures obtained

by closing Mr =
⋃
n∈NMr(n) under isomorphism. Clearly Mr is a hereditary Lr-property, and

(Mr)n = Mr(n). For the rest of the section, r ≥ 2 is a fixed integer, P =Mr, and L = Lr. Observe

that since rL = 2, LP = {Rp(x, y) : p(x, y) ∈ S2(P)}. For each i ∈ [r], set

qi(x, y) := {x 6= y} ∪ {Ri(x, y)} ∪ {¬Rj(x, y) : j 6= i},

and let pi(x, y) be the unique quantifier-free 2-type containing qi(x, y). It is straightforward to check

that S2(P) = {pi(x, y) : i ∈ [r]}, so LP = {Rpi(x, y) : i ∈ [r]}.

Definition 7.2.1. Suppose G is an LP -structure with underlying set V . The r-graph associated to

G is Ψ(G) := (V, c), where for each xy ∈
(
V
2

)
, c(xy) = {i : G |= Rpi(x, y) ∨ Rpi(y, x)} (in other

words, i ∈ c(x, y) if and only if pi(cx, cy) ∈ ChG(xy)).

Given an r-graph (V, c), define Ψ−1(V, c) to be the LP -structure G which has domain V and such

that for each (x, y) ∈ V 2 and i ∈ [r], G |= Rpi(x, y) if and only if x 6= y and i ∈ c(xy). We leave it

to the reader to verify that Ψ−1(V, c) is an LP -template and Ψ(Ψ−1(V, c)) = (V, c). Further, if G is

an LP -template, then Ψ−1(Ψ(G)) = G.

Proposition 7.2.2. Suppose G is an LP -template with domain V and Ψ(G) = (V, c). Then G′EpG

if and only if G′ is a simple complete r-graph (V, d) with the property that for all xy ∈
(
V
2

)
, d(xy) ∈

c(xy).

Proof. Suppose M Ep G. Let χ be a choice function for G which chooses M . Define an r-graph

(V, d) as follows. For each uv ∈
(
V
2

)
, set d(uv) = i where i is the unique element of [r] such that

χ(uv) = pi(cu, cv). Clearly (V, d) is a simple, complete r-graph. Fix uv ∈
(
V
2

)
. By definition of a

choice function for G and by definition of (V, d), if i = d(uv), then

pi(cu, cv) = χ(uv) ∈ ChG(uv) = {pj(cu, cv) : G |= Rpj (u, v) ∨Rpj (v, u)}.

This implies d(uv) = i ∈ {j : G |= Rpj (u, v) ∨ Rpj (v, u)} = c(uv), where the last equality is by

definition of Ψ(G) = (V, c). Thus d(uv) ∈ c(uv) for all uv ∈
(
V
2

)
, as desired.
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Suppose on the other hand that (V, d) is a simple complete r-graph such that for all xy ∈
(
V
2

)
,

d(xy) ∈ c(xy). We want to show that considered as an L-structure, M Ep G. Define a function

χ :
(
V
2

)
→ S2(CV ,P) as follows. For each uv ∈

(
V
2

)
, if d(u, v) = i, set χ(uv) = pi(cu, cv). By

assumption d(u, v) ∈ c(u, v) = {j : G |= Rpj (x, y)}. Thus pi ∈ {pj : G |= Rpj (u, v)} = ChG(uv).

This verifies that χ is a choice function for G. By definition of χ, M Eχ G. �

Corollary 7.2.3. If (V, c) is a complete metric r-graph, then Ψ−1(V,C) ∈ R(V,P). If G ∈

R(V,P), then Ψ(G) is a complete metric r-graph.

Proof. Suppose (V, c) is a complete metric r-graph. We leave it to the reader to check Ψ−1(V, c) is

an LP -template with domain V . Since (V, c) is a metric r-graph, all simple complete r-graphs (V, d)

with the property that for all xy ∈
(
V
2

)
, d(xy) ∈ c(xy) are metric spaces. By Proposition 7.2.2,

this implies all full subpatterns of Ψ−1(V, c) are metric spaces, which implies Ψ−1(V, c) is P-random

by definition. Suppose now G ∈ R(V,P). Let Ψ(G) = (V, c). We leave it to the reader to verify

that G a complete LP -structure implies (V, c) is a complete r-graph. To show (V, c) is a metric

r-graph, let xyz ∈
(
V
3

)
and let d(xy), d(yz), d(xz) be in c(xy), c(yz), d(xz) respectively. Extend d to

a function d :
(
V
2

)
→ [r] such that for all uv ∈

(
V
2

)
, d(uv) ∈ c(uv) (this is possible since (V, c) is

complete). By Proposition 7.2.2, (V, d)EpG, so since G is P-random, (V, d) is a metric space. Thus

|d(yz) − d(xz)| ≤ d(xy) ≤ d(yz) + d(xz), so {x, y, z} cannot be a violating triangle in (V, c). This

shows (V, c) is a metric r-graph. �

Recall from Chapter 4 that if G = (V, c) is an r-graph, then W (R) =
∏
xy∈(V2) |c(xy)|.

Proposition 7.2.4. Suppose G is a finite LP -template. Then sub(G) = W (Ψ(G)).

Proof. Let Ψ(G) = (V, c). By Proposition 7.2.2, the full subpatterns of G are exactly the simple

complete r-graphs (V, d) with the property that for all xy ∈
(
V
2

)
, d(xy) ∈ c(xy). Clearly the number

of such r-graphs is
∏
uv∈(V2) |c(uv)|. This shows sub(G) =

∏
uv∈(V2) |c(uv)| = W (Ψ(G)). �

7.2.2. Counting. In this section we prove the approximate enumeration result from Chapter

4, Corollary 4.1.6, using the tools of Chapter 6. Recall the definitions of Cr(n), C̃r(n), m(r), M̃r(n),

and (when r is odd) Lr and Ur from Chapter 4. If G ∈ M̃r(n), say that G is product-extremal if

W (G) = max{W (G′) : G′ ∈ M̃r(n)}.

Proposition 7.2.5. Suppose G is an LP -template with domain [n]. Then G ∈ Rex([n],P) if and

only if Ψ(G) is a product-extremal element of M̃r(n).
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Proof. Suppose first G ∈ Rex([n],P). By Corollary 7.2.3, and definition of M̃r(n), Ψ(G) ∈ M̃r(n).

Suppose towards a contradiction that Ψ(G) is not product-extremal. Then there is H ∈ M̃r(n)

such that W (H) > W (Ψ(G)). Corollary 7.2.3 implies Ψ−1(H) ∈ R([n],P) and Proposition 7.2.4

implies sub(Ψ−1(H)) = W (Ψ(Ψ−1(H))) = W (H) > W (Ψ(G)) = sub(G), contradicting that

G ∈ Rex([n],P). Conversely, suppose Ψ(G) ∈ M̃r(n) is product-extremal. By Corollary 7.2.3,

Ψ−1(Ψ(G)) = G ∈ R([n],P). Suppose towards a contradiction G /∈ Rex([n],P). Then there is

G′ ∈ R([n],P) such that sub(G′) > sub(G). Corollary 7.2.3 implies Ψ(G′) ∈ M̃r(n) and Proposition

7.2.4 implies W (Ψ(G′)) = sub(G′) > sub(G) = W (Ψ(G)), contradicting that Ψ(G) is product-

extremal. �

Recall from Chapter 5 that given s ≥ 2 and q ≥ 0, an (s, q)-graph is a multigraph (V,w) such that

for all X ∈
(
V
s

)
,
∑
xy∈(X2 ) w(xy) ≤ q. Given a multigraph G = (V,w), P (G) =

∏
xy∈(V2) w(xy).

Lemma 7.2.6. If r ≥ 2 is even, then for all n ≥ 3, the unique r-graph in C̃r(n) is the only product-

extremal element of M̃r(n).

Proof. Suppose G = (V, c) ∈ M̃r(n) is product-extremal. Let H = ([n], w) be the multigraph

defined by w(xy) = |c(xy)| for all xy ∈
(

[n]
2

)
. Observe P (H) = W (G). We claim that H is a

(3, 3m(r))-graph. Suppose towards a contradiction there were three distinct points x, y, z ∈ [n] such

that w(x, y) + w(y, z) + w(x, z) > 3m(r). Then

w(x, y) + w(y, z) + w(x, z) = |c(x, y)|+ |c(y, z)|+ |c(x, z)| > 3m(r),

and min{|c(x, y)|, |c(y, z)|, |c(x, z)|} ≥ 1 imply by Lemma 4.4.9 from Chapter 4 that G contains a

violating triangle, contradicting that G ∈ M̃r(n). Thus H is a (3, 3m(r))-graph, so by Theorem

5.2.3 in Chapter 5, W (G) = P (H) ≤ m(r)(
n
r) and equality holds if and only if w(x, y) = m(r) for

all xy ∈
(

[n]
2

)
. Since G is extremal, this implies P (H) = W (G) = m(r)(

n
r), and for all xy ∈

(
[n]
2

)
,

w(xy) = m(r) = |c(xy)|. Part (1) of Corollary 4.4.15 in Chapter 4 implies that the only metric

r-graph ([n], c′) satisfying |c′(x, y)| = m(r) for all xy ∈
(

[n]
2

)
is the unique element of C̃r(n). Thus

G is the unique element of C̃r(n). �

If r ≥ 3 is odd, define Ẽr(n) to be the set of r-graphs ([n], c) such that there is a set {e1, . . . , ebn/2c}

of pairwise disjoint elements in
(

[n]
2

)
such that c(ei) = Ur ∪ Lr and if xy ∈

(
[n]
2

)
\ {e1, . . . , ebn/2c}

then c(xy) = Ur. Observe that Ẽr(n) ⊆ C̃r(n).
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Lemma 7.2.7. If r ≥ 3 is odd, then for all n ≥ 3, all product-extremal elements of M̃r(n) are in

Ẽr(n).

Proof. Let G = ([n], c) ∈ M̃r(n) and let H be the multigraph ([n], w) where w(xy) = |c(xy)| for all

xy ∈
(

[n]
2

)
. Observe P (H) = W (G). We claim H is a (3, 3m(r)+1)-graph. Suppose by contradiction

there are three distinct points x, y, z ∈ [n] such that w(x, y) + w(y, z) + w(x, z) > 3m(r) + 1. Then

w(x, y) + w(y, z) + w(x, z) = |c(x, y)|+ |c(y, z)|+ |c(x, z)| > 3m(r) + 1,

and min{|c(x, y)|, |c(y, z)|, |c(x, z)|} ≥ 1 imply by Lemma 4.4.9 from Chapter 4 that G contains a

violating triangle, contradicting that G ∈ M̃r(n). Thus H is a (3, 3m(r) + 1)-graph, so by Theorem

5.2.3 in Chapter 5, W (G) = P (H) ≤ m(r)(
n
r)(m(r)+1

m(r) )bn/2c and equality holds if and only if H ∈

U1,m(r)(n), where recall, H ∈ U1,m(r)(n) if and only if there is a set {e1, . . . , ebn/2c} of pairwise

disjoint elements in
(

[n]
2

)
such that w(ei) = m(r)+1 for each ei and for all xy ∈

(
[n]
2

)
\{e1, . . . , ebn/2c},

w(x, y) = m(r). Since G is product-extremal, we must have sub(G) = m(r)(
n
r)(m(r)+1

m(r) )bn/2c = P (H)

and H ∈ U1,m(r)(n). So there is a set {e1, . . . , ebn/2c} of pairwise disjoint elements in
(

[n]
2

)
such that

|c(ei)| = m(r) + 1 for each ei and for all xy ∈
(

[n]
2

)
\ {e1, . . . , ebn/2c}, |c(x, y)| = m(r). Combining

this with part (2) of Lemma 4.4.14, we must have that for each ei, c(ei) = Ur ∪Lr and for all other

edges c(x, y) = Ur, that is, G is in Ẽr(n). �

Corollary 7.2.8. Let n ≥ 2. If r ≥ 2 is even, then ex(n,P) = m(r)(
n
2). If r ≥ 3 is odd, then

ex(n,P) = m(r)(
n
r)(m(r)+1

m(r) )bn/2c. Consequently, π(P) = m(r).

Proof. That ex(n,P) = max{W (G) : G ∈ M̃r(n)} follows from Propositions 7.2.4 and 7.2.5.

When r is even, this implies by Lemma 7.2.6 that ex(n,P) = W (G) where G ∈ C̃r(n). By def-

inition of C̃r(n) when r is even, this implies ex(n,P) = m(r)(
n
2). If r is odd, then Lemma 7.2.7

implies ex(n,P) = W (G) where G ∈ Ẽr(n). By definition of Ẽr(n), this implies ex(n,P) =

m(r)(
n
r)(m(r)+1

m(r) )bn/2c. That π(P) = m(r) holds in both cases now follows from the definition of

π(P) = limn→∞ ex(n,P)1/(n2). �

We can now recover our approximate enumeration theorem from Chapter 4, Corollary 4.1.6.

Proof of Corollary 4.1.6 from Chapter 4. Theorem 6.4.4 implies |Pn| = π(P)(1+o(1))(n2). By

definition of P, Mr(n) = Pn, and Corollary 7.2.8 implies π(P) = m(r). Thus

|Pn| = |Mr(n)| = m(r)(1+o(1))(n2).
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�

7.2.3. Stability and Approximate Structure. In this section we consider the stability theo-

rems and approximate structural results from Chapter 4. Recall the following definition of δ-closeness

for r-graphs from Chapter 4.

Definition 7.2.9. Suppose G = (V, c) and G′ = (V, c′) are complete r-graphs with the same vertex

set V of size n. Set ∆(G,G′) = {e ∈
(
V
2

)
: c(e) 6= c′(e)}. We say G and G′ are δ-close in the sense

of Chapter 4 if |∆(G,G′)| ≤ δn2.

Just “δ-close” will always mean in the sense of Definition 6.2.6. Observe that for complete r-graphs

G and G′ with the same finite vertex set, dist(G,G′) = 2|∆(G,G′)|. So G and G′ are δ-close if and

only if they are δ
2 -close in the sense of Chapter 4. We can now recover the approximate structure

theorems from Chapter 4, Theorem 4.1.5.

Proof of Theorem 4.1.5 from Chapter 4. Fix δ > 0. Choose ε > 0 and M1 from Theorem

4.4.13 in Chapter 4 such that if n > M1 and H ∈ M̃r(n) satisfies W (H) > m(r)(1−ε)(n2) then H is

δ/2-close in the sense of Chapter 4 to an element of C̃r(n). Now let β > 0 and M2 be as in Theorem

6.4.5 from Chapter 6 applied to δ/2 and ε. Let N = max{M1,M2}. We show for all n > N ,

|Mr(n) \ Cδr (n)|
|Mr(n)

| ≤ 2−βn
2

.

By Theorem 6.4.5 in Chapter 6, it suffices to show that for all n ≥ N , Eδ/2(ε, n,P) ⊆ Cδr (n). Sup-

pose H = (V, d) ∈ Eδ/2(ε, n,P) and let H ′ = (V, d′) ∈ E(ε, n,P) such that dist(H,H ′) ≤ δ/2. By

definition of E(ε, n, δ), there is G′ ∈ R([n],P) such that H ′ Ep G′ and sub(G′) > ex(n,P)1−ε.

Recall that we showed in the proof of Theorem 6.4.3 that for all n, ex(n,P) ≥ π(P)(
n
2), so

sub(G′) > π(P)(1−ε)(n2). Corollary 7.2.3 implies Ψ(G′) := (V, c′) ∈ M̃r(n) and Proposition 7.2.4

implies W (Ψ(G′)) = sub(G′) ≥ π(P)(1−ε)(n2). By Theorem 4.4.13 in Chapter 4, this implies Ψ(G′) is

δ/2-close in the sense of Chapter 4 to some M = ([n], c) ∈ C̃r(n). Define H ′′ = ([n], d′′) as follows.

If xy /∈ ∆(Ψ(G′),M)∪∆(H,H ′), let d′′(xy) = d′(xy) = d(xy), and if xy ∈ ∆(Ψ(G′),M)∪∆(H,H ′),

let d′′(xy) be any element of c(xy). We claim that for all xy, d′′(xy) ∈ c(xy). If xy ∈ ∆(Ψ(G′), G′′)∪

∆(H,H ′), this is by definition of d′′(xy). If xy 6∈ ∆(Ψ(G′),M) ∪ ∆(H,H ′), then d′′(xy) = d′(xy)

and c(xy) = c′(xy). Since, H ′ = (V, d′) Ep G′ = (V, c′), Proposition 7.2.2 implies d′(xy) ∈ c′(xy),

thus d′′(xy) ∈ c(xy). Therefore, G′′ ∈ C̃r(n) implies H ′′ ∈ Cr(n). We claim dist(H,H ′′) ≤ δ. By

definition of H ′′,

diff(H,H ′′) ⊆ diff(H,H ′) ∪ diff(Ψ(G′),M),
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so dist(H,H ′′) ≤ dist(H,H ′) + dist(Ψ(G′),M) = 2|∆(H,H ′)|+ 2|∆(Ψ(G′),M)| ≤ δn2 and we have

that H ∈ Cδr (n). �

We leave the following lemma to the reader.

Lemma 7.2.10. If M and N are complete r-graphs with the same vertex set V , then dist(M,N) =

dist(Ψ−1(M),Ψ−1(N)).

We now show that when r is even, P has a stability theorem in the sense of Chapter 6, but when r

is odd, this is not the case.

Theorem 7.2.11. If r ≥ 2 is even, then P has a stability theorem.

Proof. Fix δ > 0. By Theorem 4.4.13 in Chapter 4, there is ε > 0 and M such that for all

n > M if H ∈ M̃r(n) satisfies P (H) > m(r)(1−ε)(n2), then H is δ/2-close in the sense of Definition

7.2.9 to the unique r-graph H ′ ∈ C̃r(n). Suppose now that n > M and G ∈ R([n],P) satisfying

sub(G) ≥ ex(n,P)1−ε. We want to show there is G′ ∈ Rex([n],P) such that dist(G,G′) ≤ δ.

Recall that we showed in the proof of Theorem 6.4.3 that for all n, π(P)(
n
2) ≤ ex(n,P). Thus our

assumptions imply sub(G) ≥ ex(n,P)1−ε ≥ π(P)(1−ε)(n2). Proposition 7.2.8 implies π(P) = m(r)

and Corollary 7.2.3 implies Ψ(G) ∈ M̃r(n), so Proposition 7.2.4 implies

W (Ψ(G)) = sub(G) ≥ π(P)(1−ε)(n2) = m(r)(1−ε)(n2).

Thus Theorem 4.4.13 implies Ψ(G) is δ/2-close in the sense of Chapter 4 to the unique r-graph H ′ ∈

C̃r(n). By Lemma 7.2.6, H ′ is a product extremal element of M̃r(n). By Corollary 7.2.3, Ψ−1(H ′) ∈

R([n],P), and since Ψ(Ψ−1(H ′)) = H ′, Proposition 7.2.5 implies Ψ−1(H ′) ∈ Rex([n],P). By

Lemma 7.2.10, dist(Ψ−1(H ′), G) = dist(H ′,Ψ(G)) = 2
n2 |∆(H ′,Ψ(G))| ≤ δn2, where the inequality

is because H ′ and Ψ(G) are δ-close in the sense of Chapter 4. �

Corollary 7.2.12. When r ≥ 3 is odd, P does not have a stability theorem.

Proof. Let A = ([n], c) be such that for all xy ∈
(

[n]
2

)
, c(xy) = Lr. Then by definition, A ∈

M̃r(n) and W (A) = m(r)(
n
2). By Corollary 7.2.3, Ψ−1(A) ∈ R([n],P) and by Proposition 7.2.4,

sub(Ψ−1(A)) = W (A) = m(r)(
n
2). Let B ∈ Rex([n],P). By Proposition 7.2.7, Ψ(B) ∈ Ẽr(n). By

definition of A and Ẽr(n), ∆(A,Ψ(B)) =
(

[n]
2

)
, so dist(A,Ψ(B)) = 1 > δ. However, for all ε > 0,

π(P) = m(r) implies that if n is sufficiently large,

sub(Ψ−1(A)) = W (A) = m(r)(
n
2) ≥ ex(n,P)1−ε,
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so Ψ−1(A) ∈ E(ε, n,P). This shows that P does not have a stability theorem in the sense of

Definition 6.4.6 of Chapter 6. �

7.3. Multigraphs

In this section we use the results from Chapter 5 to prove approximate structure and enumeration

theorems for multigraphs. These results were originally proved in joint work of the author and D.

Mubayi in the specific setting of multigraphs (i.e. not using the machinery of Chapter 6). This

work will appear in forthcoming paper by the author and D. Mubayi. Our notation follows that

found in Chapter 5. Recall that given n, s, q, F (n, s, q) is the set of (n, s, q)-graphs with vertex set

[n]. If G = (V,w) is a multigraph, the multiplicity of G is µ(G) = max{w(xy) : xy ∈
(
V
2

)
} and

P (G) =
∏
xy∈(V2) w(xy). If G = (V,w) and G′ = (V ′, w′), G is a full subgraph of G′ if V = V ′ and

for all xy ∈
(
V
2

)
, w(xy) ≤ w′(xy).

7.3.1. Preliminaries. Given an integer q ≥ 1, let Lqmg = {Ri(x, y) : i = 0, . . . , q} consist

of q + 1 binary relations. We consider a multigraph G = (V,w) of multiplicity at most q as an

Lqmg-structure by interpreting, for each (x, y) ∈ V 2, G |= Ri(x, y) if and only if w(xy) = i. Observe

that by definition of a multigraph, this means that for all x ∈ V and 0 ≤ i ≤ q, G |= ¬Ri(x, x).

Fix integers s ≥ 2 and q ≥ 1. Let L = Lqmg and let P be the class of finite (s, q)-graphs, considered

as L-structures. Clearly P is a hereditary L-property. Since rL = 2, LP = {Rp(x, y) : p ∈ S2(P)}.

For each 0 ≤ i ≤ q, set

qi(x, y) = {x 6= y} ∪ {Ri(x, y), Ri(y, x)} ∪ {¬Rj(x, y) : j 6= i} ∪ {¬Rj(y, x) : j 6= i}.

Then for each 0 ≤ i ≤ q, let pi(x, y) be the unique complete quantifier-free 2-type containing qi(x, y).

We leave it to the reader to verify S2(P) = {pi(x, y) : 0 ≤ i ≤ q}, so LP = {Rpi(x, y) : 0 ≤ i ≤ q}.

Definition 7.3.1. Given a complete LP -structure G with domain V , the multigraph associated to

G is Ψ(G) := (V,w) where for each xy ∈
(
V
2

)
, w(xy) = max{j : G |= Rpj (x, y) ∨Rpj (y, x)} (note G

complete implies {j : G |= Rpj (x, y) ∨Rpj (y, x)} 6= ∅ for all xy ∈
(
V
2

)
).

An LP -structure G is downward closed if for all 0 ≤ i ≤ j ≤ q, G |= ∀x∀y(Rpj (x, y) → Rpi(x, y)).

Given a multigraph (V,w) of multiplicity at most q, let Ψ−1(V,w) be the LP -structure with domain

V such that for each (x, y) ∈ V 2, G |= Rpi(x, y) if and only if x 6= y and w(xy) ≥ i. We leave

it to the reader to verify that for any multigraph (V,w) of multiplicity at most q, Ψ−1(V,w) is a

downward closed LP -template and Ψ(Ψ−1(V,w)) = (V,w).
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Lemma 7.3.2. Suppose G is an LP -template with domain V . Then Ψ(G) Ep G and for any L-

structure G′, G′ Ep G implies G′ is a full subgraph of Ψ(G). If G is also downward closed, then for

any full subgraph G′ of Ψ(G), G′ Ep G.

Proof. Let (V,w) = Ψ(G). By definition of Ψ(G), for all uv ∈
(
V
2

)
, if w(uv) = i, then G |=

Rpi(u, v) ∨ Rpi(v, u). This shows DiagΨ(G)(uv) ∈ ChG(uv), thus Ψ(G) Ep G. Suppose G′ Ep G.

Clearly this implies G′ is a multigraph with vertex set V , say G′ = (V,w′). Fix uv ∈
(
V
2

)
and let

i = w′(uv). Then pi(x, y) = qftpG
′

L (u, v). Since G′ Ep G, this implies G |= Rpi(u, v) ∨ Rpi(v, u).

Since G is an L-template and pi(x, y) = pi(y, x), this implies G |= Rpi(u, v). By definition of Ψ(G),

G |= Rpi(u, v) implies w(uv) ≥ i. Thus for all uv ∈
(
V
2

)
, w(uv) ≥ w′(uv) so G′ is a full subgraph of

Ψ(G).

Suppose now that G is also downward closed and G′ = (V,w′) is a full subgraph of Ψ(G) = (V,w).

Fix uv ∈
(
V
2

)
and i = w′(uv). Since G′ is a full subgraph of Ψ(G), w′(uv) = i ≤ w(uv). Combining

this with the definition of Ψ(G), we have max{j : G |= Rpj (u, v)∨Rpj (v, u)} = w(uv) ≥ i = w′(uv).

Because G is downward closed, this implies G |= Rpi(u, v), which implies that pi(cu, cv) ∈ ChG(uv).

Since qftpG
′

L (u, v) = pi(x, y), this shows DiagG
′
(uv) ∈ ChG(uv). Since this holds for all uv ∈

(
V
2

)
,

we’ve shown G′ Ep G. �

Corollary 7.3.3. If (V,w) is an (s, q)-graph, then Ψ−1(V,w) ∈ R(V,P) and is downward closed.

Proof. We leave it to the reader to verify that the definition of Ψ−1 implies Ψ−1(V,w) is a downward

closed LP -template. To show Ψ−1(V,w) is P-random, suppose G′EpΨ−1(V,w). Then Lemma 7.3.2

implies G′ is a full subraph of Ψ(Ψ−1(V,w)) = (V,w). Since (V,w) is an (s, q)-graph, so are all its

full subgraphs. Thus G′ ∈ P. �

Definition 7.3.4. If G = (V,w) is a multigraph, let G+ = (V,w+) where for each xy ∈
(
V
2

)
,

w+(xy) = w(xy) + 1.

Observe that G is an (n, s, q)-graph if and only if G+ is an (n, s, q +
(
s
2

)
)-graph.

Corollary 7.3.5. Suppose G is a finite downward closed LP -template. Then sub(G) = P (Ψ(G)+).

Proof. Since G is downward closed, Lemma 7.3.2 and implies the number of full subpatterns of G

is the same as the number of full subgraphs of Ψ(G). Let Ψ(G) = (V,w). To choose a full subgraph

(V,w′) of Ψ(G), one must choose for each xy ∈
(
V
2

)
a value w′(xy) ∈ {0, . . . , w(xy)}. Thus the
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number of submultigraphs of Ψ(G) is

∏
xy∈(V2)

|{0, 1, . . . , w(xy)}| =
∏

xy∈(V2)

(w(xy) + 1) = P (Ψ(G)+).

�

Lemma 7.3.6. If G ∈ R([n],P), then there is a downward closed G∗ ∈ R([n],P) such that for all

uv ∈
(

[n]
2

)
, ChG(uv) ⊆ ChG∗(uv) and such that sub(G∗) ≥ sub(G)( q+1

q )|∆|, where

∆ = {uv ∈
(

[n]

2

)
: ChG(uv) 6= ChG∗(uv)}.

Proof. Define G∗ so that for all uv ∈
(
V
2

)
, G∗ |= Rpi(u, v) if and only if there is j ≥ i such that

G |= Rpj (u, v). We leave it to the reader to check that by definition, G∗ is downward closed and

for all uv ∈
(
V
2

)
, ChG(uv) ⊆ ChG∗(uv). We now show G∗ is P-random. Let G′ Ep G∗. By Lemma

7.3.2, G′ is a full subgraph of Ψ(G∗). Observe that by definition of G∗ and Ψ, Ψ(G) and Ψ(G∗)

are the same multigraph. Lemma 7.3.2 implies Ψ(G) Ep G, thus since G is P-random, Ψ(G) is an

(s, q)-graph. Thus G′ is a full subgraph of Ψ(G) = Ψ(G∗) which is an (s, q)-graph, implying that G′

is an (s, q)-graph, that is, G′ ∈ P. This shows G∗ is P-random.

Suppose uv ∈ ∆. Then ChG(uv) ( ChG∗(uv). Observe that since |ChG∗(uv)| ≤ |S2(P)| = q + 1,

this implies |ChG∗ (uv)|
|ChG(uv)| ≥

q+1
q . Thus the following holds.

sub(G∗) =
∏

uv∈(V2)

|ChG∗(uv)| = sub(G)
∏
uv∈∆

|ChG∗(uv)|
|ChG(uv)|

≥ sub(G)
(q + 1

q

)|∆|
.

�

Proposition 7.3.7. Suppose G is a downward closed LP -template. Then G is P-random if and

only if Ψ(G) is an (s, q)-graph if and only if Ψ(G)+ is an (s, q +
(
s
2

)
)-graph.

Proof. Fix G a downward closed LP -template with domain V . Let Ψ(G) = (V,w) and Ψ(G)+ =

(V,w+) as in Definition 7.3.4. That Ψ(G) is an (s, q)-graph if and only if Ψ(G)+ is an (s, q+
(
s
2

)
)-graph

follows from Definition 7.3.4. We now show G is P-random if and only if Ψ(G) is an (s, q)-graph.

Suppose first G is P-random. Since Ψ(G) is a full subgraph of itself, Lemma 7.3.2 implies Ψ(G)EpG.

Since G is P-random, this implies Ψ(G) ∈ P, i.e. Ψ(G) is an (s, q)-graph. Conversely, suppose Ψ(G)

is an (s, q)-graph. Then Corollary 7.3.3 implies Ψ−1(Ψ(G)) = G is P-random. �
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7.3.2. Counting. In this subsection we prove approximate enumeration theorems for Pn, for

certain cases of s and q. Recall that given n, s, q,

exΠ(n, s, q) = max{P (G) : G ∈ F (n, s, q)} and P(n, s, q) = {G ∈ F (n, s, q) : P (G) = exΠ(n, s, q)},

and the elements of P(n, s, q) are called product-extremal.

Lemma 7.3.8. If Gex ∈ R([n],P), then G is downward closed.

Proof. Suppose not. Then let G∗ ∈ R([n],P) be as in Lemma 7.3.6. Since G is not downward

closed, G∗ 6= G, so ∆ 6= ∅ and sub(G∗) ≥ sub(G)( q+1
q ) > sub(G), contradicting that G ∈ Rex([n],P).

�

Proposition 7.3.9. Suppose G is a downward closed LP -template with domain [n]. Then G ∈

Rex([n],P) if and only if Ψ(G)+ ∈ P(n, s, q +
(
s
2

)
) if and only if Ψ(G) ∈ P(n, s, q). Consequently,

ex(n,P) = exΠ(n, s, q +
(
s
2

)
).

Proof. Fix G a downward closed LP -template with domain [n]. It is straightforward to check that

by Definition 7.3.4, Ψ(G)+ ∈ P(n, s, q +
(
s
2

)
) if and only if Ψ(G) ∈ P(n, s, q). So it suffices to show

G ∈ Rex([n],P) if and only if Ψ(G) ∈ P(n, s, q). Suppose G ∈ Rex([n],P). Proposition 7.3.7 implies

Ψ(G) ∈ F (n, s, q). By Corollary 7.3.5, sub(G) = P (Ψ(G)+). Suppose Ψ(G) is not product-extremal.

Then there is H ∈ F (n, s, q) such that P (H) > P (Ψ(G)). Clearly this implies P (H+) > P (Ψ(G)+).

By Corollary 7.3.3, Ψ−1(H) is a downward closed LP -template. Thus Proposition 7.3.7 and the

fact that Ψ(Ψ−1(H)) = H ∈ F (n, s, q) imply Ψ−1(H) is P-random. Thus Ψ−1(H) ∈ R([n],P).

By Corollary 7.3.5, sub(Ψ−1(H)) = P (Ψ(Ψ−1(H))+) = P (H+) > P (Ψ(G)+) = sub(G), but this

contradicts that G ∈ Rex([n],P).

Conversely, suppose Ψ(G) ∈ P(n, s, q). Since G is downward closed, Proposition 7.3.7 and the

fact that Ψ−1(Ψ(G)) = G imply G is P-random. Suppose now that G /∈ Rex([n],P). Then there

is G∗ ∈ R([n],P) such that sub(G∗) > sub(G). By Lemma 7.3.6, we may replace G∗ with a

downward closed closed element of R([n],P) and maintain the property sub(G∗) > sub(G). By

Corollary 7.3.5, this implies P (Ψ(G)+) = sub(G) < sub(G∗) = P (Ψ(G∗)+). Clearly this implies

P (Ψ(G)) < P (Ψ(G∗)). But now Proposition 7.3.7 implies Ψ(G∗) ∈ F (n, s, q), contradicting that

Ψ(G) is product extremal.

We now show ex(n,P) = exΠ(n, s, q +
(
s
2

)
). Let G ∈ Rex([n],P). By definition, ex(n,P) = sub(G).

By Lemma 7.3.8, G is downward closed, so by Corollary 7.3.5, sub(G) = P (Ψ(G)+). We showed
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above that Ψ(G)+ ∈ P(n, s, q +
(
s
2

)
), so by definition, P (Ψ(G)+) = exΠ(n, s, q +

(
s
2

)
). This shows

ex(n,P) = exΠ(n, s, q +
(
s
2

)
), as desired. �

The following corollary is an immediate consequence of the definitions of π(H) and exΠ(s, q +
(
s
2

)
)

and the fact that ex(n,P) = exΠ(n, s, q +
(
s
2

)
).

Corollary 7.3.10. π(P) = exΠ(s, q +
(
s
2

)
).

Applying Theorem 7.7.8 yields the following approximate enumeration theorem.

Theorem 7.3.11. |F (n, s, q)| = exΠ(n, s, q +
(
s
2

)
)2o(n

2) = exΠ(s, q +
(
s
2

)
)(1+o(1))(n2).

Proof. Theorem 6.4.4 of Chapter 6, Theorem 7.7.8, Corollary 7.3.10, and Proposition 7.3.9 imply

|Pn| = π(P)(1+o(1))(n2) = ex(n,P)2o(n
2) = exΠ(n, s, q +

(
s

2

)
)2o(n

2) = exΠ(s, q +

(
s

2

)
)(1+o(1))(n2).

Since Pn = F (n, s, q) this finishes the proof. �

Combining this with our computations of exΠ(n, s, q +
(
s
2

)
) for various cases in Chapter 5 yields

the following approximate enumeration theorems. Recall the definition of γ from Theorem 5.2.7 in

Chapter 5.

Corollary 7.3.12. Let s, a, b, q are integers satsifying s ≥ 2, a, b ≥ 0 and q = a
(
s
2

)
+ b.

(i) If 0 ≤ b ≤ s− 2 then |F (n, s, q)| = (a+ 1)(
n
2)+o(n2).

(ii) If b =
(
s
2

)
− t where 2 ≤ t ≤ s

2 , then |F (n, s, q)| = a(n2)(a+1
a )ts−t(n)+o(n2).

(iii) If (s, q) = (4, 9), then |F (n, 4, 9)| = 2γn
2+o(n2).

Proof. If (i) holds, then Theorem 5.2.3 (Extremal) from Chapter 5 implies exΠ(s, q+
(
s
2

)
) = a+ 1,

so Theorem 7.3.11 implies |F (n, s, q)| = exΠ(s, q +
(
s
2

)
)(1+o(1))(n2) = (a + 1)(

n
2)+o(n2). If (ii) holds,

then Theorem 5.2.5 (Extremal) implies exΠ(n, s, q +
(
s
2

)
) = a(n2)(a+1

a )ts−t(n), so Theorem 7.3.11

implies |F (n, s, q)| = exΠ(n, s, q +
(
s
2

)
)2o(n

2) = a(n2)(a+1
a )ts−t(n)+o(n2). If (iii) holds, then Theorem

5.2.7 (Extremal) implies exΠ(4, 9 +
(

4
2

)
) = exΠ(4, 15) = 2γ . Thus Theorem 7.3.11 implies

|F (n, 4, 9)| = exΠ(4, 15)(1+o(1))(n2) = 2γn
2+o(n2).

�
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7.3.3. Stability and Approximate Structure. In this section we prove an approximate

structure theorem for P for certain values of s and q. If G = (V,w) and G = (V,w′) are multigraphs,

then ∆(G,G′) = {xy ∈
(
V
2

)
: w(xy) 6= w′(xy)} and G and G′ are called δ-close in the sense of

Chapter 5 if |∆(G,G′)| ≤ δn2 (δ-close alone means in the sense of Definition 6.2.6).

Theorem 7.3.13. If (s, q) is in case (i) or (ii) of Corollary 7.3.12, then for all δ > 0 there is an

ε > 0 and M such that for all n ≥ M the following holds. If G ∈ F (n, s, q) satisfies P (G+) >

exπ(n, s, q +
(
s
2

)
)1−ε, then G+ is δ-close in the sense of Chapter 5 to an element of P(n, s, q +

(
s
2

)
).

Proof. This follows immediately from Theorems 5.2.3 (Stability) and 5.2.5 (Stability) applied to

(s, q′) where q′ = q +
(
s
2

)
. �

Lemma 7.3.14. There is a constant C such that for all ε > 0 there is M such that for all n ≥ M

the following holds. If G ∈ R([n],P) is not downward closed and sub(G) ≥ ex(n,P)1−ε, then there

is G∗ ∈ R([n],P) which is downward closed and dist(G,G∗) ≤ Cε.

Proof. Assume n is sufficiently large so that ex(n,P) ≤ π(P)2n2

. Let G∗ be as in Lemma

7.3.8. Then G∗ ∈ R([n],P) is downward closed, and in the notation of Lemma 7.3.8, sub(G∗) ≥

sub(G)( q+1
q )|∆|, where

∆ = {uv ∈
(

[n]

2

)
: ChG(uv) 6= ChG∗(uv)}.

Observe that because G and G∗ are LP -templates, ∆ = {uv ∈
(

[n]
2

)
: (u, v) ∈ diff(G,G∗)}, thus

|∆| = 1
2 |diff(G,G∗)|. Now observe our assumptions imply

ex(n,P) ≥ sub(G∗) ≥ sub(G)(
q + 1

q
)|∆| ≥ ex(n,P)1−ε.

Rearranging this, we obtain that ( q+1
q )|∆| ≤ ex(n,P)ε ≤ π(P)2εn2

. Taking logs and dividing by

log((q + 1)/q) we obtain that

|∆| ≤ 2ε log(π(P))/ log((q + 1)/q)n2.

Thus if we set C = 4 log(π(P))/ log((q + 1)/q), this implies |diff(G,G∗)| ≤ 2|∆| ≤ Cεn2, so

dist(G,G∗) ≤ Cε, as desired. �

Corollary 7.3.15. If (s, q) is in case (i) or (ii) of Corollary 7.3.12, then P has a stability theorem.

Proof. Suppose (s, q) is in case (i) or (ii) of Corollary 7.3.12. Let C and M be as in Lemma 7.3.14.

Fix δ > 0 and choose ε1 > 0 and M1 as in Theorem 7.3.13 for δ/4. Let ε = min{ε1, δ/(4C)} and
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n ≥ max{M.M1}. Suppose G ∈ R([n],P) and sub(G) ≥ ex(n,P)1−ε. We want to show there is

G′ ∈ Rex([n],P) such that dist(G,G′) ≤ δ. By Lemma 7.3.14, there is G∗ ∈ R([n],P) which is

downward closed and Cε = δ/4-close to G.

Proposition 7.3.7 implies Ψ(G∗) is an (s, q)-graph and Ψ(G∗)+ is an (s, q +
(
s
2

)
)-graph. Corollary

7.3.5 implies sub(G∗) = P (Ψ(G))+. Thus Ψ(G∗)+ is an (s, q +
(
s
2

)
)-graph with P (Ψ(G∗)+) >

ex(n,P)1−ε = exΠ(s, q +
(
s
2

)
)1−ε, where the equality is from Proposition 7.3.9. Theorem 7.3.13

implies Ψ(G∗)+ is δ/4-close in the sense of Chapter 5 to an element of P(n, s, q +
(
s
2

)
), say H =

([n], wH). Let H ′ = ([n], wH
′
) be such that (H ′)+ = H, i.e. for all xy ∈

(
[n]
2

)
, wH

′
(xy) = wH(xy)−1.

Clearly Definition 7.3.4 implies H ′ ∈ P(n, s, q) and Ψ(G) is δ-close to H ′ in the sense of Chapter

5. By Proposition 7.3.9, Ψ−1(H ′) ∈ Rex([n],P). We claim G∗ is δ/2-close to Ψ−1(H ′). Note that

because G∗ is downward closed, if Ψ(G∗) = (V,wG
∗
), then

{i : pi(x, y) ∈ ChG∗(xy)} = {0, . . . , wG
∗
(xy)}.

Similarly, since Ψ−1(H ′) is downward closed (by definition of Ψ−1), we have

{i : pi(x, y) ∈ ChΨ−1(H′)(xy)} = {0, . . . , wH
′
(xy)}.

Thus

diff(G∗,Ψ−1(H ′) =
{

(x, y) ∈ V 2 : {i : pi(x, y) ∈ ChG∗(xy)} 6= {i : pi(x, y) ∈ ChΨ−1(H′)(xy)}
}

=
{

(x, y) ∈ V 2 : wG
∗
(xy) 6= wH

′
(xy)

}
.

Since Ψ(G∗) and H ′ are δ/4-close in the sense of Chapter 5,

|∆(Ψ(G∗), H ′)| = |{xy ∈
(
V

2

)
: wG

∗
(xy) 6= wH

′
(xy)}| ≤ δ/4n2.

Thus |diff(G∗,Ψ−1(H ′))| ≤ δ/2n2 and G∗ and Ψ−1(H ′) are δ/2-close. Combining what we’ve shown,

we have dist(G,Ψ−1(H ′)) ≤ dist(G,G∗) + dist(G∗,Ψ−1(H ′)) ≤ δ. �

Let Ua(n) be the set of G ∈ F (n, s, q) which are full subgraphs of the unique multigraph in Ua(n).

Given 1 ≤ t ≤ s/2, let Ts−t(n) be the set of G ∈ F (n, s, q) which are full subgraphs some element of

Ts−t,a(n).

We can now apply Theorem 6.4.7 to obtain approximate structure theorems in these cases.
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Corollary 7.3.16. Let s, q, a, b be integers such that s ≥ 3, a, b ≥ 0, and q = a
(
s
2

)
+ b. For all

δ > 0 there exists β > 0 and M such that for all n ≥M , the following hold.

(i) If 0 ≤ b ≤ s− 2 then

|F (n, s, q) \ Uδ1,a(n)|
|F (n, s, q)|

≤ 2−βn
2

.(81)

(ii) If b =
(
s
2

)
− t for some 1 ≤ t ≤ s/2, then

|F (n, s, q) \ Tδs−t,a(n)|
|F (n, s, q)|

≤ 2−βn
2

.(82)

Proof. Assume (s, q) is in cases (i) or (ii) and fix δ > 0. By Corollary 7.3.15, P has a stability

theorem. Thus, Theorem 6.4.7 implies there is β > 0 and M such that for all n ≥M ,

|F (n, s, q) \ Eδ(n)|
|F (n, s, q)|

≤ 2−βn
2

,(83)

where

E(n) = {G ∈ F (n, s, q) : GEp G
′ some G′ ∈ Rex([n],P)},

and Eδ(n) = {G ∈ F (n, s, q) : ∃G′ ∈ E(n) such that dist(G,G′) ≤ δ}. By Proposition 7.3.9,

G′ ∈ Rex([n],P) if and only if Ψ(G′) ∈ P(n, s, q). Combining this with Proposition 7.2.2 yields that

E(n) = {G ∈ F (n, s, q) : G is a full subgraph of some H ∈ P(n, s, q)}.

Then note that given two multigraphs G and G′ with the same domain, dist(G,G′) ≤ δ if and only

if G and G′ are δ/2-close in the sense of Chapter 5. Thus Eδ(n) is equal to the set

{G ∈ F (n, s, q) : G is δ/2-close in the sense of Chapter 5 to a full subgraph of some G′ ∈ P(n, s, q)}.

If we are in case (i), then Theorem 5.2.3 (Stability) implies that if n is sufficiently large, the elements

of P(n, s, q) are δ/2 in the sense of Chapter 5 to the unique element of U1,a(n). Thus Eδ(n) ⊆

Uδ1,a(n). Combining this with (83) yields (81). If we are in case (ii), then Theorems 5.2.5 (Extremal)

implies P(n, s, q) = Ts−t,a(n), so Eδ(n) = T
δ/2
s−t,a(n). Combining this with (83) yields (82). �

7.4. Directed Graphs

In this section we consider results by Kühn, Oshtus, Townsend, and Zhao on the asymptotic struc-

ture of digraphs omitting transitive tournaments [73]. We would like to point out that [73] also

investigates oriented graphs omitting transitive tournaments as well as digraphs and oriented graphs
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omitting cycles. Moreover, their results go much further than the ones we state here, proving precise

structure and enumeration results in various cases.

7.4.1. Statements of results from [73]. We begin with some preliminaries on digraphs and

statements of results from [73]. A digraph is a pair (V,E) where V is a set of vertices and E ⊆ V 2

is a set of directed edges. A tournament on k vertices is an orientation of the complete graph on k

vertices. In other words, it is a digraph (V,E) such that |V | = k and for all xy ∈
(
V
2

)
exactly one

of (x, y) or (y, x) is in E. A tournament (V,E) is called transitive if for all x, y, z ∈ V , (x, y) ∈ E

and (y, z) ∈ E implies (x, z) ∈ E. Suppose G = (V,E) and G′ = (V ′, E′) are digraphs. We say G′

is a subdigraph of G, denoted G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E. If V = V ′ then G is a full digraph of

G. We say G and G′ are isomorphic if there is a bijection f : V → V ′ such that for all xy ∈
(
V
2

)
,

(x, y) ∈ E if and only if (f(x), f(y)) ∈ E′. Given a digraph H, G is H-free if there is no G′ ⊆ G

with G ∼= H. For the rest of this section, k ≥ 2 is a fixed integer and Tk+1 is a fixed transitive

tournament on k + 1 vertices. The subject of this section is the following set of digraphs, where

n ∈ N.

Forbdi(n, Tk+1) = {G = ([n], E) : G is a Tk+1-free digraph}.

Recall that Tk(n) is the set of k-partite Turán graphs with vertex set [n] and tk(n) is the number

of edges in an element of Tk(n). Let DTk(n) be the set of digraphs which can be obtained from an

element of Tk(n) by replacing all the edges with two directed edges. More precisely, DTk(n) is the

set of digraphs G = ([n], E) such that for some G′ = ([n], E′) ∈ Tk(n), E = {(x, y) ∈ [n]2 : xy ∈ E′}.

Given a digraph G = (V,E), set

f1(G) = {xy ∈
(
V

2

)
: exactly one of (x, y) or (y, x) is in E},

f2(G) = {xy ∈
(
V

2

)
: (x, y) and (y, x) are in E}, and

e(G) = f1(G) + log2(3)f2(G).

Observe that in this notation the number of full subdigraphs of G is 2e(G). Let

max(n, Tk+1) = max{e(G) : G ∈ Forbdi(n, Tk+1)}.

This notion is called “ex(n, Tk+1)” in [73]. We have changed the notation to avoid confusion with

Definition 6.4.1. A digraph G ∈ Forbdi(n, Tk+1) is edge-extremal if e(G) = max(n, Tk+1). The

following is Lemma 4.1 from [73].
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Theorem 7.4.1 (Kühn-Oshtus-Townsend-Zhao [73]). For all n ∈ N, max(n, Tk+1) = tk(n) log2(3)

and DTk(n) is the set of edge-extremal elements of Forbdi(n, Tk+1).

Given two digraphs G and G′ with vertex set [n] and δ > 0, write G = G′ ± δn2 to denote that G

can be obtained from G′ by adding or removing at most βn2 directed edges. Given n and δ, let

DT δk (n) = {G ∈ Forbdi(n, Tk+1) : G = G′ ± δn2 some G′ ∈ DTk(n)} and

DTk(n) = {G ∈ Forbdi(n, Tk+1) : G ⊆ G′ some G′ ∈ DTk(n)} and

DTδk(n) = {G ∈ Forbdi(n, Tk+1) : G = G′ ± δn2 some G′ ∈ DTk(n)}

The following is Lemma 4.3 from [73].

Theorem 7.4.2 (Kühn-Oshtus-Townsend-Zhao [73]). Let k ≥ 2. For all δ > 0 there is β > 0

such that the following holds for all sufficiently large n. If G ∈ Forbdi(n, Tk+1) satisfies e(G) ≥

max(n, Tk+1)− εn2, then G ∈ DT δk (n).

The following theorem follows from the proof of Lemma 4.5 from [73].

Theorem 7.4.3 (Kühn-Oshtus-Townsend-Zhao [73]). Let k ≥ 2. For all δ > 0 there is β > 0

such that the following holds for all sufficiently large n.

|Forbdi(n, Tk+1) \ DTδk(n)|
|Forbdi(n, Tk+1)|

≤ 2−βn
2

.

The following is Lemma 5.1 in [73]. They in fact prove a much stronger result where the o(n2) error

is replaces with O(n). The result we quote below is only as strong was what we can recover using

Chapter 6.

Theorem 7.4.4 (Kühn-Oshtus-Townsend-Zhao [73]). Let k ≥ 2. |Forbdi(n, Tk+1)| = 3tk(n)+o(n2).

The proof is [73] served as one of the main blueprints for the proofs in Chapter 6 and uses the same

tools employed there, namely the hypergraph containers theorem, a graph removal lemma, and a

stability theorem.

7.4.2. Preliminaries. In this subsection we interpret the basic definitions from Chapter 6 in

the setting of digraphs. Let L = {R(x, y)} consist of a single binary relation symbol. We consider

digraphs as L-structures in the natural way, that is, given G = (V,E) a digraph, G |= R(x, y) if
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and only if (x, y) ∈ E. Let P to be the closure of Forbdi(Tk+1) under isomorphism. Clearly P is a

hereditary L-property. Since rL = 2, LP = {Rp(x, y) : p ∈ S2(P)}. Set

(1) q1(x, y) = {x 6= y,R(x, y),¬R(y, x)}

(2) q2(x, y) = {x 6= y,R(y, x),¬R(x, y)}

(3) q3(x, y) = {x 6= y,R(y, x), R(x, y)}

(4) q4(x, y) = {x 6= y,¬R(y, x),¬R(x, y)}.

For each i = 1, 2, 3, 4, let pi(x, y) be the unique complete quantifier-free 2-type extending qi(x, y).

We leave it to the reader to verify that S2(P) = {pi(x, y) : i ∈ [4]}. Therefore,

LP = {Rp1(x, y), Rp2(x, y), Rp3(x, y), Rp4(x, y)}.

An LP -structure G is downward closed if G |= ∀x∀y(Rp3(x, y) ↔ Rp1(x, y) ∧ Rp2(x, y)) and G |=

∀x∀y(x 6= y → Rp4(x, y)). The idea is that if G is downward closed, then for any pair of elements

xy in G, if “(x, y) is an edge” is a choice according to G, then “(x, y) is not an edge” is also a choice

according to G.

Definition 7.4.5. Suppose G is a complete LP -structure G with domain V . The digraph associated

to G is Ψ(G) := (V,E) where (x, y) ∈ E and (y, x) /∈ E if and only if

G |= Rp1(x, y) ∨Rp2(y, x) ∨Rp3(x, y) ∨Rp3(y, x),

and (x, y), (y, x) ∈ E if and only if G |= Rp3(x, y) ∨Rp3(y, x).

Given a digraph (V,E), define Ψ−1(V,E) to be the LP -structure with domain V such that for all

(x, y) ∈ V 2, G |= Rp1(x, y) if and only if (x, y) ∈ E, G |= Rp2(x, y) if and only if (y, x) ∈ E,

G |= Rp3(x, y) if and only if (x, y), (y, x) ∈ E, and G |= Rp4(x, y) if and only if x 6= y. We leave

it to the reader to verify that Ψ(Ψ−1(V,E)) = (V,E) and that Ψ−1(V,E) is a downward closed

LP -template.

Lemma 7.4.6. If G is an LP -template, then Ψ(G)Ep G and G′ Ep G implies G′ is a full subdigraph

of Ψ(G). If further, G is downward closed, then for any full subdigraph G′ of Ψ(G), G′ Ep G.

Proof. We first show that Ψ(G) Ep G. Fix uv ∈
(
V
2

)
. We want to show that if p(x, y) =

qftp
Ψ(G)
L (u, v), then p(cu, cv) ∈ ChG(uv). If p(x, y) = p1(x, y), then (u, v) ∈ E and (v, u) /∈ E.

by definition of Ψ(G), we must have G |= Rp1(u, v) ∨ Rp2(v, u) ∨ Rp3(u, v) ∨ Rp3(v, u) and G |=

¬Rp3(u, v) ∧ ¬Rp3(v, u). Thus G |= Rp1(u, v) ∨ Rp2(v, u). Since p2(y, x) = p1(x, y) this implies
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by definition that p1(cu, cv) ∈ ChG(uv), as desired. The case when p(x, y) = p2(x, y) follows a

symmetric argument. If p(x, y) = p3(x, y), then (u, v) and (v, u) are in E, so by definition of Ψ(G),

G |= Rp3(u, v) ∨Rp3(v, u). Since p3(x, y) = p3(y, x) this implies p3(cu, cv) ∈ ChG(uv) as desired. If

p(x, y) = p4(x, y), then neither (u, v) nor (v, u) are in E, so by definition of Ψ(G),

G |= ¬Rp1(u, v) ∧ ¬Rp2(v, u) ∧ ¬Rp3(u, v) ∧ ¬Rp3(v, u) ∧ ¬Rp1(v, u) ∧ ¬Rp2(u, v).

Since G is complete, this implies G |= Rp4(u, v) ∨Rp4(v, u), which implies p4(cu, cv) ∈ ChG(uv), as

desired.

Suppose now G′EpG. It is clear this implies G′ is a digraph with vertex set V . Let G′ = (V,E′) and

Ψ(G) = (V,E). We want to show E′ ⊆ E. Fix (x, y) ∈ E′. Then qftpG
′

L (x, y) ∈ {p1(x, y), p3(x, y)}.

Since G′ Ep G, this means either G |= Rp1(x, y) or G |= Rp3(x, y). In either case, by definition of

Ψ(G), (x, y) ∈ E′.

Suppose now G is downward closed and G′ is a full subdigraph of Ψ(G). Let G′ = (V,E′) and

Ψ(G) = (V,E). Fix xy ∈
(
V
2

)
. We want to show p(x, y) = qftpG

′

L (x, y), then G |= Rp(x, y). Because

G is downward closed, if p(x, y) = p4(x, y), then we are done since x 6= y implies G |= Rp4(x, y). If

p(x, y) = p1(x, y), then (x, y) ∈ E′. Since G′ ⊆ Ψ(G), this implies (x, y) ∈ E. By definition of Ψ(G),

this implies G |= Rp1(x, y) ∨Rp2(y, x) ∨Rp3(x, y) ∨Rp3(y, x). Because G is a downward closed LP -

template and p1(x, y) = p2(y, x), this implies G |= Rp1(x, y), as desired. A similar argument takes

care of the case when p(x, y) = p2(x, y). Suppose now p(x, y) = p3(x, y). Then (x, y), (y, x) ∈ E′.

Since G′ ⊆ Ψ(G), this implies (x, y), (y, x) ∈ E. By definition of Ψ(G), this implies

G |= Rp3(x, y) ∨Rp3(y, x).

Since p3(x, y) = p3(y, x) and G is an LP -template, this implies G |= Rp3(x, y), so we are done. �

Lemma 7.4.7. If H = (V,E) ∈ Forbdi(n, Tk+1), then Ψ−1(H) ∈ R([n],P) and Ψ−1(H) is downward

closed.

Proof. We leave it to the reader to verify that by definition, Ψ−1(H) is a downward closed LP -

template with domain [n]. To show Ψ−1(H) is P-random, let GEp Ψ−1(H). By Lemma 7.4.6, this

implies G is a full subdigraph of Ψ(Ψ−1(H)) = H. Since H is Tk+1-free, so is any digraph. Thus

G ∈ P. This shows Ψ−1(H) is P-random. �

Corollary 7.4.8. If G is an LP -template. Then sub(G) ≤ 2e(Ψ(G)) and equality holds if G is

downward closed.



7.4. DIRECTED GRAPHS 174

Proof. Since G is a downward closed LP -template, Lemma 7.4.6 implies sub(G) is at most the

number of subdigraphs of Ψ(G), which is equal to 2e(Ψ(G)) by definition of e(Ψ(G)). If G is downward

closed, then equality holds by Lemma 7.4.7. �

Proposition 7.4.9. Suppose G is a finite downward closed LP -template. Then G is P-random if

and only if Ψ(G) is Tk+1-free.

Proof. Suppose Ψ(G) is not Tk+1-free. Then Ψ(G) /∈ P. By Lemma 7.4.6, Ψ(G) Ep G, so this

implies G is not P-random. Conversely, suppose G is not P-random. Then there is G′ Ep G such

that G′ /∈ P. In other words G′ is a digraph which is not Tk+1-free. By Lemma 7.4.6, G′ ⊆ Ψ(G)

implies Ψ(G) is not Tk+1-free. �

7.4.3. Counting. In this subsection we give a proof of Theorem 7.4.4 using Theorem 7.4.1 and

Chapter 6.

Lemma 7.4.10. If G ∈ R([n],P) then there is G∗ ∈ R([n],P) which is downward closed with the

property that sub(G∗) ≥ sub(G)(4/3)
1
2 |diff(G,G∗)|.

Proof. Suppose not. Let G∗ be an LP -template with domain [n] and satisfing the following.

• G∗ |= ∀x∀y(x 6= y → Rp4(x, y)).

• If G |= Rp3(x, y) then G∗ |= Rp3(x, y) ∧Rp1(x, y) ∧Rp2(x, y).

• If G |= Rp1(x, y) then G∗ |= Rp1(x, y) and if G |= Rp2(x, y) then G∗ |= Rp2(x, y).

We leave it to the reader to verify that G∗ has the property that for all (x, y) ∈ [n]2, ChG∗(xy) ⊇

ChG(xy). If (x, y) ∈ diff(G,G∗), then ChG∗(xy) ) ChG(xy) and

4 = |S2(P)| ≥ |ChG∗(xy)| > |ChG(xy)| ≥ 1

imply |ChG∗ (xy)|
|ChG(xy)| ≥ 4/3. Thus Corollary 7.4.8 implies

sub(G∗) =
∏

uv∈(V2)

|ChG∗(uv)| = sub(G)
∏

{uv:(u,v)∈diff(G∗,G)}

|ChG∗(uv)|
|ChG(uv)|

≥ sub(G)
(

4/3
) 1

2 |diff(G,G∗)|
.

We have only left to show that G∗ ∈ R([n],P). Let H Ep G∗. We want to show H ∈ P. By

definition of G∗ and Ψ, Ψ(G) is the same digraph as Ψ(G∗). By Proposition 7.4.6, H is a subdigraph

of Ψ(G) = Ψ(G∗). By Proposition 7.4.6, Ψ(G)Ep G. Since G is P-random, this implies Ψ(G) ∈ P,

which implies any subdigraph of Ψ(G) is in P. In particular, H ∈ P. �
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Proposition 7.4.11. If G is a downward closed LP -template with domain [n], then G ∈ Rex([n],P)

if and only if Ψ(G) ∈ DTk(n).

Proof. Suppose first G ∈ Rex([n],P). By definition sub(G) = ex(n,P). By Lemma 7.4.10, if G is

not downward closed, then there is G∗ ∈ R([n],P) which is downward closed such that sub(G∗) ≥

sub(G)(4/3)1/2|diff(G∗,G)|. Since then G∗ is downward closed and G is not downward closed, G∗ 6= G

implies |diff(G∗, G)| ≥ 1. Thus sub(G∗) > sub(G), contradicting that G ∈ Rex([n],P). Thus G is

downward closed, so Corollary 7.4.8 implies sub(G) = 2e(Ψ(G)). Suppose Ψ(G) /∈ DTk(n). Then

Theorem 7.4.1 implies that for any H ∈ DTk(n), 2e(H) > 2e(Ψ(G)). By Lemma 7.4.7, Ψ−1(H) ∈

R([n],P) and is downward closed, so Corollary 7.4.8 implies sub(Ψ−1(G)) = 2e(H) > 2e(Ψ(G)) =

sub(G), contradicting that G ∈ Rex([n],P).

Suppose now that Ψ(G) ∈ DTk(n). Lemma 7.4.7 implies Ψ−1(Ψ(G)) = G ∈ R([n],P) and is

downward closed. Suppose towards a contradiction that G /∈ Rex([n],P). Then there is G′ ∈

R([n],P) such that sub(G′) > sub(G). By applying Lemma 7.4.10, we may assume G′ is downward

closed. By Proposition 7.4.6, Ψ(G′) ∈ P. Corollary 7.4.8, 2e(Ψ(G′)) = sub(G′) > sub(G) = 2e(Ψ(G),

which implies e(Ψ(G′)) > e(Ψ(G)), contradicting that Ψ(G) is edge extremal (since by Theorem

7.4.1, elements of DTk(n) are edge-extremal). �

Corollary 7.4.12. ex(n,P) = 2max(n,Tk+1) = 3tk(n). Consequently π(P) = 3(1− 1
k ) 1

2 .

Proof. Let G ∈ Rex([n],P). Then by definition, ex(n,P) = sub(G). Proposition 7.4.11 implies

Ψ(G) ∈ DTk(n) and Corollary 7.4.8 implies sub(G) = 2e(Ψ(G)). Combining these facts with Theorem

7.4.1 implies ex(n,P) = sub(G) = 2max(n,Tk+1) = 3tk(n) as desired. By definition of π(P), this implies

π(P) = 3(1− 1
k ) 1

2 . �

Proof of Theorem 7.4.4. By Theorem 7.7.8 and Corollary 7.4.12,

|Pn| = |Forbdi(n, Tk+1)| = ex(n,P)2o(n
2) = 3tk(n)+o(n2).

�

7.4.4. Stability and approximate structure. In this section we prove Theorem 7.4.3 using

Theorem 7.4.2 and Chapter 6.

Proposition 7.4.13. P has a stability theorem.
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Proof. Fix δ > 0. Choose ε and M such that Theorem 7.4.2 implies that for all n < M and

G ∈ Forbdi(n, Tk+1), if e(G) ≥ max(n, Tk+1)(1 − ε), then G ∈ DT
δ/2
k (n). Suppose now G ∈

R([n],P) satisfies sub(G) ≥ ex(n,P)1−ε. We want to show there is G′ ∈ Rex([n],P) such that

dist(G,G′) ≤ δ. Apply Lemma 7.4.7 to obtain G∗ ∈ R([n],P) which is downward closed and which

satisfies sub(G∗) ≥ sub(G)(4/3)
1
2 |diff(G∗,G)|. Then our assumptions imply

ex(n,P)1−ε ≤ sub(G)(4/3)
1
2 |diff(G∗,G)| ≤ sub(G∗) ≤ ex(n,P).

Rearranging this, we obtain that (4/3)
1
2 |diff(G∗,G)| ≤ ex(n,P)ε. Assume n is sufficiently large so that

ex(n,P) ≤ π(P)2n2

. Then we have (4/3)
1
2 |diff(G∗,G)| ≤ π(P)2εn2

. Rearranging this implies

|diff(G∗, G)| ≤ 4επ(P)n2/ log(4/3).

Assume ε was chosen sufficiently small so that 4επ(P)n2/ log(4/3) ≤ δ/2, so dist(G,G∗) ≤ δ/2.

Then Proposition 7.4.9 implies Ψ(G∗) ∈ Forbdi(n, Tk+1) and Corollary 7.4.8 implies 2e(Ψ(G∗)) =

sub(G∗) ≥ ex(n,P)1−ε. By Corollary 7.4.12, this implies 2e(Ψ(G∗)) ≥ 2max(n,Tk+1)(1−ε), which implies

e(Ψ(G∗)) ≥ max(n, Tk+1)(1 − ε). By Theorem 7.4.2, this implies Ψ(G∗) ∈ DT
δ/2
k (n). Let H ∈

DTk(n) be such that Ψ(G∗) = H±δn2. By Proposition 7.4.7, Ψ−1(H ′) ∈ R([n],P) and is downward

closed. Then Ψ(Ψ−1(H)) = H ∈ DTk(n) implies by Proposition 7.4.11 that Ψ−1(H) ∈ Rex([n],P).

We show G∗ and Ψ−1(H) are δ/2-close. Since G∗ and Ψ−1(H) are downward closed,

diff(G∗,Ψ−1(H)) = {(x, y) ∈ V 2 : ChG(xy) 6= ChΨ−1(H)(xy)} = E(Ψ(G∗))∆E(H).

Since Ψ(G∗) = H ± δn2, this implies |diff(G∗,Ψ−1(H))| ≤ |E(Ψ(G∗))∆E(H)| ≤ δ/2n2. Combining

all this, we have that dist(G,Ψ−1(H)) ≤ dist(G,G∗) + dist(G∗,Ψ−1(H)) ≤ δ. This shows G is

δ-close to an element of Rex([n],P) so we have shown P has a stability theorem. �

We can now prove Theorem 7.4.2 using theorems from Chapter 6.

Proof of Theorem 7.4.2. Proposition 7.4.13 and Theorem 6.4.7 from Chapter 6 imply that for

all δ > 0, there exist β > 0 and M such that

|Forbdi(n, Tk+1) \ Eδ(n,P)|
|Forbdi(n, Tk+1)|

≤ 2−βn
2

,(84)

where

E(n,P) = {G ∈ Forbdi(n, Tk+1) : GEp G
′ some G′ ∈ Rex([n],P)},
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and Eδ(n,P) = {G ∈ Forbdi(n, Tk+1) : dist(G,G′) ≤ δ for some G′ ∈ E(n,P)}. By Proposition

7.4.11, G′ ∈ Rex([n],P) if and only if Ψ(G′) ∈ DTk+1(n) and GEpG′ if and only if G is a subdigraph

of Ψ(G). Thus

E(n,P) = {G ∈ Forbdi(n, Tk+1) : G ⊆ G′ for some G′ ∈ DTk(n)} = DTk(n).

Combining this with the fact that |∆(M,N)| = 1
2 |diff(M,N)| for any M,N ∈ Forbdi(n, Tk+1)

implies Eδ(n,P) = DTδ/2k (n). Combining this with (84) finishes the proof.

7.5. Hereditary properties of hypergraphs

In this section we show that Theorem 7.7.8 agrees with existing enumeration theorems for hereditary

properties of hypergraphs. The notation and results in this section are from a paper by Doston and

Nagle, [45]. As is pointed out in [45], these results extend those for hereditary properties of graphs

from [3, 27] and for families of graphs appearing in [90, 88, 87]. We would like to point out that

these results also follow from independent work by Ishigami in [61], which will be considered in

detail in Section 7.7 of this chapter.

7.5.1. Statements of Results from [45]. Given k ≥ 2, a k-uniform hypergraph is a pair

G = (V,E) where V is a set of vertices and E ⊆
(
V
k

)
is a set of edges. Given two k-uniform

hypergraphs G = (V,E) and G′ = (V ′, E′), we say G is a subhypergraph of G′ if V ⊆ V ′ and

E ⊆ E′. We say G is an induced subhypergraph of G′ if V ⊆ V ′ and E = E ∩
(
V ′

2

)
. A hereditary

property of k-uniform hypergraphs is a nonempty class of finite k-uniform hypergraphs closed under

isomorphism and taking induced subhypergraphs. Given P a hereditary property of k-uniform

hypergraphs, the extremal number of P is

max(n,P) = max{|A| :A ⊆
(

[n]

k

)
and there exists B ⊆

(
[n]

k

)
\A such that

([n], B ∪A′) ∈ Pn for all A′ ⊆ A}

This notion comes from [45] and is denoted there by “ex(n,P)”. We have changed the notation to

avoid confusion with Definition 6.4.1. The following is Theorem 1.1 from [45].

Theorem 7.5.1 (Doston-Nagle [45]). For any k ≥ 2 and hereditary property P of k-uniform

hypergraphs,

|Pn| = 2max(n,P)+o(nk).
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7.5.2. Preliminaries. In this subsection we interpret the basic definitions from Chapter 6 in

the setting of k-uniform hypergraphs. Fix k ≥ 2 and let L = {R(x1, . . . , xk)} be the language of

k-uniform hypergraphs. For the rest of this section, P is a fixed hereditary property of k-uniform

hypergraphs. Since rL = k, LP = {Rp(x̄) : p ∈ Sk(P)}. Let x̄ = (x1, . . . , xk) and set

q1(x̄) = {xi 6= xj : i 6= j} ∪ {R(µ(x̄)) : µ ∈ Perm(k)} ∪ {¬R(x̄′) : ∪x̄′ ( ∪x̄} and

q2(x̄) = {xi 6= xj : i 6= j} ∪ {¬R(µ(x̄)) : µ ∈ Perm(k)} ∪ {¬R(x̄′) : ∪x̄′ ( ∪x̄}.

For i = 1, 2, let pi(x̄) be the unique quantifier-free k-type containing qi(x̄). It is straightforward

to check that Sk(P) ⊆ {p1(x̄), p2(x̄)}. Thus, LP is a nonempty subset of {Rp1(x̄), Rp2(x̄)} (LP

is nonempty since P is nonempty). Observe that LP = {Rp1(x̄)} if and only if all elements in

P are complete, LP = {Rp2(x̄)} if and only if all elements in P are independent, and otherwise,

LP = {Rp1(x̄), Rp2(x̄)}.

7.5.3. Counting. In this subsection we show that Theorem 7.5.1 is a special case of Theorem

7.7.8.

Lemma 7.5.2. For all n ≥ 2, 2max(n,P) = ex(n,P).

Proof. By the observations in the preceding subsection, ∅ 6= LP ⊆ {Rp1(x̄), Rp2(x̄)}. We first show

that 2max(n,P) ≤ ex(n,P). Let A ⊆
(

[n]
k

)
be such that |A| = max(n,P) and there is B ⊆

(
[n]
k

)
\ A

such that ([n], B ∪A′) ∈ P for all A′ ⊆ A. Define an LP -structure G as follows. Let dom(G) = [n],

and for each ā ∈ [n]r \ [n]r, set G |= Rp2(ā). Suppose now ā ∈ [n]r. If ∪ā ⊆ B, then define

G |= Rp1(ā) ∧ ¬Rp2(ā). If ∪ā ∈ A, define G |= Rp1(ā) ∧ Rp2(ā). For all other cases, define

G |= ¬Rp1(ā) ∧ Rp2(ā). By construction, G is an LP -template. We claim G ∈ R([n],P). By

construction, for each e ∈
(

[n]
k

)
the following holds. If e ∈ B then ChG(e) = {p1}. If e ∈ A then

ChG(e) = {p1, p2} and for all other e, ChG(e) = {p2}. Suppose χ is a choice function for G. Define a

hypergraph H = ([n], E) be setting E = {e ∈
(

[n]
k

)
: χ(e) = p1}. Because for each e, χ(e) ∈ ChG(e),

our definitions of χ and E imply E ⊆ B ∪ A. By assumption, any such H is in P. By definition of

H, H Eχ G, so we have shown that for all choice functions χ for G, there is H ∈ P with H Eχ G,

that is, G ∈ R(n,P). Thus sub(G) ≤ ex(n,P). By Lemma 6.3.19 and definition of G,

sub(G) =
∏

e∈([n]
k )

|ChG(e)| = 2|A| = 2max(n,P).
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This shows ex(n,P) ≥ 2max(n,P). We now show ex(n,P) ≤ 2max(n,P). Let G ∈ Rex([n],P) and set

A = {e ∈
(

[n]

k

)
: ChG(e) = {p1, p2}} and B = {e ∈

(
[n]

k

)
: ChG(e) = {p1}}.

By definition, B ⊆
(

[n]
k

)
\ A. We claim that for all A′ ⊆ A, HA′ := ([n], B ∪ A′) ∈ Pn. Because

G ∈ R([n],P), it suffices to show that HA′ Ep G. Define χ :
(

[n]
k

)
→ Sk(P, C[n]) as follows.

χ(e) =


p1 if e ∈ B ∪A′

p2 if e ∈
(

[n]
k

)
\ (B ∪A′).

It is straightforward to check that by definition of A and B, χ is a choice function for G and HA′EχG.

Thus HA′ ∈ Pn for all A′ ⊆ A. This implies by definition that max(n,P) ≥ |A|. By Lemma 6.5.3

and definition of A,

sub(G) =
∏

e∈([n]
k )

|ChG(e)| ≤ 2|A|.

Because G ∈ Rex([n],P), this implies ex(n,P) = sub(G) ≤ 2|A| ≤ 2max(n,P). Thus ex(n,P) =

2max(n,P), as desired. �

Proof of Theorem 7.5.1. By Lemma 7.5.2 and Theorem 7.7.8, |Pn| = ex(n,P)2o(n
k) = 2max(n,P)+o(nk).

�

Remark 7.5.3. In the setting of graphs, 2max(n,P) ≈ 2(1− 1
c )(n2), where c is the coloring number of

P. By definition, ex(n,P) ≈ π(P)(
n
2), thus π(P) ≈ 21− 1

c .

7.6. Triangle-free Triple Systems

Let F be the hypergraph with vertex set {1, 2, 3, 4, 5} and edge set {123, 124, 345}, where xyz denotes

the set {x, y, z}. A 3-uniform hypergraph is called triangle-free (or F -free) if it contains no subgraph

isomorphic to F . This section considers the results from [24], [62], [20] about triangle-free 3-uniform

hypergraphs. We will use much of the notation from Subsection 7.5 of this chapter.

7.6.1. Statements of Results from [24], [62], and [20]. A 3-uniform hypergraphG = (V,E)

is called tripartite if and only if there is some partition U1, U2, U3 of V such that xyz ∈ E implies

x, y, and z are all in different parts of the partition. A tripartite 3-uniform hypergraph is called

balanced if the partition U1, U2, U3 can be chosen to be an equipartition. Given n, let E(n) denote

the set of balanced tripartite 3-uniform hypergraph on [n] and let e(n) be the number of edges in

an element of E(n).
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Let exedge(n, F ) be the maximal number of edges in an F -free 3-uniform hypergraph on n. If G is

an F -free 3-uniform hypergraph with n vertices and exedge(n, F ) edges, we say G is edge-extremal.

Let F (n) be the set of F -free 3-uniform hypergraphs with vertex set [n].

The following is a consequence of the main theorem in [24].

Theorem 7.6.1 (Bollobás [24]). Suppose G = (V,E) is a triangle-free 3-uniform hypergraph on n

vertices. Then |E| ≤ e(n). If |E| = e(n), then G is isomorphic to an element of E(n).

It is observed in [20] that e(n) = bn3 cb
n+1

3 cb
n+2

3 c = n3

27 + o(n3). Combining this with a theorem of

Nagle and Rödl in [83], we obtain the following theorem.

Theorem 7.6.2 (Nagle-Rödl [83], Bollobás [24]). |F (n)| = 2e(n)+o(n2) = 2
n3

27 +o(n3).

From now on, in this section, we will just say “hypergraph” in place of “3-uniform hypergraph.”

Given a hypegraph G = (V,E) and a partition U1, U2, U3 of V , a non-crossing edge for the partition

an edge xyz ∈ E such that for some i ∈ {1, 2, 3}, |xyz∩Ui| ≥ 2. The following is Theorem 5 in [20],

which is proved in [62].

Theorem 7.6.3 (Keevash-Mubayi [62]). For every δ > 0 there is an ε > 0 and M such that for

all n > M , if G = (V,E) is a triangle-free hypergraph with |V | = n and |E| ≥ (1− ε)n
3

27 , then there

is a partition U1, U2, U3 of V such that E contains at most δn3 crossing edges with respect to this

partition.

Given an element G of F (n), an optimal partition of G = (V,E) is a partition U1, U2, U3 of [n] so

that E contains the minimal number of crossing edges for U1, U2, U3. Given δ > 0, let F (n, δ) be

the set of G ∈ F (n) such that there is an optimal partition for G with at most δn3 crossing edges.

Then Theorem 7.6.3 and a hypergraph regularity lemma are used in [20] to prove the following.

Theorem 7.6.4 (Balogh-Mubayi [20]). For all δ > 0 there is β > 0 such that for sufficiently large

n, the following holds.

|F (n) \ F (n, δ)|
|F (n)|

≤ 2−βn
3

.

Given hypergraphs G = (V,E) and G′ = (V,E′), let ∆(G,G′) = E∆E′. We leave it as an exercise

to check that ∆(G,G′) = {xyz ∈
(
V
3

)
: (x, y, z) ∈ diff(G,G′)}. Thus

|∆(G,G′)| = 1

3!
dist(G,G′) =

1

6
dist(G,G′).
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The arguments for the following corollary are either standard or appear somewhere in [20].

Corollary 7.6.5. For all δ > 0 there is an ε > 0 and M such that for all n > M , the following

hold. If G = ([n], E) ∈ F (n) and |E| ≥ (1− ε)n
3

27 , then G is δ-close to an element of E(n).

Proof. Fix δ > 0 and choose ε1 ≤ δ2 and M1 so that Theorem 7.6.3 holds for δ2/2. Fix n > M and

G = ([n], E) ∈ F (n) such that |E| ≥ (1− ε1)n
3

27 . By Theorem 7.6.3, there is a partition U1, U2, U3 of

V such that E contains at most (δ2/2)n3 crossing edges with respect to this partition. Let ε2 = 6δ.

Suppose towards a contradiction that for some i ∈ {1, 2, 3}, |Ui| > n/3 + ε2n, say |U1| > n/3 + ε2n.

Let x = |U1| − n/3. Then we have |U2|+ |U3| ≤ 2n/3− x, which implies by the AM-GM inequality

that |U2||U3| ≤ (n/3− x/2)2. So

|U1||U2||U3| = (n/3 + x)
(n

3
− x

2

)2

= (n/3 + x)(n2/9− nx/3 + x2/4) =
n3

27
− nx2

4
+
x3

4
.

Since |U1| = n/3 + x ≤ n, we have that x ≤ 2n/3. Thus

n3

27
− nx2

4
+
x3

4
=
n3

27
+
x2

4
(x− n) ≤ n3

27
+
x2

4
(−n/3) =

n3

27
− x2n

12
.

Since x ≥ ε2n, this implies |U1||U2||U3| ≤ n3

27 −
ε22n

3

12 . But now the total number of edges in G is by

assumption at most

(δ2/2)n3 +
n3

27
− ε22n

3

12
=
n3

27

(
1 +

27δ2

2
− ε2227

12

)
< (1− ε1)

n3

27
,

where the last inequality is because ε2 = 6δ and ε1 ≤ δ2. This contradicts that |E| > (1 − ε1)n
3

27 .

Thus for each i, ||Ui| − n/3| ≤ ε2n. If n is sufficiently large, this implies there is an equipartition

V1, V2, V3 of [n] such that for each i, |Vi∆Ui| ≤ 2ε2n. Let G′ = (V,E′) be the complete tripartite

hypergraph with parts V1, V2, V3. Consider the following subsets of ∆(G,G′).

• Let ∆1 be the set of e ∈ ∆(G,G′) such that e contains a vertex in Vi∆Ui for some

i ∈ {1, 2, 3}. For each i = 1, 2, 3, |Vi∆Ui| ≤ 2ε2n so there are at most 2ε2n
2 edges

containing a vertex in Vi∆Ui. Thus |∆2| ≤ 6ε2n
3.

• Let ∆2 be the set of e ∈ E which are crossing edges for U1, U2, U3 which are also crossing

edges for V1, V2, V3. By assumption on the Ui, |∆1| ≤ δ2n3/2 edges.

• Let ∆3 be the set of e ∈
(
n
3

)
which are non-corssing in U1, U2, U3 and non-crossing in

V1, V2, V3 but which are not in E. Since G is F -free, we must have that |∆3| ≤ e(n)− |E|.

Since |E| ≥ (1− ε1)n
3

27 and e(n) = n3

27 +o(n3), we may assume n is sufficiently large so that

|∆3| ≤ |E| − e(n) ≤ 2ε1n
3/27.
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We claim ∆(G,G′) = ∆1 ∪∆2 ∪∆3. Indeed, suppose e ∈ ∆(G,G′) \∆1. Then either e is crossing

for U1, U2, U3 and for V1, V2, V3 or e is non-crossing for U1, U2, U3 and for V1, V2, V3. If e is crossing

for U1, U2, U3 and for V1, V2, V3, then by definition of G′, e ∈ E′, so e ∈ ∆(G,G′) implies e /∈ E.

This shows e ∈ ∆3. On the other hand, if e is non-crossing for U1, U2, U3 and for V1, V2, V3,

then by definition of G′, e /∈ E′, so e ∈ ∆(G,G′) implies e ∈ E. This shows e ∈ ∆2. Thus

∆(G,G′) = ∆1 ∪∆2 ∪∆3 and our bounds above for |∆i| imply the following.

|∆(G,G′)| ≤ n3(δ2/2 + 12ε2 + 2ε1/27) < 74δn3,

where the last inequality is because ε2 = 6δ and ε1 ≤ δ2/2. Thus |diff(G,G′)| < 6(74)δn3, so

dist(G,G′) < 6(74)δ. Clearly by scaling the δ we start with, we can obtain the conclusion of the

corollary. �

Let E(n) = {G ∈ F (n) : G is a subhypergraph of some G′ ∈ E(n)}. Given δ > 0, let Eδ(n) be the

set of G ∈ F (n) which are δ-close to an element of E(n). We will use Corollary 7.6.5 along with

the machinery of Chapter 6 to prove the following approximate structure theorem, which can be

thought of as a restatement of Theorem 7.6.4.

Theorem 7.6.6. For all δ > 0 there is β > 0 such that for sufficiently large n,

|F (n) \ Eδ(n)|
|F (n)|

≤ 2−βn
3

.

7.6.2. Preliminaries. Let L = {R(x, y, z)} be the language of 3-uniform hypergraph as in

Subsection 7.5. Let P be the class of all finite triangle-free 3-uniform hypergraphs, considered as

L-structures. Its clear that P is a hereditary L-property and LP is the same as LP from Subsection

7.5 with k = 3, that is LP = {p1(x1, x2, x3), p2(x1, x2, x3)}, where p1 is the type saying the xi are

distinct and contained in a hyperedge, and p2 is the type saying the xi are distinct and not contained

in a hyperedge.

Definition 7.6.7. Given an LP -structure G with domain V , the hypergraph associated to G is

Ψ(G) := (V,E), where E is the set of A ∈
(
V
3

)
such that for some enumeration ā of A, G |= p1(ā).

We say that an LP -template is downward closed if G |= ∀x∀y∀zRp1(x, y, z) → Rp2(x, y, z). Given

a hypergraph (V,E), define Ψ−1(V,E) to be the LP -structure G which has domain V and for

each (x, y, z) ∈ V 3, G |= Rp1(x, y, z) if and only if xyz ∈ E, and G |= Rp2(x, y, z) if and only if
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x, y, z are pairwise distinct. We leave it to the reader to check that for any hypergraph (V,E),

Ψ(Ψ−1(V,E)) = (V,E) and Ψ−1(V,w) is a downward closed LP -template.

Lemma 7.6.8. Suppose G is a complete LP -structure with domain V . Then Ψ(G)Ep G and for all

G′EpG, G′ is a subhypergraph of Ψ(G). If G is also downward closed, then for all G′ a subhypergraph

of Ψ(G), G′ Ep G.

Proof. Let Ψ(G) = (V,E). We first show Ψ(G) Ep G. Let uvw ∈
(
V
3

)
and let p(x, y, z) =

qftp
Ψ(G)
L (u, v, w). We want to show G |= Rp(µ(u, v, w)) for some µ ∈ Perm(3). Suppose p = p1, so

uvw ∈ E. Then by definition of Ψ(G), there is µ ∈ Perm(3) such that G |= Rp1(µ(u, v, w)). Suppose

p = p2, so uvw /∈ E. Then by definition of Ψ(G), G |= ¬Rp1(µ(u, v, w)) for all µ ∈ Perm(3). Since

G is complete, this implies there is some µ ∈ Perm(3) such that G |= Rp2(µ(u, v, w)), as desired.

Suppose G′ = (V,E′)Ep G and let Ψ(G) = (V,E). We want to show E ⊆ E. Let uvw ∈ E′. Then

qftpG
′

L (u, v, w) = p1(x, y, z). Since G′EpG, this implies G |= Rp1(µ(u, v, w)) for some µ ∈ Perm(3).

By definition of Ψ(G), this implies uvw ∈ E, as desired. Suppose now that G is also downward

closed. Let G′ = (V,E′) be a subhypergraph of Ψ(G) = (V,E). Fix uvw ∈
(
n
3

)
. If p(x, y, z) =

qftpG
′

L (u, v, w), we want to showG |= Rp(µ(u, v, w)) for some µ ∈ Perm(3). If p(x, y, z) = p1(x, y, z),

then uvw ∈ E′ ⊆ E, which implies by the definition of Ψ(G) that G |= Rp1(µ(u, v, w)) for some

µ ∈ Perm(3). Thus G |= Rp(µ(u, v, w)) for some µ ∈ Perm(3) as desired. Suppose now p(x, y, z) =

p2(x, y, z). We want to show G |= Rp2(µ(u, v, w)) for some µ ∈ Perm(3). Because G is complete,

G |= Rq(µ(u, v, w)) for some q ∈ {p1, p2} and µ ∈ Perm(3). If q = p2, then we are done. If q = p1,

then because G is downward closed, G |= Rp1(µ(u, v, w)) implies G |= Rp2(µ(u, v, w)). This finishes

the proof. �

Corollary 7.6.9. If (V,E) ∈ P, then Ψ−1(V,E) ∈ R(V,P) and is downward closed.

Proof. We leave it to the reader to check that by definition, Ψ−1(V,E) is a downward closed

LP -template. To show Ψ−1(V,E) is P-random, let H Ep Ψ−1(V,E). By Lemma 7.6.8, H is a

subhypergraph of Ψ(Ψ−1(V,E)) = (V,E). Since (V,E) ∈ P, this implies H ∈ P. �

Corollary 7.6.10. Suppose G is a finite complete downward closed LP -structure. Then sub(G) =

2e(Ψ(G)).

Proof. By Lemma 7.6.8, the full subpatterns of G are exactly the subhypergraphs of Ψ(G). Since

the number of subhypergraphs of Ψ(G) is 2e(Ψ(G)), this finishes the proof. �
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7.6.3. Counting. In this section we prove the enumeration theorem, Theorem 7.6.2. We begin

with some preliminary results.

Lemma 7.6.11. Suppose G ∈ R([n],P) is not downward closed. Then there is G∗ ∈ R([n],P) which

is downward closed such that sub(G∗) ≥ sub(G)2
1
6 |diff(G,G∗)|.

Proof. DefineG∗ to agree withG everywhere except on uvw ∈
(

[n]
3

)
where ChG(uvw) = {p1(cu, cv, cw)}.

On such uvw, define G∗ |= Rp1(µ(u, v, w)) ∧ Rp2(µ(u, v, w)) for all µ ∈ Perm(3). We leave it to

the reader to verify that G∗ is an LP -template (by definition and because G is). Observe that for

all (x, y, z) ∈ [n]3, qftpGLP (x, y, z) 6= qftpG
∗

LP (x, y, z) if and only if ChG(xyz) 6= ChG∗(xyz). Sup-

pose (x, y, z) ∈ diff(G,G∗). Then ChG(xyz) 6= ChG∗(xyz) and ChG(xyz) ⊆ ChG∗(xyz) implies

ChG(xyz) ( ChG∗(xyz). Since S3(P) contains only two elements, and because G complete implies

|ChG(xyz)| ≥ 1, this implies |ChG(xyz)| = 1 and |ChG∗(xyz)| = 2. Therefore

sub(G∗) = sub(G)

( ∏
{xyz:(x,y,z)∈diff(G,G∗)}

|ChG∗(xyz)|
|ChG(xyz)|

)
= sub(G)2

1
6 |diff(G,G∗)|.

We have only left to show that G∗ is P-random. Suppose H Ep G∗. By Proposition 7.6.8, H is a

subhypergraph of Ψ(G∗). Observe that by definition of G∗ and Ψ, Ψ(G∗) = Ψ(G). By Proposition

7.6.8, Ψ(G) Ep G, so since G is P-random, Ψ(G) = Ψ(G∗) ∈ P. Then H a subhypergraph of

Ψ(G∗) = Ψ(G) ∈ P implies H ∈ P, so G∗ is P-random. �

Proposition 7.6.12. For all integers n ≥ 2, the following holds. Suppose G ∈ Rex([n],P). Then

Ψ(G) ∈ E(n). Consequently, ex(n,P) = 2exedge(n,F ).

Proof. Suppose G ∈ Rex([n],P). By Porposition 7.6.8, Ψ(G) Ep G, so since G is P-random,

Ψ(G) ∈ Pn = F (n). By Lemma 7.6.11, if G were not downward closed, then there is G∗ ∈ R([n],P)

which is downward closed and such that sub(G∗) ≥ sub(G)2
1
6 |diff(G,G∗)|. Since G not downward

closed and G∗ downward closed, diff(G,G∗) 6= ∅ would imply sub(G∗) > sub(G), contradicting

that G ∈ Rex([n],P). Thus G is downward closed, so Corollary 7.6.10 implies sub(G) = 2e(Ψ(G)).

Suppose towards a contradiction that Ψ(G) /∈ E(n). Then by Theorem 7.6.1, for any H ∈ E(n),

2e(H) > 2e(Ψ(G)). By Corollary 7.6.9, Ψ−1(H) ∈ R([n],P) and is downward closed. By Corollary

7.6.1, sub(Ψ−1(H)) = 2e(H) > 2e(Ψ(G)) = sub(G), contradicting that G ∈ Rex([n],P). Thus Ψ(G) ∈

E(n). Consequently, we have shown if G ∈ Rex([n],P), then sub(G) = ex(n,P) = 2e(Ψ(G)) = 2e(n).

By Theorem 7.6.1, this shows ex(n,P) = 2exedge(n,F ). �

Corollary 7.6.13. π(P) = 26/27.
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Proof. Recall π(P) = ex(n,P)1/(n3). By Proposition 7.6.12 and Theorem 7.6.1,

ex(n,P) = 2exedge(n,F ) = 2e(n) = 2
n3

27 +o(n3) = 2
6
27 (n3)+o(n3).

�

Proof of Theorem 7.6.2. Corollary 7.6.13 and Theorem 6.4.4 imply the following.

|Pn| = |F (n)| = π(P)(
n
3)+o(n3) = 2

6
27 (n3)+o(n3) = 2

n3

27 +o(n3).

�

7.6.4. Stability and Approximate Structure. In this subsection we prove P has a stability

theorem in the sense of Chapter 6 and use this to prove Theorem 7.6.6.

Lemma 7.6.14. Suppose G and G′ are in R([n],P) and are downward closed. Then for all δ > 0, G

and G′ are δ-close if and only if Ψ(G) and Ψ(G′) are δ-close.

Proof. It is straightforward to check that because G and G′ are both LP -templates, for all

(x, y, z) ∈ [n]3, qftpGL̃ (x, y, z) = qftpG
′

L̃ (x, y, z) if and only if ChG(xyz) = ChG′(xyz). By defi-

nition of Ψ and because G and G′ are downward closed, for all (x, y, z) ∈ [n]3, qftp
Ψ(G)
L (x, y, z) =

qftp
Ψ(G′)
L (x, y, z) if and only if ChG(xyz) = ChG′(xyz). This shows diff(G,G′) = diff(Ψ(G),Ψ(G′)).

Clearly this implies the desired conclusion. �

Proposition 7.6.15. P has a stability theorem.

Proof. Fix δ > 0 and choose ε < δ/4 sufficiently small so that for sufficiently large n, the conclusion

of Proposition 7.6.5 holds for δ/4. Suppose G ∈ R([n],P) satisfies sub(G) ≥ ex(n,P)1−ε. Choose

G∗ to be a downward closed element of R([n],P) as in Lemma 7.6.11. Then

ex(n,P) ≥ sub(G∗) ≥ sub(G)2
1
6 |diff(G,G∗)| ≥ ex(n,P)1−ε2

1
6 |diff(G,G∗)|.(85)

Assume n is sufficiently large so that ex(n,P) ≤ π(P)2n3

. Rearranging (85), we obtain that

2
1
6 |diff(G,G∗)| ≤ ex(n,P)ε ≤ π(P)2εn3

. Taking logs and rearranging this, we obtain that |diff(G,G∗)| ≤

Cεn3 where C = 12 log(π(P))/ log 2. Assume we chose ε sufficiently small so that Cε ≤ δ/4, so

dist(G,G∗) ≤ δ/4.

Proposition 7.6.8 implies Ψ(G∗) Ep G∗, so since G∗ is P-random, Ψ(G∗) ∈ Pn. Corollary 7.6.10

implies sub(G∗) = 2e(Ψ(G∗)). Our assumptions imply sub(G∗) ≥ sub(G) ≥ 2(1−ε) 6
27 (n3), so this
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implies e(Ψ(G∗)) ≥ (1 − ε) 6
27

(
n
3

)
. Proposition 7.6.5 then implies Ψ(G∗) is δ/2-close to an element

of H ∈ E(n). By Corollary 7.6.9, Ψ−1(H) ∈ R([n],P) and is a downward closed. Thus Lemma

7.6.14 implies that because Ψ(G∗) and Ψ(Ψ−1(H)) = H are δ/2-close, so are are G∗ and Ψ−1(H).

By Corollary 7.6.10, Proposition 7.6.12, and because H ∈ E(n), sub(Ψ−1(H)) = 2e(H) = ex(n,P).

Thus Ψ−1(H) ∈ Rex([n],P) and dist(G,Ψ−1(H)) ≤ dist(G,G∗) + dist(G∗,Ψ−1(H)) ≤ δ. This

finishes the proof. �

Proof of Theorem 7.6.6. Fix δ > 0. Choose β > 0 such that Theorem 6.4.7 holds for δ.

Proposition 7.6.15 and Theorem 6.4.7 imply that for sufficiently large n,

|Pn \ Eδ(n,P)|
|Pn|

≤ 2−βn
3

,

where recall E(n,P) = {G ∈ Pn : G Ep G′ for some G′ ∈ Rex([n],P)}. Thus to finish the proof, if

suffices to show that E(n) = E(n,P). By Proposition 7.6.12, if G′ ∈ Rex([n],P), then Ψ(G′) ∈ E(n)

Lemma 7.6.12 implies GEp G′ if and only if G is a subhypergraph of Ψ(G′). Thus E(n,P) = {G ∈

Pn : G is a subhypergraph of some G′ ∈ E(n)}. By definition, this shows E(n,P) = E(n). �

7.7. Hereditary properties of colored hypergraphs

In this section we show that Theorem 6.4.4 agrees with existing enumeraiton theorems for hereditary

properties of colored k-uniform hypergraphs which were proved by Ishigami in [61]. We include this

example as it is the most general enumeration theorem of hereditary properties in the literature (to

our knowledge). As is pointed out in [61], these results extend those for hereditary properties of

hypergraphs from [45] as well as enumeration results for hereditary graph properties in [3, 27].

7.7.1. Statements of Results from [61]. The definitions and results in this section are from

[61]. Given an integer k ≥ 2 and a set C, a C-colored k-uniform hypergraph, also called a (k,C)-

graph, is a pair G = (V,H), where V is a vertex set and H :
(
V
k

)
→ C is a function. The set C is

called the set of colors. Given two (k,C)-graphs G = (V,H) and G′ = (V ′, H ′), G is a subgraph of

G′ if V ⊆ V ′ and for all e ∈
(
V
k

)
, H(e) = H ′(e). We say G and G′ are isomorphic, denoted G ∼= G′,

if there is a bijection f : V → V ′ such that for all e ∈
(
V
k

)
, H(e) = H ′(f(e)). A hereditary property

of (k,C)-graphs is a nonempty class of finite (k,C)-graphs which is closed under subgraphs and

isomorphism. Observe that if C has only two elements, then (k,C)-graphs can be seen as k-uniform

hypergraphs.
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Assume k ≥ 2, C is finite, and P is a hereditary property of (k,C)-graphs. Let 2C denote the

powerset of C. Then an n-vertex (k, 2C \ ∅)-graph G = (V,H) is call P-good if and only if P

contains any (k,C)-graph G′ = (V,H ′) with the property that for all e ∈
(
V
k

)
, H ′(e) ∈ H(e). Define

max(n,P) = max
{ 1(

n
k

) ∑
e∈([n]

k )

log2 |H(e)| : ([n], H) is a P-good (k, 2C \ ∅)-graph
}

This notion comes from [61] and is denoted there by “ex(n,P)” in [61]. We have changed the

notation to avoid confusion with Definition 6.2.6. The following is Theorem 1.1 from [61].

Theorem 7.7.1 (Ishigami [61]). Suppose k ≥ 2 is a fixed finite integer and C is a fixed finite set.

If P is a hereditary property of (k,C)-graphs then

|Pn| = 2(max(n,P)+o(1))(nk).

The goal of this section is to preprove Theorem 7.7.1 using the machinery of Chapter 6.

7.7.2. Preliminaries. In this subsection we interpret the basic definitions from Chapter 6 in

the setting of colored hypergraphs. Fix k ≥ 2, a finite set C, and a hereditary property of (k,C)-

graphs P. Assume that for all c ∈ C, P contains structures G = (V,H) such that there is e ∈
(
V
k

)
with H(e) = c (otherwise replace C with a smaller set). Let L = {Ec(x1, . . . , xk) : c ∈ C} consist of

a single k-ary relation symbol for every color c ∈ C. We will consider (k,C)-graphs as L-structures

in the obvious way, namely, give an (k,C)-graph G = (V,H), ā ∈ V k, and c ∈ C, define G |= Ec(ā)

if and only if | ∪ ā| = k and c ∈ H(∪ā). Since rL = k, LP = {Rp(x1, . . . , xk) : p ∈ Sk(P)}. For each

c ∈ C, define qc(x1, . . . , xk) to be the following set of formulas, where x̄ = (x1, . . . , xk):

{xi 6= xj : i 6= j} ∪ {Ec(µ(x̄)) : µ ∈ Perm(k)}∪

{¬Rc′(µ(x̄)) : c′ 6= c ∈ C, µ ∈ Perm(k)} ∪ {¬R(x̄′) : ∪x̄′ ( x̄}.

Let pc(x̄) be the unique quantifier-free L-type containing qc(x̄). We leave it to the reader to verify

that Sk(P) = {pc(x̄) : c ∈ C} (note this uses the assumption that P contains structures with edges

colored by c for each c ∈ C). The following is an important definition which allows us to translate

Ishigami’s result to our setting.

Definition 7.7.2. Suppose G is a complete LP -structure with domain V . The (k, 2C \ {∅})-graph

associated to G is Ψ(G) := (V,H), where for each e ∈
(
V
k

)
,

H(e) = {c ∈ C : for some enumeration ē of e, G |= Rpc(ē)}.
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Given a (k, 2C \ {∅})-graph (V,H), let Ψ−1(V,H) be the LP -structure with domain V such that for

each ā ∈ V k and c ∈ C, G |= Rpc(ā) if and only if | ∪ ā| = k and c ∈ H(∪ā). We leave the following

observations to the reader.

Observation 7.7.3. Suppose (V,H) is a (k, 2C \ {∅})-graph. Then

(a) Ψ(Ψ−1(V,H)) = (V,H) and

(b) Ψ−1(V,H) is an LP -template.

Proposition 7.7.4. Suppose G is an LP -template with domain V and (V,H) = Ψ(G). Then for

any (k,C)-graph M = (V,H ′), M Ep G if and only if for all e ∈
(
V
k

)
, H ′(e) ∈ H(e).

Proof. Suppose M = (V,H ′) Ep G. We want to show that for all e ∈
(
V
2

)
, H ′(e) ∈ H(e). Fix

e ∈
(
V
k

)
and let c = H ′(e). Note this means qftpM (ē) = pc(x̄) where ē is any enumeration of e.

Then M Ep G implies there is an enumeration ē of e such that G |= Rpc(ē). By definition of Ψ(G),

c ∈ H(e). Thus H ′(e) ∈ H(e). Conversely, suppose M = (V,H ′) and for all e ∈
(
V
k

)
, H ′(e) ∈ H(e).

We define a choice function χ for G. Fix e ∈
(
V
k

)
and let c = H ′(e). Then by assumption, c ∈ H(e),

which implies by definition of Ψ, G |= Rpc(ē) for some enumeration ē of e. Define χ(e) = pc(cē).

Then by construction, χ ∈ Ch(G) and M Eχ G, thus M Ep G. �

Proposition 7.7.5. If V is a finite set, G is an LP -template with domain V , and Ψ(G) = (V,H).

Then sub(G) =
∏
e∈(Vk) |H(e)|.

Proof. By Proposition 7.7.4, sub(G) = |{M : M Ep G}| is the same as the number of (k,C)-

graphs (V,H ′) with the property that for all e ∈
(
V
k

)
, H ′(e) ∈ H(e). Clearly the number of such

(k,C)-graphs is
∏
e∈(Vk) |H(e)|. �

Proposition 7.7.6. Let V be a set. If (V,H) is a P-good (k, 2C \ {∅})-graph, then Ψ−1(V,H) ∈

R(V,P). If G ∈ R(V,P), then Ψ(G) is a P-good (k, 2C \ {∅})-graph.

Proof. Suppose first (V,H) is a P-good (k, 2C \ {∅})-graph. By part (a) of Observation 7.7.3,

Ψ−1(V,H) is an LP -template with domain V . To show Ψ−1(V,H) is P-random, let M = (V,H ′)Ep

Ψ−1(V,H). We want to show M ∈ P. By part (b) of Observation 7.7.3, Ψ(Ψ−1(V,H)) = (V,H).

Therefore, Proposition 7.7.4 implies for all e ∈
(
V
k

)
, H ′(e) ∈ H(e). Since (V,H) is P-good, this

implies M ∈ P. Thus Ψ−1(V,H) ∈ R(V,P).
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Suppose G ∈ R(V,P). Let Ψ(G) = (V,H). To show (V,H) is a P-good (k, 2C \ {∅})-graph, let

M = (V,H ′) be such that for all e ∈
(
V
k

)
, H ′(e) ∈ H(e). By Proposition 7.7.4, M Ep G. Since G is

P-random, M ∈ P. �

Corollary 7.7.7. For all n, ex(n,P) = 2max(n,P)(nk)..

Proof. Fix n. We first show ex(n,P) ≤ 2max(n,P)(nk). Suppose G ∈ Rex([n],P) and Ψ(G) =

([n], H). By Proposition 7.7.6, Ψ(G) is a P-good (k, 2C \ {∅})-graph, so by definition, max(n,P) ≥
1

(nk)

∑
e∈([n]

k ) log2 |H(e)|. Therefore

2max(n,P)(nk) ≥ 2

∑
e∈([n]

k )
log2 |H(e)|

=
∏

e∈([n]
k )

|H(e)| = sub(G),

where the last equality is by Proposition 7.7.5. This shows 2max(n,P)(nk) ≥ sub(G) = ex(n,P),

where the equality is because G ∈ Rex([n],P). We now show ex(n,P) ≥ 2max(n,P)(nk). Choose

G′ = ([n], H) a P-good (k, 2C \ {∅})-graph such that max(n,P) = 1

(nk)

∑
e∈([n]

k ) log2 |H(e)|. Let

G = Ψ−1(G′). Proposition 7.7.6 implies G ∈ R([n],P), so sub(G) ≤ ex(n,P). By Proposition 7.7.5,

sub(G) =
∏
e∈([n]

k ) |H(e)|. Thus we have

∏
e∈([n]

k )

|H(e)| = 2

∑
e∈([n]

k )
log2 |H(e)|

= 2max(n,P)(nk),

where the last equality is by choice of G′. Therefore 2max(n,P)(nk) = sub(G) ≤ ex(n,P), as desired.

�

We now give a restatement of Theorem 6.4.4 which will be convenient for us.

Theorem 7.7.8 (Restatement of Theorem 6.4.4). Suppose L is a finite relational language with

r = rL ≥ 2 and H is a hereditary L-property. Then |Hn| = ex(n,H)2o(n
r).

Proof. By Theorem 6.4.4, it suffices to show

ex(n,H)2o(n
r) =


π(H)(

n
r)+o(nr) if π(H) > 1.

2o(n
r) if π(H) = 1.

This is obvious by definition of π(H) = limn→∞ex(n,H)1/(nr). �

We now see that Theorem 7.7.1 follows easily from Theorem 7.7.8.
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Proof of Theorem 7.7.1. Suppose P is a hereditary property of (k,C)-graphs. Theorem 7.7.8

and Corollary 7.7.7 imply |Pn| = ex(n,P)2o(n
k) = 2max(n,P)(nk)+o(nk).



CHAPTER 8

An Application of Model Theoretic Ramsey Theory

The work in this chapter is joint with M. Malliaris and appears in [76]. Recently Chudnovsky, Kim,

Oum, and Seymour established that any prime graph contains one of a short list of induced prime

subgraphs [39]. A module of a graph G = (V,E) is a set of vertices X ⊆ V such that any vertex

v ∈ V \X is either connected or non-connected to all vertices in X. Prime graphs are graphs which

contain no non-trivial modules. The interest in prime graphs arises from questions around so-called

modular decompositions of graphs, as well as the fact that the celebrated Erdős-Hajnal conjecture

reduces to the case where the omitted graph is prime.

In this chapter, we re-prove the main theorem of [39] making use of model-theoretic ingredients,

in a way that improves the bounds and offers a different structural perspective on the graphs in

question. Our background aim is to exemplify the usefulness of model-theoretic ideas in proofs in

finite combinatorics. This approach complements that of [75], where certain indicators of complexity

which had been identified by people working in combinatorics coincided with model theoretic dividing

lines, so could be characterized by means of model theory.

The model-theoretic contribution of the present argument may be described as follows. The proof of

[39] proceeds by means of several cases, sketched in section 2 below, and applies Ramsey’s theorem

as a main tool. In [75] it was shown that Ramsey’s theorem works much better when the graph is

so-called stable, a finitization of an important structural property identified by model theory (for

history, see the introduction to [75] or the original source [94]). Our approach, then, is essentially

to reconfigure the proof of [39] so that the procedure for extracting the given configurations is

different depending on the degree of stability of the graph, and can take advantage of this additional

structural information.

We believe this approach raises some interesting questions about model theory’s potential contribu-

tion to calibrating arguments about finite objects. We have not tried to construct examples showing

the bound we obtain is optimal, in part because we believe that a further development of what

might be called ‘model-theoretic Ramsey theory’ in the spirit of [75] may, in general, allow for even

finer calibrations in the finite setting. At the same time, it is important to add that model theory

191
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works here to amplify the combinatorial analysis rather than to replace it. Already in the present

argument, the contribution of combinatorics in e.g. identifying definitions such as ‘module’ (which

is much stronger than, if in some sense analogous to, the model-theoretic notion of an indiscernible

sequence) and in isolating the original collection of induced configurations appears essential. It is

the interaction of these ideas and perspectives which to us seems most interesting.

Complementing this approach, the chapter concludes with the proof of an infinite analogue of The-

orem 8.2.1 which implies the finite version, but without explicit bounds.

8.1. Definitions and notation

In this section we state relevant definitions and notation, most of which, but not all, is from [39].

Given a set X, let
(
X
2

)
= {Y ⊆ X : |Y | = 2}. A graph is a pair (V,E) where V is a set of vertices

and E ⊆
(
V
2

)
is a set of edges. Unless otherwise stated, all of the following definitions and notation

apply to both infinite and finite graphs. Given a graph G, we write xy as shorthand for the edge

{x, y}. We will often write V (G) = V and E(G) = E. A set of vertices X inside a graph is called a

module if every vertex outside of X is adjacent to every vertex in X or non-adjacent to every vertex

in X. A module X of a graph G is called trivial if |X| = 1 or X = V (G). A graph G is called prime

if it has no non-trivial modules. We say a set of vertices X is independent if every pair of vertices

is X is non-adjacent, and we say X is complete if every pair of vertices in X is adjacent. We say a

vertex v is mixed on a subset X ⊆ V if there are x, y ∈ X such that vx ∈ E and vy /∈ E. Given

a graph G = (V,E), the compliment of G, denoted G, is the graph with vertex set V and edge set(
V
2

)
\ E. Given two graphs G and H, we will say G “contains a copy of H” to mean there is an

induced subgraph of G which is isomorphic to H.

We now introduce important structural configurations which will appear throughout the chapter.

Fix an integer n ≥ 1.

• A half-graph of height n is a graph with 2n vertices a1, . . . , an, b1, . . . , bn such that ai is adjacent

to bj if and only if i ≤ j.

• The bipartite half-graph of height n, Hn, is a graph with 2n vertices a1, . . . , an, b1, . . . , bn such that

ai is adjacent to bj if and only if i ≤ j and such that {a1, . . . , an} and {b1, . . . , bn} are independent

sets.

• The half split graph of height n, H ′n, is a graph with 2n vertices a1, . . . , an, b1, . . . , bn such that

ai is adjacent to bj if and only if i ≤ j and such that {a1, . . . , an} is an independent set and
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{b1, . . . , bn} is a complete set (a graph is a split graph if its vertices can be partitioned into a

complete set and an independent set).

• Let H ′n,I be the graph obtained from H ′n by adding a new vertex adjacent to a1, . . . , an (and no

others). Let H∗n be the graph obtained from H ′n by adding a new vertex adjacent to a1 (and no

others).

• The thin spider with n legs is a graph with 2n vertices a1, . . . , an, b1, . . . , bn such that {a1, . . . , an}

is an independent set, {b1, . . . , bn} is a complete set, and ai is adjacent to bj if and only if i = j.

The thick spider with n legs is the compliment of the thin spider with n legs. In particular,

it is a graph with 2n vertices a1, . . . , an, b1, . . . , bn such that {a1, . . . , an} is an independent set,

{b1, . . . , bn} is a complete set, and ai is adjacent to bj if and only if i 6= j. A spider is a thin

spider or a thick spider.

• A sequence of distinct vertices v0, . . . , vm in a graph G is called a chain from a set I ⊆ V (G) to

vm if m ≥ 2 is an integer, v0, v1 ∈ I, v2, . . . , vm /∈ I, and for all i > 0, vi−1 is either the unique

neighbor or the unique non-neighbor of vi in {v0, . . . , vi−1}. The length of a a chain v0, . . . , vm is

m.

Given an integer m ≥ 1, Km denotes the complete graph on m. Given integers m,n, Km,n denotes

the complete bipartite graph with parts of sizes m and n, that is, the graph with m + n vertices

{a1, . . . , am, b1, . . . , bn} such that {a1, . . . , am} and {b1, . . . , bn} are independent and ai is adjacent

to bj for each 1 ≤ i ≤ m and 1 ≤ j ≤ n. Given a graph G = (V,E), the line graph of G is the graph

G′ which has vertex set V (G′) = E(G) and edge set consisting of pairs of elements e1 6= e2 ∈ E(G)

such that e1 ∩ e2 6= ∅. Given an integer m, a path of length m is a set v0, . . . , vm vertices such

that vi is ajacent to vj if and only if j = i + 1 or i = j + 1. The m-subdivision of a graph G is

the graph obtained from G by replacing every edge in G with an induced path of length m + 1.

A perfect matching of height n is the disjoint union n edges, that is, a graph with 2n vertices

{a1, . . . , an, b1, . . . , bn} such that {a1, . . . , an} and {b1, . . . , bn} are independent and ai is adjacent to

bj if and only if i = j.

Note that in all of these definitions except that of a chain and of an m-subdivision, it makes sense

to replace m and n by any cardinals λ and µ. In section 6, we will wish to discuss versions of some

of these configurations where m or n is replaced by an infinite cardinal. In those cases, we will use

the same notation as laid out in this section.
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8.2. Outline of proof of main theorem from [39]

In this section we give an outline of the proof of Theorem 8.2.1 presented in [39]. We do this to

allow for comparison to the proofs we present in sections 8.4 and 8.5. Our outline consists of the

statements of the propositions from [39] which form the main steps in their proof, then a flow chart

illustrating the structure of the proof. We think this outline is sufficient for understanding the global

structure of the proof. For more details we direct the reader to the original chapter [39]. Throughout

R(n1, . . . , nk) denotes the smallest integer m such for that any coloring of the edges of Km with k,

there is complete graph on ni vertices in color i for some 1 ≤ i ≤ k.

Theorem 8.2.1 (Theorem 1.2 of [39]). For every integer n ≥ 3 there is N such that every prime

graph with at least N vertices contains one of the following graphs or their compliments as an induced

subgraph.

(1) The 1-subdivision of K1,n (denoted by K
(1)
1,n).

(2) The line graph of K2,n.

(3) The thin spider with n legs.

(4) The bipartite half-graph of height n.

(5) The graph H ′n,I .

(6) the graph H∗n.

(7) A prime graph induced by a chain of length n.

We will use the following fact from [39].

Proposition 8.2.2 (Corollary 2.3 from [39]). Let t > 3. Every chain of length t contains a chain

of length t− 1 inducing a prime subgraph.

The following are the propositions which form the main steps of the proof of Theorem 8.2.1 in [39].

Proposition 8.2.3 (Proposition 3.1 from [39]). For all integers n, n1, n2 > 0, there is N =

f(n, n1, n2) such that every prime graph with an N -vertex independent set contains an induced

subgraph isomorphic to

(1) a spider with n legs,

(2) L(K2,n),

(3) the bipartite half-graph of height n,

(4) the disjoint union of n1 copies of K2, denoted n1K2 (i.e. an induced matching of size n1), or
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(5) the half split graph of height n2.

Specifically, f(n, n1, n2) = 2M+1 where M = R(n1 + n, 2n− 1, n+ n2, n+ n2 − 1).

Proposition 8.2.4 (Proposition 4.1 from [39]). Let t ≥ 2 and n, n′ be positive integers. Let

h(n, n′, 2) = n and

h(n, n′, i) = (n− 1)R(n, n, n, n, n, n, n, n′, n′, h(n, n′, i− 1)) + 1

for an integer i > 2. Let v be a vertex of a graph G and let M be an induced matching of G consisting

of h(n, n′, t) edges not incident with v. If for each edge e = xy in M , there is a chain of length at

most t from {x, y} to v, then G has an induced subgraph isomorphic to one of the following:

(1) K
(1)
1,n,

(2) the bipartite half-graph of height n,

(3) L(K2,n),

(4) a spider with n legs, or

(5) the half split graph of height n′.

Proposition 8.2.5 (Proposition 5.1 of [39]). For every positive integer n, there exists

N = g(n) = 4n−2(n+ 1) + 2(n− 2) + 1

such that every prime graph having a half split graph of height at least N as an induced subgraph

contains a chain of length n+ 1 or an induced subgraph isomorphic to one of H ′n,I , H∗n, H∗n.

In the flow chart below, the bold boxes denote steps which involve Ramsey’s theorem. A box with

no descendants indicates that the conclusion of the theorem is satisfied in that case. In this chart,

the functions f , h, and g are from Propositions 8.2.3, 8.2.4, and 8.2.5 respectively.
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Start

There is a chain
of length n + 1.

By Proposition 8.2.2, there
is a chain of length n in-
ducing a prime subgraph.

There is no chain
of length n + 1.

Set m = f(n, h(n, g(n), n), g(n)),
N = R(m,m) and assume G is a prime
graph of size N . By Ramsey’s theorem,
we may assume there is an independent
set of size m (else work with the dual).

There is no half split
graph of height g(n).

There is a half split
graph of height g(n).

Apply Proposition 8.2.5.
Apply Proposition 8.2.3 with
n = n, n1 = h(n, g(n), n)

and n2 = g(n).

Outcome (4) of Proposition 8.2.3. G has
an induced matching with h(n, g(n), n)

edges. Since G is prime, for every pair of
points {x, y} and every vertex v, there

is a chain from {x, y} to v. Since G has
no chains of length n + 1, all such chains
have length at most n. Therefore G sat-
isfies the hypotheses of Proposition 8.2.4

with n = n, n′ = g(n), and t = n.

Outcome (1), (2), or
(3) of Proposition 8.2.3.

Apply Proposition 8.2.4.

For the rest of the chapter, given n ≥ 2, let N8.2.1 = N8.2.1(n) be the bound obtained for Theorem

8.2.1 in [39], that is, N8.2.1(n) = R(m,m) where m = f(n, h(n, g(n), n), g(n)).
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Remark 8.2.6. Note this proof shows the following: a prime graph G with an independent set of

size m and no chain of length n+ 1 satisfies the conclusion of the theorem.

8.3. Tree Lemma

In this section we prove a key lemma, Theorem 8.3.6, which allows us to improve the bounds in

Theorem 8.2.1. This lemma is [75] Theorem 3.5 tailored to the specific setting of graphs. [75]

Theorem 3.5 handles arbitrary finite sets of formulas, and uses model-theoretic tools such as types

and R-rank. The bounds there are computed in terms of several associated constants, including

the VC-dimension which was used to bound the branching of the trees. For the purposes of the

present argument, we give here a streamlined proof for the special case of graphs written with graph

theorists in mind. Corollary 8.3.7 gives the bound in this case.

We now state relevant versions of definitions and lemmas from [75].

Recall that a tree is a partial order (P,E) such that for each p ∈ P , the set {q ∈ P : p / q} is a

well-order under E. Given an integer n ≥ 2, define

2<n =

n−1⋃
i=0

{0, 1}i,

where {0, 1}0 = 〈 〉 is the empty string, and for i > 0, {0, 1}i is the usual cartesian product. This

set has a natural tree structure given by η E η′ if and only if η = 〈 〉 or η is an initial segment of

η′. We will write η / η′ to denote that η E η′ and η 6= η′. Given η ∈ {0, 1}i, let |η| = i denote

length of η (the length of the empty string 〈 〉 is 0). A main idea in the proof of Theorem 8.3.6 is

to take a graph G = (V,E), and arrange G into a tree by indexing its vertex set with elements of

2<n. Suppose G = (V,E) is a graph, and we have an indexing V = {aη : η ∈ X} of the vertices of

G by some X ⊆ 2<n. Given η ∈ X, we will say the height of aη, denoted ht(aη) is |η|. A branch is

a set of the form {aη : η ∈ Y } where Y is a maximal collection of comparable elements in X. The

length of a branch is its cardinality. Given η, η′ ∈ 2<n and elements aη, aη′ indexed by η and η′,

we say aη and aη′ lie along the same branch if η E η′ or η′ E η. If η / η′, we say aη precedes aη′ .

Given η = 〈η1, . . . , ηi〉 ∈ {0, 1}i, set η ∧ 0 = 〈η1, . . . , ηi, 0〉 and η ∧ 1 = 〈η1, . . . , ηi, 1〉. If x = aη∧0 or

x = aη∧1, then we say aη is the immediate predecessor of x and write pred(x) = aη. We will also

write aη ∧ i to mean aη∧i. Given j ∈ {0, 1} and i ≥ 1, let ji denote the element of {0, 1}i which has

every coordinate equal to j.
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Definition 8.3.1. Given a graph G = (V,E) on n vertices and A ⊆ 2<n, we say that an indexing

V = {aη : η ∈ A} of V by the elements of A is a type tree, if for each η ∈ A the following holds.

• If η ∧ 0 ∈ A, then aη∧0 is non-adjacent to aη. If η ∧ 1 ∈ A, then aη∧1 is adjacent to aη.

• If η ∧ 0 and η ∧ 1 are both in A, then for all η′ / η, aη∧1 is adjacent to aη′ if and only if

aη∧0 is adjacent to aη′ .

This notion of type tree is a special case of the model theoretic notion of a type tree. We believe

for the purposes of this chapter it is better to deal only with this special version for graphs. For the

general definition, see [94]. Given a graph (V,E) and v ∈ V , let N(v) = {w ∈ V : vw ∈ E} be the

neighborhood of v.

Lemma 8.3.2. Every finite graph G = (V,E) can be arranged into a type tree.

Proof. Suppose |V | = n. We arrange the vertices of G into a type tree indexed by a subset of 2<n.

• Stage 1: Choose any element of G to be a〈〉, and set A0 = {a〈〉}. Set X1 = N(a〈〉) and

X0 = V \ ({a〈〉} ∪N(a〈〉)). Note X1, X0 partition V \A0.

• Stage m+ 1. Suppose we’ve defined elements in the tree up to height m ≥ 0 and for each

0 ≤ i ≤ m, Ai is the set vertices of height i. Suppose further that we have a collection of

sets of vertices {Xη∧i : η ∈ Am, i ∈ {0, 1}} which partition V \
⋃m
i=1Ai and such that for

each η ∈ Am, Xη∧1 ⊆ N(aη) and Xη∧0 ⊆ V \ (N(aη) ∪ {aη}). Then for each η ∈ Am and

i ∈ {0, 1}, if Xη∧i 6= ∅, choose aη∧i to be any element of Xη∧i. Define Am+1 to be the set

of these aη∧i. Now for each aν ∈ Am+1 and i ∈ {0, 1}, set

Xν∧1 = N(aν) ∩Xν and

Xν∧0 = (V \ (N(aν) ∪ {aν})) ∩Xν .

By assumption, {Xν : ν ∈ Am+1} is a partition of V \
⋃m
i=1Ai, and by construction,

for each ν ∈ Am+1, {Xν∧1, Xν∧0} is a partition of Xν \ Am+1. Therefore, {Xν∧i : ν ∈

Am+1, i ∈ {0, 1}} is a partition of V \
⋃m+1
i=1 Ai.

All elements of V will be chosen after at most n steps. So we obtain an indexing of V by a subset

of 2<n which is a type tree by construction. �

Definition 8.3.3. Suppose G = (V,E) is a finite graph.
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(1) The tree rank of G, denoted t(G), is the largest integer t such that there is a subset V ′ ⊆ V

and an indexing V ′ = {aη : η ∈ 2<t} which is a type tree (i.e. V ′ is a full binary type tree

of height n).

(2) The tree height of G, denoted h(G), is the smallest integer h such that every indexing of

V which is a type tree has a branch of length h.

Lemma 8.3.4. Suppose t, h are integers, and G = (V,E) is a finite graph with tree rank t and tree

height h. Then G contains a complete or independent set of size max{t, h/2}.

Proof. By definition of tree rank, there is V ′ ⊆ V and an indexing V ′ = {aη : η ∈ 2<t} which is a

type tree. Then by definition of a standard type tree, I1 = {a<>, a0, . . . , a0t−1} is an independent

set of size t. On the other hand, by definition of tree height and Lemma 8.3.2, there is an indexing

V = {aη : η ∈ B} of V by a subset B ⊆ 2<n which is a standard type tree and which contains a

branch J with length h. Let aτ be the last element of J and note h = ht(aτ ). If |N(aτ ) ∩ J | ≥ |J|2 ,

set I2 = N(aτ )∩ J . Otherwise set I2 = (V \N(aτ ))∩ J . In either case, |I2| ≥ |J |/2 = h/2. We now

show that I2 is complete or independent. Suppose x and y are elements of I2. By definition of I2, aτ

is adjacent to x if and only if aτ is adjacent to y. Note x and y lie along the same branch, so without

loss of generality we may assume x precedes y. By construction, aτ is adjacent to x if and only if

y is adjacent to x. So if I2 = N(aτ ) ∩ J , I2 must be a complete set, and if I2 = (V \ N(aτ )) ∩ J ,

I2 must be an independent set. We’ve now shown G contains a complete or independent set of size

max{|I1|, |I2|} ≥ max{t, h/2}. �

Definition 8.3.5. Suppose G = (V,E) is a graph, A ⊆ 2<n, and V = {aη : η ∈ A} is a type tree.

(1) Given an element aη ∈ V , we say there is a full binary tree of height k below aη if the

following holds. There is a set V ′ ⊆ {aσ : aη ⊆ aσ} and a bijection f : V ′ → 2<k with the

property that aσ precedes aσ′ in V ′ if and only if f(aσ) / f(aσ′) in 2<k.

(2) The tree rank of an element aη ∈ V , denoted t(aη), is the largest k such that there is a full

binary tree of height k below aη.

Theorem 8.3.6. Suppose n ≥ 2 is an integer and G = (V,E) is a graph of size n. Then

h(G) ≥ (n/t(G))
1

t(G)+1

2
.

Proof. Suppose A ⊆ 2<n and V = {aη : η ∈ A} of V is a type tree. Let h be the length of the

longest branch in this tree, and let t = max{t(aη) : η ∈ A}. Note t ≤ t(G). Given a fixed ` and s,



8.3. TREE LEMMA 200

set

Zs` = {aη ∈ V : t(aη) = s, ht(aη) = `}

Xs
` = {aη ∈ Zs` : t(p(aη)) = s}, and

Y s` = {aη ∈ Zs` : t(p(aη)) = s+ 1}.

Let Ns
` = |Zs` |, xs` = |Xs

` | and ys` = |Y s` |. Then note that that for each s and `, Ns
` = xs` + ys` , and

n =
∑h
`=0

∑t
s=0N

s
` . We claim the following facts hold.

(i) For all s ≤ t and `, xs`+1 ≤ Ns
` .

(ii) For all s < t and all `, ys`+1 ≤ 2Ns+1
` .

(iii) For all s < t and all `, Ns
`+1 ≤ Ns

` + 2Ns+1
` .

(iv) For all 1 ≤ s ≤ t, N t−s
0 = 0.

(v) For all `, N t
` ≤ 1.

(vi) For all 0 ≤ s ≤ t, N t−s
1 ≤ 2.

Item (i) holds by definition. Item (ii) follows because every element has at most 2 successors. Item

(iii) follows directly from (i), (ii) and the fact that for all s and `, Ns
` = xs` + ys` . Item (iv) follows

from the fact that the only element of height 0 is a<>, which has height t. Item (v) follows from

the fact that if for some `, if N t
` ≥ 2, then we would have t(a〈〉) ≥ t + 1. Item (vi) is because the

tree is binary, so the second level can have at most two elements.

We now show that for each 0 ≤ s ≤ t and 0 ≤ ` < h, N t−s
`+1 ≤ (2(` + 1))s. If s = 0 this follows

immediately from (v).

Case s = 1: We want to show for all 0 ≤ ` < h, N t−1
`+1 ≤ (2(` + 1))s. The case where ` = 0 is done

by (vi). Let ` > 0 and suppose by induction N t−1
` ≤ 2`. By (iii), (v) and our induction hypothesis,

N t−1
`+1 ≤ N

t−1
` + 2N t

` ≤ 2`+ 2 = 2(`+ 1).

Case s > 1: Suppose by induction that for all 0 ≤ s′ < s, the following holds: for all 0 ≤ ` < h,

N t−s′
`+1 ≤ (2(`+ 1))s

′
. We want to show that for all 0 ≤ ` < h, N t−s

`+1 ≤ (2(`+ 1))s. The case ` = 0 is

done by (vi). Let ` > 0 and suppose by induction that for all 0 ≤ `′ < `, N t−s
`′+1 ≤ (2(`′ + 1))s. Then

by (iii) and our induction hypothesis,

N t−s
`+1 ≤ N

t−s
` + 2N t−s+1

` ≤ (2`)s + 2(2`)s−1 = (2`)s
(`+ 1

`

)
≤ (2(`+ 1))s.
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Therefore, for all 0 ≤ ` < h,

N`+1 ≤
∑

0≤s≤t

Ns
`+1 ≤

∑
0≤s≤t

(2(`+ 1))s ≤ t(2(`+ 1))t ≤ t(2h)t.

This implies that

n = N0 +
∑

0≤`<h

N`+1 ≤ 1 +
∑

0≤`<h

t(2h)t ≤ t(2h)t+1

Rearranging this we obtain that

(n/t)
1
t+1

2
≤ h.

Since t ≤ t(G) this implies (n/t(G))
1

t(G)+1

2 ≤ h. This finishes the proof. �

Combining Theorem 8.3.6 and Lemma 8.3.4 immediately implies the following.

Corollary 8.3.7. Suppose G = (V,E) is a graph with tree rank t and n vertices. Then G contains

a complete or independent set of size at least (n/t)
1
t+1

4 .

8.4. Finitary proof leveraging Theorem 8.3.6

The following is an adaptation of Proposition 3.1 [39].

Proposition 8.4.1. Suppose G = (V,E) has tree height t ≥ R(n1, n, n, n2) witnessed by T ⊆ V and

the indexing T = {aη : η ∈ 2<t} which is a type tree. Then G[T ] contains one of the following as an

induced subgraph.

(i) a thin spider with n legs,

(ii) the bipartite half-graph of height n,

(iii) the disjoint union of n1 copies of K2, denoted by n1K2, or

(iv) the half split graph of height n2.

Proof. Consider the sets A = {a<>, a0, . . . a0t−1} and B = {a1, a01, . . . , a0t−1∧1}. Rename the

elements of A and B so that 〈a<>, a0, . . . , a0t−1〉 = 〈x1, x2, . . . , xt〉 and 〈a1, a01, . . . , a0t−1∧1〉 =

〈y1, y2, . . . , yt〉. Note that by definition of a standard type tree and our choice of A, we have the

following.

• A is an independent set.

• For each i ∈ [t], xiyi ∈ E.

• For each i < j, xiyj /∈ E.
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We now define a coloring of the edges of the complete graph with vertex set [t] with colors (a, b) ∈

{0, 1}2. Given i < j ∈ [t], define the color (a, b) of the edge ij as follows. Set a = 1 if and only if

xjyi ∈ E and b = 1 if and only if yiyj ∈ E. By Ramsey’s theorem, there is a subset I ⊆ [t] such

that all the edges of I have the same color (a, b) and the following holds.

|I| =



n1 if (a, b) = (0, 0)

n if (a, b) = (0, 1)

n if (a, b) = (1, 0)

n2 if (a, b) = (1, 1)

Set Z = {xi : i ∈ I} ∪ {yi : i ∈ I}. Then if (a, b) = (0, 0), G[Z] forms an induced copy of n1K2. If

(a, b) = (0, 1), then G[Z] forms an induced copy of a thin spider with n legs. If (a, b) = (1, 0), then

G[Z] forms an induced copy of a bipartite half-graph of height n. Finally if (a, b) = (1, 1), then G[Z]

forms an induced copy of the half split graph of height n2. �

Remark 8.4.2. (1) In the proof of Proposition 8.4.1, we could also have built our config-

uration over a complete set by instead taking A = {a<>, a1, a11, . . . , a1t−1} and B =

{a0, a10, . . . , a1t−1∧0}.

(2) If we don’t care whether we build over complete or empty sets, then what Proposition 8.4.1

uses is the length of the longest “straight path” through the tree consisting of nodes with

two children, which is at least the tree rank.

Corollary 8.4.3. Suppose G is a prime graph with tree height t ≥ R(h(n, g(n), n), n, n, g(n)). Then

G contains one of the following or the compliment of one of the following as an induced subgraph.

(1) The 1-subdivision of K1,n (denoted by K
(1)
1,n).

(2) The line graph of K2,n (denoted by L(K2,n)).

(3) The thin spider with n legs.

(4) The bipartite half-graph of height n.

(5) The graph H ′n,I .

(6) the graph H∗n.

(7) A prime graph induced by a chain of length n.

Proof. If G contains a chain of length n + 1, we are done. So assume this is not the case. Apply

Proposition 8.4.1 with n1 = h(n, g(n), n) and n2 = g(n). In outcomes 8.4.1.(i) and 8.4.1.(ii), we

are done. If G contains a half split graph of height g(n) apply Proposition 8.2.5 to obtain H ′n,I or
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H∗n. So assume now G contains no half split graph of height g(n). The only possible outcome left is

8.4.1.(iii), i.e., that G contains an induced matching with n1 = h(n, g(n), n) edges. Combining this

with our assumptions that G is prime, contains no chains of length n+ 1, and contains no half split

graph of height g(n), we have that Proposition 8.2.4 implies G contains a copy of K
(1)
1,n, the bipartite

half-graph of height n, L(K2,n), or a spider with n legs. This finishes the proof. �

We now prove Theorem 8.2.1 with a value for N which is asymptotically much smaller than N8.2.1.

Theorem 8.4.4. Let n ≥ 2 and recall

m = f(n, h(n, g(n), n), g(n)) = 2R(n+h(n,g(n),n),2n−1,n+g(n),n+g(n)−1)+1.

Suppose

N = R(h(n, g(n), n), n, n, g(n))(5m)R(h(n,g(n),n),n,n,g(n))+1,

and G is a prime graph with at least N vertices. Then the conclusion of Theorem 8.2.1 holds.

Moreover, for large n,

N << R(m,m) = N8.2.1.

Proof. Suppose G is a prime graph with at least N vertices. Suppose first that the tree height,

t = t(G) is at least R(h(n, g(n), n), n, n, g(n)). Then Corollary 8.4.3 implies G contains one of the

desired configurations, so we are done. Assume now that t ≤ R(h(n, g(n), n), n, n, g(n)). Remark

8.2.6 and Proposition 8.2.2 imply that that if G contains a complete or independent set of size m

then the conclusion of Theorem 8.2.1 holds. We show G contains a complete or independent set

of size m. By Corollary 8.3.7, G contains a complete or independent independent set I such that

|I| ≥ (N/t)
1
t+1−2
4 , so it suffices to show that (N/t)

1
t+1

4 ≥ m. By definition of N and our assumption

on t, N ≥ t(5m)t+1. This implies (N/t)
1
t+1

4 ≥ 5m
4 ≥ m. This finishes the proof that the conclusion of

Theorem 8.2.1 holds. We’ve now left to show that N << N8.2.1. Let x = R(h(n, g(n), n), n, n, g(n)).

Then we want to show that large n, x(5m)x+1 << R(m,m). Note that x ≤ log2m and recall that

by [98], as long as m ≥ 2, R(m,m) ≥ (
√

2)m. Combining these facts, we have that the following

holds for large m (equivalently, for large n).

x(5m)x+1 ≤ (log2m)(5m)2 log2m+1 << (
√

2)m ≤ R(m,m).

�
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Remark 8.4.5. The theorem uses the fact that any graph G contains a complete or independent

set of size max{t(G), h(G)/2}, the inverse relationship between t(G) and h(G) from Theorem 8.3.6,

and the fact that a binary type tree contains the building blocks of the desired configurations. These

ingredients, i.e. Theorem 8.4.1, Lemma 8.3.4, and Theorem 8.3.6, hold for arbitrary graphs.

8.5. An infinitary proof

In this section we prove an analogue of Theorem 8.2.1 in the infinite setting, and show it implies

the finite version, although without the explicit bounds. Throughout this section we work in the

first-order language of graphs, L = {E(x, y)}, and employ standard model theoretic notation. Given

sets A and B, we will write AB as shorthand for A ∪ B, and given a tuple of elements ā, we will

often write ā to mean the set of elements in the tuple. The following proposition is proved in [39] in

the setting of finite graphs, but the proof presented there also holds in the setting of infinite graphs.

Given an integer n, we will write R(n) to mean R(n, n).

Proposition 8.5.1 (Proposition 2.1 in [39]). Suppose G is a graph and I ⊆ V (G) is a set with at

least two vertices, and suppose v ∈ V (G) \ I. Then G has a chain from I to v if and only if all

modules containing I as a subset contain v.

A useful and straightforward corollary of this is the following.

Corollary 8.5.2. A graph G = (V,E) is prime if and only if for every set of pairwise distinct

vertices {x1, x2, x3} ⊆ V , there is chain from {x1, x2} to x3 in G.

Proof. Suppose G = (V,E) is a prime graph and x1, x2, x3 ∈ V are pairwise distinct vertices.

Suppose there is no chain from {x1, x2} to x3. Then by Proposition , there is a module I containing

{x1, x2} as a subset and not containing v. But now I is a nontrivial module, contradicting that G

is prime.

Conversely, suppose for every set {x1, x2, x3} ⊆ V of pairwise distinct vertices, there is chain from

{x1, x2} to x3 in G. We show that any module I in G is either a singleton or all of V . Suppose by

contradiction I is a module which is neither a singleton, nor all of V . Then there are x1 6= x2 ∈ I

and x3 ∈ V \ I. By assumption there is a chain from {x1, x2} to x3, so Proposition 8.5 implies that

every module containing {x1, x2} also contains x3. In particular, x3 ∈ I, a contradiction. �

Definition 8.5.3. Fix an integer n ≥ 1.
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(1) Let φn(x, y, z) be the formula saying that there exists a chain of length at most n from {x, y}

to z.

(2) Let ψn be the sentence saying that for any pairwise distinct x1, x2, x3, there is a chain of length

at most n from {x1, x2} to x3, i.e. the sentence

∀x1x2x3

(( ∧
1≤i 6=j≤3

xi 6= xj

)
→ φn(x1, x2, x3)

)
.

(3) Let σn be the sentence saying that there exists a copy of Hn or a copy of Hn as an induced

subgraph.

(4) Let θn be the sentence saying there exists a copy of H ′n,I , H
∗
n or H∗n.

(5) Let ρn be the sentence which says that one of the following or the compliment of one of the

following appears as induced subgraph: K
(1)
1,n, L(K2,n), a spider with n legs.

Given k ≥ 1, we will call a graph G k-edge-stable if G omits all half-graphs of height k. We will call

G edge-stable when it is k-edge stable for some k (equivalently, when its edge relation is a stable

formula). Call a subset of I of G edge indiscernible if it is indiscernible with respect to the edge

relation. We remark that Proposition 8.2.5 applies in the case of an infinite prime graph as well as

a finite one, via exactly the same proof as in [39]. Given a formula φ, we let φ1 = φ and φ0 = ¬φ.

We now recall a definition and claim from [75].

Definition 8.5.4. Given ` ≥ 2, let ∆` = {E(x0, x1)} ∪ {φi`,m : m ≤ `, i ∈ {0, 1}}, where

φi`,m = φi`,m(x0, . . . , x`−1) = ∃y

(∧
j<`

E(xj , y) if i=0 ∧
∧

m≤j≤`

E(xj , y) if i=1

)
.

Claim 8.5.5 (Claim 3.2 of [75]). Suppose G is an `-edge stable graph. Suppose m ≥ 4` and 〈ai :

i < α〉 is a ∆`-indiscernible sequence in G, and b ∈ G. Then either |{i : E(ai, b)}| < 2` or

|{i : ¬E(ai, b)}| < 2`.

Proposition 8.5.6. For any integer n ≥ 1, any infinite graph satisfying ψn ∧ ¬σn ∧ ¬θn is prime,

edge-stable, and contains one of the following or the compliment of one of the following as an induced

subgraph.

(1) A spider with ω many legs,

(2) L(K2,ω),

(3) A perfect matching of length ω.
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Proof. Since G |= ψn, Corollary 8.5.2 implies G is prime. Set ` = R(R(g(n))). We show G is `-

edge-stable. Suppose by contradiction G contains a half-graph a1b1, . . . , a`b` so that E(ai, bj) if and

only if i ≤ j. By Ramsey’s theorem, there is a complete or independent set A ⊆ {a1, . . . , a`} such that

|A| = R(g(n)). By reindexing, assume A = {a1, . . . , aR(g(n))}. Applying Ramsey’s theorem again,

we have that there is a complete or independent set B′ ⊆ {b1, . . . , bR(g(n))} such that |B′| = g(n).

By reindexing, assume B′ = {b1, . . . , bg(n)}. Then a1b1, . . . , ag(n)bg(n) forms an induced copy of

Hg(n), Hg(n), or a half split graph of height g(n). Since G |= ¬σn, it must contain a half split graph

of height g(n). By Proposition 8.2.5, G contains an induced copy of H ′n,I , H
∗
n, or H∗n, contradicting

that G |= ¬θn. Therefore G is `-edge-stable.

By Ramsey’s theorem there is an infinite ∆`-indiscernible sequence I = {ci : i < ω} in G. Note I

is a complete or independent set. Without loss of generality, assume it is independent (otherwise

we obtain the compliments everything that follows). Claim 8.5.5 implies that for all b /∈ I, either

|{ci : E(b, ci)}| ≤ 2` or |{ci : ¬E(b, ci)}| ≤ 2`. Given b /∈ I, set

f(b) =


1 if |{ci : E(b, ci)}| ≤ 2`

0 if |{ci : ¬E(b, ci)}| ≤ 2`,

and set Sb = {ci : E(b, ci)
f(b)}. We construct two sequences J1 = {ai : i < ω} and J2 = {bi : i < ω}

along with a sequence of sets {Ai : i < ω} with the following properties.

• For each k < ω, bk /∈ Ib1 . . . bk−1 and ak ∈ Sbk ,

• for each i, j < ω, E(bi, aj)
f(bi) ⇔ i = j,

• I ⊇ A1 ⊇ A2 ⊇ . . . and for each k < ω, |Ak| = ω,

• For each j ≤ k < ω, Ak ∩ Sbj = ∅.

Step 0: Since I is not a module, there is a vertex b1 which is mixed on I. Note that since I is

edge-indiscernible, we must have that b1 /∈ I. Choose a1 ∈ Sb and set A1 = I \ Sb1 . Note that since

|I| = ω and a1Sb1 is finite, |A1| = ω.

Step k: Suppose now we’ve constructed b1a1, . . . , bk−1ak−1, and A1, . . . , Ak−1 satisfying the desired

hypotheses. Since Ak−1 is not a module, there is bk which is mixed on Ak−1. In other words,

Ak−1 ∩ Sbk 6= ∅. Since I is edge-indiscernible, bk is not in I. For each j < k, Ak−1 ∩ Sbj = ∅

implies bj is not mixed on Ak−1. Therefore bk /∈ {b1 . . . bk−1}. Choose ak ∈ Sbk ∩ Ak−1 and set

Ak = Ak−1 \ akSbk . Note that by our induction hypothesis, |Ak−1| = ω and by definition akSbk is

finite, so |Ak| = ω. This completes the construction.
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By Ramsey’s theorem, there are infinite subsequences I1 = (a′i)i<ω ⊆ (ai)i<ω and I2 = (b′i)i<ω ⊆

(bi)i<ω such that I1I2 = (a′ib
′
i)i<ω is edge-indiscernible. If I2 is a complete set and f(b′1) = 0, then

I2I2 is a thick spider with ω many legs. If I2 is a complete set and f(b′1) = 1, then I1I2 is a thin

spider with ω many legs. If I2 is an independent set and f(b′1) = 0, then I1I2 forms a copy of

L(K2,ω). Therefore we are left with the case when I2 is an independent set and f(b′1) = 1. In this

case I1I2 forms a perfect matching of length ω. �

The following argument is an infinitary version of the argument used to prove Proposition 8.2.4 in

[39].

Proposition 8.5.7. Suppose G is an infinite, prime, edge-stable graph satisfying ψn and suppose

M is an infinite perfect matching in G. Then G contains of one of the following or the compliment

of one of the following as an induced subgraph.

(1) K
(1)
1,ω,

(2) L(K2,ω),

(3) A spider with ω-many legs.

Proof. Suppose G is an infinite, prime, edge-stable graph satisfying ψn and suppose M is an

infinite perfect matching M in G. Since M is not prime, V (G) \ V (M) 6= ∅. Since G is prime and

satisfies ψn, Corollary 8.5.2 implies that for every v ∈ V (G)\V (M) there is an integer t(v) ≤ n such

that there is a chain of length less than or equal to t(v) from v to e for infinitely many e ∈M . Set

t = t(M) = min{t(v) : v ∈ V (G) \ V (M)}. We show by induction on 2 ≤ t ≤ n that the conclusion

of the proposition is true.

Fix v ∈ V such that t(v) = t and an infinite M ′ ⊆M such that there is a chain of length at most t

from v to e for every e ∈M ′. Suppose first that t = 2. Then vM ′ is isomorphic to K
(1)
1,ω and we are

done. Assume now 2 < t ≤ n and suppose by induction that for all 2 ≤ t′ < t, if G contains an infinite

perfect matching M ′′ with t(M ′′) = t′, then the conclusion of the proposition holds. Enumerate

M ′ = {xiyi : i < ω} and delete the edges e ∈M ′ on which v is mixed. Since t > 2, we have deleted

only finitely many elements of M ′. For each i < ω choose a chain Cxiyi = {v0, v1, . . . , vn} from xiyi

to v (so {xi, yi} = {v0, v1}). Set set zi = v2.

Note by assumption, v is not mixed on any xiyi, so zi 6= v, and since M ′ is a matching, zi /∈M ′. By

Ramsey’s theorem, the sequence (xiyizi)i<ω contains an infinite indiscernible sequence (x′iy
′
iz
′
i)i<ω.

Since t > 2, we must have that for each i < ω, z′i is not mixed on x′jy
′
j for all j 6= i, so in
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particular, E(z′1, x
′
2) ≡ E(z′1, y

′
2). Since G is edge-stable, we have that E(z′1x

′
2) ≡ E(z′2x

′
1) and

E(z′1y
′
2) ≡ E(z′2y

′
1). Combining all of this, we have

E(z′2x
′
1) ≡ E(z′1x

′
2) ≡ E(z′1y

′
2) ≡ E(z′2y

′
1).

By relabeling if necessary, we may assume E(z′1y
′
1) and ¬E(z′1, x

′
1). By indiscernibility and our

assumptions, the type of (x′iy
′
iz
′
i)i<ω depends only on E(z′1, x

′
2) and E(z′1, z

′
2). Suppose first that

E(z′1, z
′
2), so (z′i)i<ω is a complete set. If E(z′1, x

′
2), then (z′i, x

′
i)i<ω is a thick spider with ω many

legs. If ¬E(z′1, x
′
2), then (z′i, y

′
i)i<ω is a thin spider with ω many legs.

Suppose now that ¬E(z′1, z
′
2), so (z′i)i<ω is an independent set. If E(z′1, x

′
2), then (z′i, x

′
i)i<ω is a

copy of L(K2,ω). If ¬E(z′1, x
′
2), then M ′′ := (z′i, y

′
i)i<ω is an infinite perfect matching. In this case,

we now have that for each i < ω, Cx′iy′i \ {x
′
i} is a chain of length at most t − 1 from {z′i, y′i} to v,

that is t(M ′′) = t−1. By our induction hypothesis, G satisfies the conclusion of the proposition. �

We now prove a version of Theorem 8.2.1 for infinite graphs, then use it to prove Theorem 8.2.1.

Theorem 8.5.8. An infinite prime graph G contains one of the following.

(1) Copies of Hn, Hn, H∗n, H∗n, H ′n,I , or H ′n,I for arbitrarily large finite n,

(2) Prime graphs induced by arbitrarily long finite chains,

(3) K
(1)
1,ω or its compliment,

(4) L(K2,ω) or its compliment,

(5) A spider with ω many legs.

Proof. Suppose G is an infinite prime graph which fails 1 and 2. Since G is prime but fails 2,

Proposition 8.2.2 implies G does not contain arbitrarily long finite chains. Thus there is n1 ∈ N

such that G |= ψn1
. Since G fails 1, there is n2 such that G contains no copy of Hn2

, H∗n2
, H∗n2

, or

H ′n2,I
. Let n3 = max{n1, n2}, then G is prime and satisfies φn3

∧ ¬σn3
∧ ¬θn3

. Applying Corollary

8.5.6, we have that either G satisfies 5 or 4, or G contains an induced perfect matching of length ω.

If G contains an induced perfect matching of length ω, Proposition 8.5.7 implies G satisfies 3, 4, or

5. �

Proof of Theorem 8.2.1. Fix n ≥ 1. By definition, any finite prime graph G satisfying σn or θn

contains one of the desired configurations. If a finite prime graph G of size at least 3 satisfies ¬ψn,

then G contains three distinct points x, y, z such that there is no chain of length less than or equal

to n from {x, y} to z. Corollary 8.5.2 implies that there is some chain from {x, y} to z. Therefore
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there is a chain v0, . . . , vt of length t ≥ n+ 1 from {x, y} to z. Since initial sequences of chains are

chains, v0, . . . , vn+1 is a chain of length n+ 1. By Proposition 8.2.2, G contains a chain of length n

inducing a prime subgraph. So if G has size at least 3 and satisfies σn ∨ θn ∨ ¬ψn, we are done.

We now show there is N such that any finite prime graph of size at least N satisfying ¬σn∧¬θg(n)∧ψn

must also satisfy ρn. This combined with the above finishes the proof. Suppose by contradiction that

no such N exists. Then there are arbitrarily large finite graphs which satisfy ¬σn ∧¬θn ∧ψn ∧¬ρn,

so by compactness there is an infinite graph G satisfying ¬σn ∧ ¬θn ∧ ψn ∧ ¬ρn. By Proposition

8.5.6, G is edge-stable and contains an infinite perfect matching. But then Proposition 8.5.7 clearly

implies G |= ρn, a contradiction. �
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[8] József Balogh, Béla Bollobás, and Robert Morris, Hereditary properties of combinatorial structures: posets and

oriented graphs, J. Graph Theory 56 (2007), no. 4, 311–332. MR 2360508

[9] , Hereditary properties of tournaments, Electron. J. Combin. 14 (2007), no. 1, Research Paper 60, 25

pp. (electronic). MR 2336337
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vol. 14, Springer, Berlin, 1997, pp. 70–78. MR 1425205

[28] J. A. Bondy and M. Simonovits, Cycles of even length in graphs, J. Combinatorial Theory Ser. B 16 (1974),

97–105. MR 0340095 (49 #4851)

[29] J. A. Bondy and Zs. Tuza, A weighted generalization of Turán’s theorem, J. Graph Theory 25 (1997), no. 4,

267–275. MR 1459892 (99c:05097)
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[60] Christoph Hundack, Hans Jürgen Prömel, and Angelika Steger, Extremal graph problems for graphs with a

color-critical vertex, Combin. Probab. Comput. 2 (1993), no. 4, 465–477. MR 1264719 (95d:05070)

[61] Yoshiyasu Ishigami, The number of hypergraphs and colored hypergraphs with hereditary properties,

arXiv:0712.0425 [math.CO], 2007.

[62] Peter Keevash and Dhruv Mubayi, Stability theorems for cancellative hypergraphs, J. Combin. Theory Ser. B

92 (2004), no. 1, 163–175. MR 2078500
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