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ABSTRACT 

 

Background:  

MicroRNAs are essential key regulators of gene expression. They have significance in 

essential biological process. MicroRNA expression patterns are promising biomarkers 

for several tumor types including breast cancer. Many computational approaches are 

proposed to classify miRNA functions in recent years. Here, we propose an integrative 

approach to identify miRNA modules and its functional targets through the analysis of 

global miRNA and mRNA expression data. Our interest is to identify functionally 

correlated miRNA-mRNA modules that are involved in specific biological processes.  

 

Results:  

The Weighted Gene Co-expression Network Analysis (WGCNA) methodology was 

applied to analyze miRNA and mRNA expression data in order to determine the 

statistically significant modules of miRNA and the function of their targets. The process 

can be divided into three categories: (1) identify which mRNAs were targeted by which 

miRNAs, (2) determination of miRNA regulatory modules, i.e. to identify a group of co-

expressed miRNAs and mRNAs. (3) Investigation of the miRNA regulatory modules i.e. 

to find an involvement in specific biological process for a particular miRNA module.  
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Conclusion:  

We used mRNA and miRNA expression data from Espen Enerly breast cancer study. 

The proposed framework effectively captured miRNA modules. Through Gene Ontology 

analysis, several biological processes involving miRNAs and their targeted mRNAs 

were identified. To determine coherent miRNA-mRNA modules, we demonstrated that 

mRNAs in one module exhibit higher correlation with the miRNAs in a module. 

However, due to the fact that only the small numbers of mRNA modules were detected 

from the WGCNA analysis for this datasets, we were not able to find other miRNA-

mRNA modules. For that reason we converted our focus to the other miRNAs which are 

not related to any modules. Therefore, the effectiveness of this approach has to be 

further investigated using other datasets.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 WHAT IS microRNAs? 

MicroRNAs, also known as miRNAs, were first discovered in 1993 by Victor Ambros, 

Rosalind and Rhonda Feinbaum [15]. But not until early 2000s, miRNAs were 

recognized as an individual class of biological regulators with conserved functions. They 

regulate gene expression through target mRNA degradation or translational gene 

silencing. They play an important role in many biological processes and in the 

development of many diseases like cancer.  

A miRNA, which plays a role in transcriptional and post-transcriptional regulation of 

gene expression, is a small non-coding RNA molecule. MiRNAs are ~22 nucleotide 

RNA sequences that bind to complementary sequences in the 3ô UTR of multiple targets 

mRNAs, resulting in a gene silencing via translational repression or target degradation 

[3, 6]. miRNAs target ~60% of all genes, are abundantly present in all human cells. 

They are well conserved in organisms and suggest that they are a vital part of genetic 

regulation with an ancient origin. The plant miRNAs may bind their targets in both 

coding and non-coding regions, whereas the animal miRNAs exhibit partial 

complementarity to their mRNA targets. The majority of miRNAs are transcribed from 

independent transcription units, but some are transcribed from introns of pre-mRNAs 

[2]. miRNA genes are found in a cluster of 2-7 genes having highly similar expression   
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profiles suggesting that transcription of these miRNAs is controlled by common 

promoters [6]. The miRNA genes found between the introns are not transcribed by their 

own promoter, but they are processed from the introns [2]. Some miRNAs are 

expressed at different stages of development; some are expressed in different cells [2]. 

The miRNA gene is transcribed into primary miRNA (pri-miRNA) by an enzyme, 

polymerase. Then it is processed by a nuclear RNase type III enzyme (Drosha) to 

produce a 60 -70 nucleotide long stem loop precursor miRNA (pre-miRNA) [7]. Drosha 

cleaves both strands of the stem near the base of primary stem loop [2]. The pre-

miRNA then exported to the cytoplasm by the nuclear export factor Exportin 5 and the 

Ran-GTP cofactor and trimmed by dicer into miRNA:miRNA* duplex [7, 8]. Drosha 

processes one end of miRNA:miRNA* duplex in nucleus and Dicer processes other end 

in cytoplasm [2]. One strand of miRNA:miRNA* duplex is identified by the RNA-induced 

silencing complex (RISC) and the other strand is generally degraded [9]. The miRNA 

targets the specific 3ôUTR of mRNA transcript.   

Computational approaches have been unparalleled tools in understanding the biology of 

miRANs. Many web-based miRNA data-bases are available to provide thousands of 

published miRNA sequences, annotation and potential miRNA target genes. 

Computations algorithms are developed to pri-miRNAs and to search for homologous 

conserved miRNA genes in several animal species.  

The pathways of miRNA biogenesis in animal cells are shown below:   
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Figure 1 an animal miRNA Biogenesis [1] 

The function of miRNA depends on the gene it targets. Experimentally, it is difficult to 

identify new miRNA targets, even though there are many experimentally validated 

miRNAs. The miRNA binds to the mRNA and it causes the mRNA cleavage or inhibits 

the translation. In general, mRNA cleavage occurs in plants and translation repression 

occurs in animals [4]. A miRNA may have multiple different mRNA targets, and a target 

might be targeted by multiple miRNAs. The figure below shows the various 

configurations for miRNA-mRNA duplex.        
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Figure 2 miRNA-mRNA duplex different configurations 

In figure 2, A. represents near-perfect binding sites for one miRNA, B. represents 

multiple target sites for one miRNA, C. represents strong binding sites for one miRNA, 

and D. represents multiple target sites for multiple miRNAs. 

Most miRNA based computational methods comprise of the prediction of miRNA genes 

and their targets. To fulfill this requirement many web-based resources are being 

developed. They can be used as computational target prediction tools, which can 

provide number of targets for experimental validation.  
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1.2 miRNA TARGET PREDICTION AND ITS REGULATORY ROLE 

Many algorithms have been developed to predict miRNA targets. Prediction of miRNA 

targets in plant is very naïve because of perfect complementarity between miRNA and 

mRNA. Nonetheless it is tough in animals because of lack of perfect complementarity 

between miRNA and mRNA interaction. As a result, there are many different 

computational approaches to predict miRNA targets. Since miRNAs are short, they 

have limited sequence complementarity to their targets. The miRNA target prediction 

principles used by most of the approaches are almost similar [4].   

Some prediction criterions are described below: 

1. The miRNA and 3ôUTR region of mRNA have complementarity between them, 

especially between the seed region of miRNA and mRNA. Complementarity 

between miRNA and mRNA can be of 3 types: 5ô- dominant canonical, 5ô- 

dominant seed and 3ô compensatory [13]. 

2. The thermodynamics of miRNA and mRNA interaction can be computed by 

currently available RNA folding packages and is used in many prediction 

algorithms [4]. 

3. 3ôUTR target regions of many miRNAs are highly conserved over many species 

[3]. 

The following figure shows Secondary structure of miRNA-mRNA interaction.   
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Figure 3: secondary structure of miRNA-mRNA interaction 

(a) Good or perfect complementarity at both the 5' and 3' ends of the miRNA.  

(b) Perfect seed region complementarity at 5' end of the miRNA, but poor 3' 

complementarity.  

(c) Seed region has a mismatch or wobble but 3  end has an excellent complementarity. 

 

miRNA target prediction approaches can be classified into 3 categories: 

1. Complementarity searching based methods; 

2. thermodynamics based methods;  

3. Other methods. 
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There are many miRNA target prediction tools: DIANA-microT, EIMMo, miRanda, 

MirTarget2, miTarget, PicTar, Suport Vector Machine (SVM), rna22, RNahybrid, 

TargetScan, TargetScanS. 

There are many miRNA Target databases available: TarBase, MiRDB, and MiRecords.  

As we know there are many target prediction tools and databases available, we used 

MicroCosm Target Version 5 database that uses miRanda prediction tool [12] to identify 

potential binding sites for a given miRNA in genomic sequences. Here, prediction is 

purely sequence-based; we matched the sequence of miRNA and mRNA. We donôt 

consider any condition whether the target is actually regulated in particular (breast 

cancer) cell type. 

miRNAs are important regulators of various biological processes including cell 

differentiation, cell death, cell adhesion, cell proliferation, immune response, defense 

response, inflammatory response, signaling pathway, tissue homeostasis and 

apoptosis. Recent studies showed that differentially expressed miRNAs in different 

types of cancer, such as, breast cancer, colon cancer, kidney cancer, lung cancer, 

prostate cancer and ovarian cancer. Recently, great efforts have been made to simplify 

their regulatory mechanism. 

The goal of this study is to predict the module-wise miRNA targets by applying a new 

approach of Weighted Gene Co-expression Network Analysis (WGCNA) [17] in 

combination with miRNA target prediction tool [12]. 

 

7 



1.3 WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSIS 

Correlation network enables network based gene screening methods which can be 

used in various biological applications such as human genetics (for cancer), mouse 

genetics, yeast genetics, analysis of brain imaging data, etc. Further, it can be used to 

find modules of interconnected nodes, and highly connected hub nodes, which is 

centrally located in the module. It can identify significant modules, annotate all network 

nodes within identified modules, define network neighbor-hood of a given nodes, screen 

nodes on module membership information and contrast one network with another 

network [17].  

A Weighted Gene Co-expression Network Analysis (WGCNA) is one of the applications 

of correlation network. A WGCNA is a method for describing the correlation patterns 

between genes and miRNAs across samples. A WGCNA is used to find out modules of 

highly correlated genes. It summarizes such modules using the module eigen-gene or 

an intra-modular hub gene, relating modules to external information and calculating 

module membership measures. 

A WGCNA is all about letting the data speak for themselves. It does not assume prior 

pathway information but constructs modules in an unsupervised fashion. It can be 

interpreted as a biologically motivated data reduction scheme. A WGCNA starts from 

the level of thousands of genes, identifies clinically interesting gene modules, and finally 

uses gene significance to identify key genes in the disease pathways for further 

validation. A WGCNA alleviates the multiple testing problems inherent in microarray  
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data analysis. It focuses on the relationship between a few (typically less than 10) 

modules. 

In the above mentioned work, the analysis of the interaction is directly focused on 

targets. In this study, we demonstrated a novel integrative method to analyze miRNA 

and mRNA expression data in combination with Weighted Gene Co-expression Network 

Analysis (WGCNA) methodology. We combined all information, which leads us to 

predict module-wise miRNA targets and their effects on regulation of predicted genes. 

In this work, the focus is on the differential expression analysis and WGCNA 

methodology.  Here, we have demonstrated how to construct a co-expression network, 

how to identify the modules and how these modules are related to Gene information 

from expression data. We further computed the significance of miRNA and mRNA 

modules and construct the network using expression data with the ultimate goal to 

predict module-wise miRNA targeted genes. 
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CHAPTER 2 

METHODS 

 

2.1 FRAMEWORK 

A novel structure using mRNA and miRNA expression data from Espen Enerly [16] 

breast tumor study was demonstrated. The patients in this study were divided into two 

groups: Estrogen Receptor Positive (ER+) and Estrogen Receptor Negative (ER-).  

The flowchart below represents our framework  

.  

Figure 4: Framework of developed method 
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2.2 HYPOTHESIS AND FLOWCHART 

A. Dataset and Filtering Method  

We started with mRNA and miRNA expression data from Espen Enerly breast cancer 

study [16]. The patients in this study were divided into two groups: Estrogen Receptor 

Positive (ER+) and Estrogen Receptor Negative (ER-). The dataset consists of 60 ER+ 

and 35 ER- samples. Here, we used Espen Enerly pre-processed dataset. The 

expression data for this dataset were normalized.  

ČFiltering Methods [37] 

1. For miRNAs, discard probes that are not associated with Homo sapiens. 

2. For mRNAs, discard probes that are not associated to an Entrez gene IDs. 

 

B. Differential Expression Analysis 

Differentially expressed genes between ER+ and ER- samples were obtained. In this 

section, we provided technical details about how we obtain differentially expressed 

genes [26].  

The differential expression analysis was performed on normalized data. For the mRNA 

data, the normalized expression data were used and discarded the probes that are not 

associated to an Entrez gene IDs. For the miRNA data, we discarded the probes which 

are not associated with Homo sapiens. 

ČHypothesis   
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H0: miRNA/mRNA is not differentially expressed in ER- samples 

Ha: miRNA/mRNA is differentially expressed in ER- samples 

The differential expression analysis was performed as described below: 

a) Welchôs t-test is an adaptation of studentôs t-test. We used Welchôs t-test for two-

sample unequal variances to find out the p-value. 

b) Arrange unadjusted p-values in an ascending order. 

c) Convert unadjusted p-values into adjusted p-values using Benjamini-Hochberg 

correction method. 

d) The adjusted p-values threshold was set to 0.05. 

e) Report only those probes whose adjusted p-value is less than 0.05.  

Adjusted p-value is less than 0.05 than reject H0 i.e. miRNA/mRNA is differentially 

expressed in ER- samples. 

C. Overview of WGCNA Methodology 

To construct a network, we began with the calculation of Pearsonôs correlation for all 

pairs of genes. We weighted the Pearson correlation by taking their absolute value and 

raising them to the power of ɓ. This effectively served to emphasize strong correlations 

and punish weak correlations on an exponential scale. These weighted correlations 

represented the strengths between genes in the network. By accumulation of these 

connection strengths for each gene, we produced a single number that describes how 

strongly that gene is connected to all other genes in the network. The general  
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framework of Weighted Gene Co-expression Network Analysis was used. 

The flowchart below presents a brief overview of Weighted Gene Co-expression 

Network Analysis [17]. 

  
Figure 5: overview of WGCNA methodology 

 

D. Predicting miRNA Target  

The miRanda algorithm was one of the first miRNA target prediction algorithms and is 

widely used for target prediction by multiple interfaces including http://microRNA.org 

and MicroCosm Targets, available at http://www.ebi.ac.uk/enright-

srv/microcosm/htdocs/targets/v5/ . All miRNA ï gene predictions were downloaded from 

MicroCosm Targets Version 5.0 that currently uses the miRanda algorithm. The 

algorithm ranks the probability of each gene to be a miRNA target and the probability of  
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each miRNA to target a gene. The algorithm uses a weighted scoring system and 

rewards complementarity at the 5ô end of the miRNA and 3ô end of mRNA. Currently it 

demands strict complementarity at this so-called seed region. miRanda is a miRNA 

target prediction algorithm that searches highly conserved 3ôUTR targets matching the 

seed region of miRNAs. 

We used miRanda algorithm to identify potential binding sites for a given miRNA in 

genomic sequences. miRanda method was originally developed to predict miRNA target 

genes in Drosophila melanogaster [12], but was also used to predict human miRNA 

targets. Enright, A. J., B. John et al. (2004) [12] improved the method by implementing a 

strict model for the binding sites that require almost perfect complementarity in 

Drosophila. Their analysis also suggested that miRNA genes, which comprise around 

1% of the human genome, control the production of protein for 10% or more of all 

human genes. 

The resulting binding sites are then evaluated thermodynamically, using the Vienna 

RNA folding package. The false positive rate is between 24% and 39%.  

E. Fisherôs Exact Test  

Fisherôs test is used to detect group difference. Fisherôs test is basically used for 

categorical data. We used Fisherôs exact test [33] to show statistical significance 

between miRNA modules to mRNA module. This involves 2 × 2 contingency table. The 

fisherôs test calculates an exact probability value for the relationship between two 

different variables. If there is a small value in one of the cell of the contingency table the  
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fisherôs exact test is preferred. The p-value from the Fisherôs exact test decides the 

significance [34]. Exact p-value tend to be more conservative than most approximate 

estimates, such as Chai squared test. 

F. Construct a module-wise miRNA Target Prediction Network 

To construct a module-wise miRNA target prediction network, we used the Biological 

Network Analyzer (BiNA) version 2.3.1. BiNA provides sophisticated visualization style  

for biological networks. For this, we used the concept of hierarchical and dynamic graph 

structures with background imaging. A complex data framework allows mapping of 

almost any data to the network. 
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CHAPTER 3 

RESULTS 

 

A. Data set after Filtering Method and Differential Expression Analysis  

Here, Espen Enerly pre-processed dataset was used. The Espen Enerly dataset 

contains mRNA and miRNA expression profiles on ER+/ER- breast tumors. The 

expression data for this dataset were normalized.  The Table 1 below displays the 

information about the dataset [16], number of samples in ER+ and ER- and number of 

probes before pre-processing, before and after filtering method plus number of probes 

that are differentially expressed.  

Differentially expressed genes are shown in Supplementary Table 1. 

Dataset Name Number of 

samples 

Number of Probes 

 ER+ ER- Before 

pre-

processing 

Before 

Filtering 

After 

Filtering 

Differentially 

Expressed 

Espen Enerly (miRNA)  60 35 729 498 477 49 

Espen Enerly (mRNA) 60 35 41094 12837 12605 3030 

 

Table 1: Dataset information after each steps 
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B. WGCNA Methodology  

1) Construct the co-expression network 

To construct a network, first, we calculated Pearson correlations [25] for all pairs of 

genes in the network. We weighted the Pearson correlations by taking their absolute 

value and raising them to power ɓ, because data can be noisy and the number of 

samples is often small. We emphasized strong correlations and punished weak 

correlations on an exponential scale. Weighted correlations represented the connection 

strengths between genes in the network. For each gene, the connectivity is described 

as how strongly that gene is connected to all other genes in the network. We used the 

flowchart to present a brief overview of Weighted Gene Co-expression Network 

Analysis as described earlier in methods. 

Briefly, the absolute value of the Pearson correlation coefficient was calculated for all 

pairwise comparisons of gene expression values across samples. The Pearson 

correlation matrix is then transformed into an adjacency matrix A. We considered 

networks where adjacency matrix Aij calculates the connection strength between node i 

to node j i.e. connection strength between gene pairs.  

Adjacency matrix is defined as, 

ὃ ȿὧέὶὶὼȟὼȿ 

We studied networks whose adjacencies satisfy the following conditions: 

π ὃ ρ 
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ὃ  ὃ  

ὃ ρ 

A weighted network adjacency can be defined by raising the co-expression similarity to 

a power [5, 10]. The function adjacency calculates the adjacency matrix from the 

expression data. The adjacency implies that the weighted adjacency Aij between two 

genes is proportional to their similarity on a logarithmic scale. 

ÌÏÇὃ   ÌÏÇ ὧέὶὶὼȟὼ  

Adjacency functions for weighted networks are required to choose threshold parameter 

by applying the scale-free topology criterion. The network connectivity k(i) of the ith 

gene, expression profile x(i) is the sum of the connection strength with all other genes in 

the network i.e. it shows how ith gene is correlated with all other genes in the network. 

To choose a power ɓ, we used the scale free topology criterion explained in Zhang and 

Horvath 2005 [17]. 

2) Scale-free topology criterion 

Many co-expression networks satisfy the scale free property [17]. The network exhibits 

a scale free topology if the frequency distribution p(k) of the connectivity follows : 

ὴὯ  ͯὯ  

Here, the power ɔ has nothing to do with ɓ that is used to define the co-expression 

network. To visualize the scale free topology, we plotted log(p(k)) versus log(k). The  
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model fitting index R2 of the linear model that regress log(p(k)) on log(k). If R2 of the 

model approaches 1, then there is a straight line relationship between log(p(k)) and 

log(k). We only considered those powers that lead to a network satisfying scale free 

topology i.e. R2 > 0.80. We considered the following points, when choosing the 

adjacency parameter: (i) the mean connectivity should be high so that network contains 

enough information, (ii) the slope of the regression line between log(p(k)) and log(k) 

should be negative. We found the relationship between R2 and ɓ is characterized by a 

saturation curve. We used the lowest power ɓ where saturation is reached. In this case, 

we chose default value of ɓ for unsigned network, i.e. ɓ = 6. 

3) Identify Modules (Module Detection) 

Once the network is constructed, next step is module detection. Modules are clusters of 

highly interconnected genes. In unsigned co-expression network, modules correspond 

to clusters of genes with high absolute correlations. 

We used average linkage hierarchical clustering coupled with a gene dissimilarity 

measure to define a cluster tree of the network. The default choice is the Topological 

Overlap Matrix (TOM) based dissimilarity measure [17, 23, 37]. A pair of genes is said 

to have high topological overlap if they are both strongly connected to the same group 

of genes. Topological overlap of two genes reflects their relative interconnectivity. The 

Topological Overlap dissimilarity is used as an input of hierarchical clustering [24], 

Ὕὕὓ  
В ὥ ὥ ὥ

ÍÉÎὯȟὯ ρ ὥ
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ὨὭίίὝὕὓρ  Ὕὕὓ 

Where, ki is the number of connections of a node with  Ὧ  В ὥ  and Ὧ В ὥ . The 

use of topological overlap serves as a filter to exclude isolated connections during the 

network construction. 

Dissimilarity measure can also defined as, 

ὨὭίίὃ ρ  ὃ  

This dissimilarity measure, directly using adjacency matrix, computationally is much 

faster than the Topological Overlap measure and often leads to approximately similar 

modules. Here, we used dynamic branch cutting method [38] that offers the following 

advantages: (i) it is capable of identifying nested clusters, (ii) it is flexible, and (iii) it is 

suitable for automation. WGCNA implements two types of dynamic branch cutting 

method. (i) Considers the shape parameters. (ii) Hybrid method that combines the 

advantages of hierarchical clustering and Partitioning around Medoids (PAM). One 

drawback is that it can be difficult to determine how many clusters are present in the 

given data set.  

Module-wise genes and miRNAs are shown in the implementation of framework of 

results section. 

4) Functional Enrichment Analysis of Module genes 

We selected the genes targeted by miRNA different modules and combined them [30]. 

The combination of selected genes could be used as input of functional enrichment   
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analysis software such as EASE, KEGG, Webgestalt, Ingenuity, etc. Here, we used web 

based software DAVID tool [27, 31]. Module-wise functional enrichment analysis results 

are shown in the implementation of framework of results section. 

5) miRNA ï gene Target Prediction 

We used MicroCosm Targets Version 5 database that used miRanda algorithm to 

predict the targets. miRanda algorithm is described in the methods section. Module-

wise miRNA - gene target predictions are shown in the implementation of framework of 

results section. 

6) Fisherôs Exact Test 

It is a statistical significance test, which is used in the analysis of contingency tables. 

The notion behind Fisherôs Exact Test is shown in the table below: 

   miRNA j Module 

 

mRNA 

i 

Module 

 Target (Y) Not Target (Yô)  

Gene in (X) A b a + b = ɗX 

Gene not in (Xô) C d c + d = ɗXô 

 a + c = ɗY b + d = ɗYô n = a + b + c + d 

 

Table 2: Notion behind Fisherôs Exact Test 

Fisher follows the Hyper-geometric distribution: 
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ὴὶὢ ὥ   
—Ȧ — Ȧ —Ȧ —Ȧ

ὲȦὥȦὦȦὧȦὨȦ
 

The p-value of Fisherôs Exact Test given by 

ὴ ὺὥὰόὩ   ὴὶὢ ὥ 

We can consider that p ï value less than 0.05 is significant.   

Here we found out that one module has genes that are associated with breast cancer in 

ER- samples with their up/down regulation. Module-wise test results are shown in the 

implementation of framework of results section. 

7) Construction of miRNA ï gene Prediction Network 

The BiNA was described in the methods section. The whole module-wise prediction is 

shown in the section of implementation of framework of results. 

 

C. IMPLEMENTATION of FRAMWORK 

To implement the framework, we used two different programming languages i.e. R 

script and JAVA script. The framework is divided into smaller scripts. The results are 

stored in CSV files for each script.  

Script 1: Pre-processed data and Normalization 

The script was implemented in R language. It displays how one can convert miRNA and 
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 mRNA expression data from .RData files to excel or .csv files. The miRNA data set 

contains three objects: eset, eset.pos and eset.neg i.e. expression matrix. This 

expression matrix is for 60 ER+ samples and 35 ER- samples. The rows are probes and 

columns are samples. The mRNA data set contains only eset object. The first 60 

columns are ER+ samples and the rest 35 columns are ER- samples. The row names 

are Entrez gene IDs. After using filtering methods, the output is stored in 

eset.1miRNA.csv and eset.1mRNA.csv.  

Normalization is done by generic function. The normalized data are stored in 

normalizedmiRNA.csv and normalizedmRNA.csv. miRNA files store miRNA name and 

samples, whereas mRNA files store Gene Name, Entrez Gene IDs and samples. 

The script generates following output files: 

For miRNA, 

miRNA GSM487074 GSM487075 GSM487076 GSM487077 GSM487079 

hsa-let-7a 0.999973 0.999789 0.999867 0.99975 0.999655 

hsa-let-7a* 0.251205 0.243577 0.241152 0.232222 0.241279 

hsa-let-7b 0.999954 0.999893 0.999936 0.999567 0.999844 

hsa-let-7b* 0.274006 0.27924 0.27535 0.261129 0.261013 

hsa-let-7c 0.998916 0.997075 0.997324 0.993872 0.99274 

hsa-let-7c* 0.245459 0.263959 0.251259 0.249377 0.250977 

hsa-let-7d 0.97876 0.958962 0.95501 0.937092 0.929989 

hsa-let-7d* 0.266529 0.267674 0.257304 0.255911 0.259014 

hsa-let-7e 0.982685 0.970821 0.95451 0.984406 0.954175 

hsa-let-7e* 0.255339 0.257482 0.246138 0.251169 0.243241 
 

         

 

For mRNA, 
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Gene 
Name EntrezGene GSM496925 GSM496926 GSM496927 GSM496928 

GATC 283459 0.403149 0.538238 0.35197 0.509032 

EIF4E1B 253314 0.340214 0.254113 0.256225 0.22542 

A1BG 1 0.505659 0.485732 0.461343 0.532706 

A2M 2 0.993427 0.996312 0.995695 0.99536 

A2ML1 144568 0.31756 0.346977 0.26309 0.455636 

A4GALT 53947 0.40038 0.536961 0.472546 0.492588 

A4GNT 51146 0.123726 0.093063 0.114332 0.159346 

AAAS 8086 0.664529 0.581762 0.644784 0.558541 

AACS 65985 0.778443 0.847711 0.846013 0.83547 

 

Script 2: P- Value and Differential Expression Analysis  

Again we used R language to implement the script. The differential expression analysis 

is performed as descried in the methods section. In order to find the p-value of 

normalized data of miRNA and mRNA, Welchôs test was used. Then, the adjusted p-

value was found by using Benjamini-Hochberg correction method. Further, we 

considered only those miRNAs and mRNAs whose adjusted p-value is less than 0.05. 

As a result, we found 49 miRNAs and 3030 mRNAs are differentially expressed. The 

results stored in pvalmir49.csv and pvalmrna3030.csv.  

The output of this script looks like: 

For miRNA, 

 
miRNA pAdjusted.index rawp BH 

1 hsa-miR-29c* 204 2.65E-10 1.26E-07 

2 hsa-miR-149 85 1.42E-09 3.39E-07 

3 hsa-miR-190b 125 7.46E-09 1.15E-06 

4 hsa-miR-342-3p 246 9.66E-09 1.15E-06 

5 hsa-miR-342-5p 247 4.53E-08 4.32E-06 

6 hsa-miR-339-5p 240 5.09E-07 4.04E-05 
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7 hsa-miR-29b-2* 202 2.63E-06 0.000179 

8 hsa-miR-224 178 5.74E-06 0.000342 

9 hsa-miR-505 335 7.24E-06 0.000383 

10 hsa-miR-146b-5p 81 2.95E-05 0.001293 

 

Table 3: (a) miRNAs differentially expressed between ER+ and ER- 

 

For mRNA, 

Gene 
Name EntrezGene pAdjusted.index rawp BH 

KCNK15 60598 5845 6.20E-17 7.82E-13 

ESR1 2099 3757 4.83E-14 3.05E-10 

C6orf97 80129 1738 3.25E-13 1.36E-09 

AGR3 155465 973 1.85E-12 4.80E-09 

PLCD4 84812 8436 1.90E-12 4.80E-09 

RAB30 27314 9061 2.43E-12 5.10E-09 

TES 26136 10927 4.46E-12 8.04E-09 

PARD6B 84612 8006 6.06E-12 8.49E-09 

CA12 771 1844 6.06E-12 8.49E-09 

GFRA1 2674 4647 1.13E-11 1.42E-08 

 

Table 3: (b) mRNAs differentially expressed between ER+ and ER- 

Script 3: Weighted Gene Co-expression Network Methodology 

A. Scale-free topology Criterion to choose ɓ for Adjacency matrix 

To choose a power ɓ, we used a scale free criterion on differentially expressed 49 

miRNAs and 3030 mRNAs. We chose power ɓ = 6, which is large enough to have 

network exhibits the approximate scale free topology. Here, we focused on the linear  
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regression model fitting index R2 that quantifies how well a network satisfies a scale free 

topology. The result showed network properties for different choices of the power ɓ. 

For miRNA: ER+ samples  

 
Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k. 

1 1 0.0685 0.742 0.303 9.36 9.38 13.2 

2 2 0.00457 0.0768 -0.108 2.93 2.85 5.1 

3 3 0.142 -0.22 0.371 1.23 1.13 2.56 

4 4 0.573 -0.446 0.517 0.643 0.538 1.53 

5 5 0.556 -0.734 0.476 0.391 0.287 1.13 

6 6 0.635 -0.711 0.584 0.264 0.167 0.889 

7 7 0.102 -1.71 -0.154 0.192 0.103 0.726 

8 8 0.178 -2.4 0.0177 0.147 0.0657 0.632 

9 9 0.123 -1.92 -0.126 0.117 0.0425 0.595 

10 10 0.174 -2.84 -0.0579 0.0955 0.0279 0.561 

11 12 0.219 -3.35 0.00713 0.0673 0.0129 0.499 

12 14 0.27 -4.14 0.0717 0.05 0.00586 0.444 

13 16 0.252 -3.46 0.0484 0.0384 0.0025 0.396 

14 18 0.271 -3.56 0.109 0.0303 0.00114 0.352 

15 20 0.271 -3.62 0.0641 0.0244 0.000525 0.314 

 

Table 4: (a) choices of power ɓ in miRNA ER+samples 

Scale Free Rsquared  slope 

  1                0.59  -0.71 
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Figure 6: (a) choices of power ɓ for miRNA ER+ samples 

ER- samples  

 Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k. 

1 1 0.00538 -0.235 0.481 11 10.7 15.9 

2 2 0.0224 -0.254 0.587 3.79 3.7 6.7 

3 3 0.0791 -0.294 0.602 1.66 1.65 3.36 

4 4 0.235 -0.496 0.213 0.868 0.943 1.94 

5 5 0.359 -0.415 0.176 0.522 0.501 1.26 

6 6 0.694 -0.51 0.609 0.349 0.306 0.94 

7 7 0.0563 -1.38 -0.178 0.253 0.179 0.779 

8 8 0.107 -2.37 -0.139 0.194 0.111 0.736 

9 9 0.19 -3.11 0.00653 0.155 0.0726 0.702 

10 10 0.227 -3.3 0.125 0.128 0.0489 0.672 

11 12 0.282 -3.94 0.167 0.0925 0.0224 0.618 
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12 14 0.327 -4.53 0.168 0.0708 0.0108 0.569 

13 16 0.367 -4.78 0.187 0.0562 0.00485 0.525 

14 18 0.343 -4.4 0.161 0.0457 0.00223 0.484 

15 20 0.361 -4.09 0.186 0.0379 0.00104 0.447 

   

Table 4: (b) choices of power ɓ in miRNA ER- samples 

Scale Free Rsquared  slope 

  1              0.66  -0.51 

 

Figure 6: (b) choices of power ɓ for miRNA ER- samples 

For mRNA: ER+ samples  

 
Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k. 

1 1 0.0852 -1.32 0.979 494 4.90E+02 792 

2 2 0.39 -1.94 0.99 124 1.20E+02 288 

3 3 0.603 -2.2 0.986 38.9 3.62E+01 122 

4 4 0.716 -2.33 0.983 14.2 1.24E+01 57.1 

5 5 0.769 -2.43 0.986 5.77 4.76E+00 28.7 

6 6 0.792 -2.37 0.969 2.58 1.96E+00 15.2 

7 7 0.828 -2.23 0.953 1.25 8.69E-01 8.65 

8 8 0.89 -2.25 0.971 0.649 4.06E-01 5.82 
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9 9 0.894 -2.34 0.946 0.36 1.97E-01 4.42 

10 10 0.947 -2.18 0.984 0.213 9.85E-02 3.44 

11 12 0.963 -1.79 0.956 0.0886 2.76E-02 2.18 

12 14 0.366 -2.42 0.291 0.0458 8.24E-03 2.04 

13 16 0.377 -2.18 0.32 0.0283 2.68E-03 1.93 

14 18 0.352 -2.45 0.317 0.0201 9.16E-04 1.83 

15 20 0.336 -2.21 0.304 0.0156 3.20E-04 1.74 

 

Table 4: (c) choices of power ɓ in mRNA ER+ samples 

  scaleFree Rsquared  slope 

1   0.77  -2.37 

 

Figure 6: (c) choices of power ɓ for mRNA ER+ samples 

ER-samples 

 
Power SFT.R.sq Slope truncated.R.sq mean.k. median.k. max.k. 

1 1 0.252 -1.91 0.947 628 6.06E+02 1060 

2 2 0.536 -2.44 0.951 196 1.78E+02 498 

3 3 0.711 -2.44 0.982 74.8 6.33E+01 270 

4 4 0.795 -2.47 0.982 32.7 2.53E+01 159 

5 5 0.839 -2.47 0.992 15.7 1.11E+01 99.6 
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6 6 0.876 -2.38 0.995 8.16 5.20E+00 65.2 

7 7 0.9 -2.29 0.989 4.5 2.59E+00 44.2 

8 8 0.916 -2.2 0.985 2.62 1.37E+00 30.8 

9 9 0.929 -2.1 0.981 1.59 7.53E-01 22 

10 10 0.967 -1.95 0.986 1.01 4.26E-01 16.1 

11 12 0.935 -1.82 0.92 0.447 1.46E-01 9 

12 14 0.911 -1.74 0.886 0.224 5.52E-02 5.93 

13 16 0.957 -1.63 0.944 0.125 2.25E-02 4.37 

14 18 0.961 -1.56 0.951 0.076 9.42E-03 3.37 

15 20 0.931 -1.51 0.919 0.0503 4.12E-03 2.75 

 

Table 4: (d) choices of power ɓ in mRNA ER- samples 

  scaleFree Rsquared  slope 

1   0.86  -2.38 

 

Figure 6: (d) choices of power ɓ for mRNA ER- samples 

Network Connectivity of ER+ and ER- samples  

For miRNA, 
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In co-expression networks, the connectivity measures how correlated a 

miRNA/gene is with all other network miRNAs/genes. 

For mRNA, 

 

Figure 7: Network connectivity for (a) miRNAs and (b) mRNAs 
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Connectivity is highly preserved 

in miRNA samples. 

Connectivity is not highly 

preserved in mRNA samples. 



B. Adjacency matrix, Dissimilarity measure and Module Detection 

 After choosing ɓ for miRNA and mRNA expression data for two phenotypes ER+ 

and ER-, the adjacency for each was found. It is useful to find modules in the network. 

In order to implement this, R script was used. The theory is described in the method 

section. Some of the conditions should be satisfied to find out the network adjacencies, 

π ὃ ρ 

ὃ  ὃ  

ὃ ρ 

Adjacency matrix looks like, 

For miRNA, ER+ samples: Result stored in ADJER+.txt  

 
[,1] [,2] [,3] [,4] [,5] -- -- [,49] 

[1,] 1.00E+00 8.54E-04 8.05E-02 7.83E-09 7.27E-05   1.14E-09 

[2,] 8.54E-04 1.00E+00 2.66E-04 1.74E-09 6.10E-07   3.85E-06 

[3,] 8.05E-02 2.66E-04 1.00E+00 5.04E-07 2.61E-04   9.81E-11 

[4,] 7.83E-09 1.74E-09 5.04E-07 1.00E+00 1.21E-01   1.05E-05 

[5,] 7.27E-05 6.10E-07 2.61E-04 1.21E-01 1.00E+00   1.93E-07 

|         

|         

|         

[49] 1.14E-09 3.85E-06 9.81E-11 1.05E-05 1.93E-07 -- -- 1.00E+00 

 

ER- samples Result stored in ADJER-.txt 

 
[,1] [,2] [,3] [,4] [,5] -- -- [,49] 

[1,] 1 0.000942 0.085988 6.43E-05 5.37E-10   3.34E-07 

[2,] 0.000942 1 0.000257 4.72E-06 1.32E-08   1.99E-08 
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[3,] 0.085988 0.000257 1 0.000237 6.78E-08   4.86E-07 

[4,] 6.43E-05 4.72E-06 0.000237 1 0.125976   0.000865 

[5,] 5.37E-10 1.32E-08 6.78E-08 0.125976 1   2.58E-05 

         

         

         

[49,] 3.34E-07 1.99E-08 4.86E-07 0.000865 2.58E-05 -- -- 1.00E+00 

 

Table 5: (a) adjacency matrix for miRNA  

For mRNA, ER+ samples: Result stored in ADJER+m.txt 

 
[,1] [,2] [,3] [,4] [,5] -- -- [,3030] 

[1,] 1 0.003892 7.72E-06 0.000341 7.09E-06   0.000325 

[2,] 0.003892 1 0.006697 0.000496 0.000452   0.000249 

[3,] 7.72E-06 0.006697 1 0.001686 3.26E-14   0.000135 

[4,] 0.000341 0.000496 0.001686 1 0.000144   0.000195 

[5,] 7.09E-06 0.000452 3.26E-14 0.000144 1   8.76E-07 

         

|         

|         

[3030,] 0.000325 0.000249 0.000135 0.000195 8.76E-07   1 

 

ER- : Result stored in ADJER-m.txt 

 
[,1] [,2] [,3] [,4] [,5] -- -- [,3030] 

[1,] 1 0.001632 0.066333 0.04377 0.002669   0.00076 

[2,] 0.001632 1 0.016613 0.00794 0.008784   0.006989 

[3,] 0.066333 0.016613 1 0.050861 0.019168   0.001297 

[4,] 0.04377 0.00794 0.050861 1 0.08481   0.011573 

[5,] 0.002669 0.008784 0.019168 0.08481 1   0.098296 

         

|         

|         

[3030,] 0.00076 0.006989 0.001297 0.011573 0.098296   1 
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Table 5: (b) adjacency matrix for mRNA  

Dissimilarity can be approximately measured by  

ὨὭίίὃ ρ  ὃ  

Its output is in the table below: 

For miRNA, ER+ samples: Result stored in disTOMER+.txt 

 
[,1] [,2] [,3] [,4] [,5] -- -- [,49] 

[1,] 0 0.998869 0.911965 0.999987 0.999777   0.999997 

[2,] 0.998869 0 0.999573 0.999998 0.999997   0.999996 

[3,] 0.911965 0.999573 0 0.999964 0.999521   0.999998 

[4,] 0.999987 0.999998 0.999964 0 0.879671   0.999999 

[5,] 0.999777 0.999997 0.999521 0.879671 0   0.999999 

|         

|         

|         

[49] 0.999997 0.999996 0.999998 0.999999 0.999999   0 

 

ER- : Result stored in disTOMER-.txt 

 
[,1] [,2] [,3] [,4] [,5] -- -- [,49] 

[1,] 0 0.998869 0.911965 0.999987 0.999777   0.999997 

[2,] 0.998869 0 0.999573 0.999998 0.999997   0.999996 

[3,] 0.911965 0.999573 0 0.999964 0.999521   0.999998 

[4,] 0.999987 0.999998 0.999964 0 0.879671   0.999998 

[5,] 0.999777 0.999997 0.999521 0.879671 0   0.999999 

         

         

         

[49,] 0.999997 0.999996 0.999998 0.999998 0.999999   0 

Table 6: (a) dissimilarity measures for miRNA  
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For mRNA, ER+ samples: Result stored in disTOMER+m.txt 

 
[,1] [,2] [,3] [,4] [,5] -- -- [,3030] 

[1,] 0 0.995585 0.998901 0.998693 0.999615   0.999471 

[2,] 0.995585 0 0.993915 0.996741 0.997268   0.998318 

[3,] 0.998901 0.993915 0 0.994627 0.999377   0.99801 

[4,] 0.998693 0.996741 0.994627 0 0.999338   0.9992 

[5,] 0.999615 0.997268 0.999377 0.999338 0   0.999882 

         

|         

|         

[3030,] 0.999471 0.998318 0.99801 0.9992 0.999882   0 

 

ER- samples: Result stored in disTOMER-m.txt 

 
[,1] [,2] [,3] [,4] [,5] -- -- [,3030] 

[1,] 0 0.989214 0.971138 0.968537 0.986701   0.989539 

[2,] 0.989214 0 0.980514 0.980713 0.982671   0.991045 

[3,] 0.971138 0.980514 0 0.953618 0.976725   0.98471 

[4,] 0.968537 0.980713 0.953618 0 0.947647   0.968189 

[5,] 0.986701 0.982671 0.976725 0.947647 0   0.945542 

         

|         

|         

[3030,] 0.989539 0.991045 0.98471 0.968189 0.945542   0 

 

Table 6: (a) dissimilarity measures for mRNA  
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Module Detection 

For miRNA, ER+ samples 

 

From, clustering we can say that miRNA modules are highly preserved. 

ER- samples  

Figure 8: (a) Hierarchical clustering for miRNA ER+ and ER- samples 
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For mRNA, 

ER+ samples 

From, clustering we can say that mRNA modules are not highly preserved. 

ER- samples 

Figure 8: (b) Hierarchical clustering for mRNA ER+ and ER- samples   
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The whole module-wise network is shown in the following table:  

For miRNA ER+ samples is stored in: CancerNetmiRNAER+  

colorh1 miRNA pAdjusted.index rawp BH 

blue hsa-miR-505 335 7.24E-06 0.000383 

blue hsa-miR-18a 122 0.000333 0.008364 

blue hsa-miR-505* 336 0.000662 0.012271 

blue hsa-miR-19a 144 0.001451 0.019222 

blue hsa-miR-18b 123 0.001511 0.019484 

 

turquoise hsa-miR-29c* 204 2.65E-10 1.26E-07 

turquoise hsa-miR-190b 125 7.46E-09 1.15E-06 

turquoise hsa-miR-29b-2* 202 2.63E-06 0.000179 

turquoise hsa-miR-29c 203 3.64E-05 0.001336 

turquoise hsa-miR-148b 84 0.000956 0.015193 

 

grey hsa-miR-149 85 1.42E-09 3.39E-07 

grey hsa-miR-342-3p 246 9.66E-09 1.15E-06 

grey hsa-miR-342-5p 247 4.53E-08 4.32E-06 

grey hsa-miR-339-5p 240 5.09E-07 4.04E-05 

grey hsa-miR-224 178 5.74E-06 0.000342 

grey hsa-miR-146b-5p 81 2.95E-05 0.001293 

grey hsa-miR-99b 476 3.12E-05 0.001293 

grey hsa-miR-135b 63 3.25E-05 0.001293 

grey hsa-let-7e* 10 4.59E-05 0.001564 

grey hsa-miR-374a 266 5.48E-05 0.001742 

grey hsa-miR-339-3p 239 6.13E-05 0.001826 

grey hsa-miR-628-3p 409 0.000233 0.00653 

grey hsa-miR-499-5p 327 0.000306 0.0081 

grey hsa-miR-125a-5p 42 0.000386 0.009212 

grey hsa-miR-452 302 0.000488 0.010283 

grey hsa-miR-223 176 0.000489 0.010283 

grey hsa-miR-625 406 0.000496 0.010283 

grey hsa-miR-26a 187 0.000617 0.012262 

grey hsa-miR-10b* 29 0.000669 0.012271 

grey hsa-miR-9 456 0.000781 0.013752 
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grey hsa-miR-629 411 0.000807 0.013752 

grey hsa-miR-9* 457 0.000935 0.015193 

grey hsa-miR-623 404 0.001177 0.018108 

grey hsa-miR-181d 111 0.001266 0.018434 

grey hsa-miR-378* 277 0.001275 0.018434 

grey hsa-miR-23a 179 0.001318 0.018497 

grey hsa-miR-148a 82 0.001365 0.018599 

grey hsa-miR-423-5p 288 0.001982 0.024122 

grey hsa-miR-326 227 0.001986 0.024122 

grey hsa-miR-101* 19 0.002023 0.024122 

grey hsa-miR-103 20 0.002294 0.026688 

grey hsa-miR-432 296 0.002761 0.031356 

grey hsa-miR-424 289 0.00307 0.03405 

grey hsa-let-7e 9 0.004105 0.044073 

grey hsa-miR-26b* 189 0.004158 0.044073 

grey hsa-miR-146a 80 0.004494 0.046599 

grey hsa-let-7i 14 0.00471 0.047801 

grey hsa-miR-30a* 209 0.004912 0.048653 

grey hsa-miR-375 269 0.004998 0.048653 

 

 miRNA ER- samples is stored in : CancerNetmiRNAER- 

colorh2 miRNA pAdjusted.index rawp BH 

blue hsa-miR-505 335 7.24E-06 0.000383 

blue hsa-miR-18a 122 0.000333 0.008364 

blue hsa-miR-505* 336 0.000662 0.012271 

blue hsa-miR-19a 144 0.001451 0.019222 

blue hsa-miR-18b 123 0.001511 0.019484 

 

turquoise hsa-miR-29c* 204 2.65E-10 1.26E-07 

turquoise hsa-miR-190b 125 7.46E-09 1.15E-06 

turquoise hsa-miR-29b-2* 202 2.63E-06 0.000179 

turquoise hsa-miR-29c 203 3.64E-05 0.001336 

turquoise hsa-miR-148b 84 0.000956 0.015193 
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grey hsa-miR-149 85 1.42E-09 3.39E-07 

grey hsa-miR-342-3p 246 9.66E-09 1.15E-06 

grey hsa-miR-342-5p 247 4.53E-08 4.32E-06 

grey hsa-miR-339-5p 240 5.09E-07 4.04E-05 

grey hsa-miR-224 178 5.74E-06 0.000342 

grey hsa-miR-146b-5p 81 2.95E-05 0.001293 

grey hsa-miR-99b 476 3.12E-05 0.001293 

grey hsa-miR-135b 63 3.25E-05 0.001293 

grey hsa-let-7e* 10 4.59E-05 0.001564 

grey hsa-miR-374a 266 5.48E-05 0.001742 

grey hsa-miR-339-3p 239 6.13E-05 0.001826 

grey hsa-miR-628-3p 409 0.000233 0.00653 

grey hsa-miR-499-5p 327 0.000306 0.0081 

grey hsa-miR-125a-5p 42 0.000386 0.009212 

grey hsa-miR-452 302 0.000488 0.010283 

grey hsa-miR-223 176 0.000489 0.010283 

grey hsa-miR-625 406 0.000496 0.010283 

grey hsa-miR-26a 187 0.000617 0.012262 

grey hsa-miR-10b* 29 0.000669 0.012271 

grey hsa-miR-9 456 0.000781 0.013752 

grey hsa-miR-629 411 0.000807 0.013752 

grey hsa-miR-9* 457 0.000935 0.015193 

grey hsa-miR-623 404 0.001177 0.018108 

grey hsa-miR-181d 111 0.001266 0.018434 

grey hsa-miR-378* 277 0.001275 0.018434 

grey hsa-miR-23a 179 0.001318 0.018497 

grey hsa-miR-148a 82 0.001365 0.018599 

grey hsa-miR-423-5p 288 0.001982 0.024122 

grey hsa-miR-326 227 0.001986 0.024122 

grey hsa-miR-101* 19 0.002023 0.024122 

Grey hsa-miR-103 20 0.002294 0.026688 

Grey hsa-miR-432 296 0.002761 0.031356 

Grey hsa-miR-424 289 0.00307 0.03405 

Grey hsa-let-7e 9 0.004105 0.044073 

Grey hsa-miR-26b* 189 0.004158 0.044073 

Grey hsa-miR-146a 80 0.004494 0.046599 

Grey hsa-let-7i 
 

14 0.00471 0.047801 

Grey hsa-miR-30a* 209 0.004912 0.048653 

Grey hsa-miR-375 269 0.004998 0.048653 
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Table 7: module-wise listing for miRNA  

Module-wise listing of miRNAs and mRNAs for ER+ and ER- samples are stored in a 

file CancerNetmRNAER+ and CancerNetmiRNAER- respectively. 

Script 4: miRNA Functional Target Prediction 

The script was implemented in JAVA. We used MicroCosm Target Version 5 data base 

to predict the targets, which was implemented on miRanda algorithm. miRanda is 

described in methods. It reads the miRNA predefined targets and mRNA in modules 

from the individual file. The miRNA targeted gene is found in the mRNA module using 

dynamic programming. This represents module-wise target prediction. 

The module-wise results are stored in mimTargetERpos and mimTargetERneg 

Script 5: Fisher's Exact Test 

This was executed in R. The theory is described in Method section. Fisherôs exact test 

shows the miRNA targets are enriched within the mRNA modules or not. Here, we used 

one-sided p-value that shows positive association between miRNA modules and mRNA 

modules that means miRNA targets are enriched in mRNA modules. 

Here are the results of comparison of differentially expressed Vs non-differentially 

expressed targets of the miRNA modules in ER+ and ER- samples.  

 miRNA 
Module 

ER+ samples 
ER- samples 

P-value 
(One sided) 

Significance  
P-value < 0.05 

 
  

 
 

1 Blue ER+ 0.3953 No  

 
 

ER- 0.3953 No  
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2 Turquoise  ER+ 1 No  

 
 

ER- 1 No  

3 Grey  ER+ 0.9878 No  

 
 

ER- 0.9773 No  

Table 8: (a) Fisherôs test for miRNA modules enriched within differentially expressed 

genes and non-differentially expressed genes   

From above table we can see that, the one sided P-value is not less than 0.05 which is 

statistically not significant. It means that the same genes that are not targeted by 

miRNAs modules are found in the mRNA modules. 

The module-wise results had shown in the table below: 

ER+ samples:  

 miRNA 
Module 

mRNA 
Module 

P ï value 
(One sided) 

Significance  
P-value < 0.05 

 
  

 
 

1 Blue Blue  1 No  

 
 

Brown  0.7533 No  

 
 

Turquoise 0.7740 No 

 
 

Grey  0.1829 No  

2 Turquoise  Blue  0.1526 No  

 
 

Brown  0.8851 No  

 
 

Turquoise 0.1247 No  

 
 

Grey  0.9347 No  

3 Grey  Blue  0.8767 No  

 
 

Brown  0.9828 No  

 
 

Turquoise 0.5962 No  

 
 

Grey  0.1284 No  

 

Table 8: (b) Fisherôs test for miRNA modules enriched within mRNA modules   

ER- samples: 
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miRNA 
Module 

mRNA 
Module 

P ï value 
(One sided) Significance 

P-value < 0.05 

   
 

 
1 Blue Black  6.3*10^(-5) Yes   

  
Blue  0.9466 No  

  
Brown  0.5724 No 

  
Green  0.5386 No  

  
Red   0.5030 No  

  
Turquoise 0.8062 No  

  
Yellow  1 No  

  
Grey  0.5673 No  

2 Turquoise  Black  0.2233 No  

  
Blue  0.3939 No  

  
Brown  0.7956 No  

  
Green  0.9439 No  

  
Red   0.7335 No  

  
Turquoise 0.2247 No 

  
Yellow  0.7663 No  

  
Grey  0.7052 No  

3 Grey  Black  0.5260 No  

  
Blue  0.9491 No  

  
Brown  0.02834 Yes   

  
Green  0.2473 No  

  
Red   0.7192 No  

  
Turquoise 0.3694 No  

  
Yellow  0.4277 No  

  
Grey  0.7093 No  

 

Table 8: (c) Fisherôs test for miRNA modules enriched within mRNA modules   

From above tables, we didnôt find one sided P-value is not less than 0.05 which is 

statistically not significant. It means that the same genes targeted by miRNAs modules 

are not enriched in the mRNA modules in ER+ samples; but we found  that the one 

sided P-value is less than 0.05 which is statistically significant. It means that the same 
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genes targeted by miRNA Blue modules are enriched in the mRNA Black modules. 

FUNCTIONAL ENRICHMENT ANALYSIS: 

Functional Enrichment Analysis is done using web based tool DAVID. As we found 

different modules for miRNA and mRNA, here we presented module-wise Functional 

Enrichment is shown in ER+ samples and ER- samples. We combined the targets of 

miRNA one module and miRNA other module in mRNA module, we showed the 

enrichment of miRNA module to mRNA module. The result contains Gene Symbol, 

Gene Name, Chromosome, KEGG Pathways, GO terms: BP (Biological Process), CC 

(Cellular Component) and MF (Molecular Function). The result stored for modules in 

appendix. 

From Fisherôs Exact Test, miRNA Blue and Grey modules and mRNA Black and Brown 

modules are significant in ER- samples. The significant mRNA modules i.e. Black and 

Brown were shown.  

Functional enrichment analysis for individual modules stored in the following files: 

Black mRNA module for ER- samples: annotationtableBL.xlsx 

Blue mRNA module for ER- samples: annotationtableBLU.xlsx 

Brown mRNA module for ER- samples: annotationtableBR.xlsx 

Green mRNA module for ER- samples: annotationtableGR.xlsx 

Red mRNA module for ER- samples: annotationtableR.xlsx 
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Turquoise mRNA module for ER- samples: annotationtableTUR.xlsx 

Yellow mRNA module for ER- samples: annotationtableY.xlsx 

Clustering information for combined targets of miRNA two modules with their biological 

processes is stored in the table below; we merely showed those categories whose FDR 

is less than 10%: 

Blue Module of mRNA targeted by miRNA Blue and Turquoise module 

Category Term Count % PValue Genes 
Fold 
Enrichment FDR 

GOTERM_
BP_FAT 

GO:00015
01~ 
skeletal 
system 
developm
ent 3 

27.27
273 

0.0078
09 BMP1, COL3A1, TRAF6 18.17465 

9.5303
12 

 

Table 9: (a) functional enrichment analysis for mRNA 

Other mRNA targeted by miRNA Blue and Turquoise module 

Category Term Count % PValue Genes 
Fold 

Enrichment FDR 

GOTERM_
BP_FAT 

GO:00068
98~ 
receptor-
mediated 
endocytos
is 7 

1.343
57 

0.0040
91 

DAB2, LRP1, DRD3, 
FOLR1, IGF2R, SORL1, 
LRP2 4.557951 

6.8728
22 

 

Table 9: (b) functional enrichment analysis for mRNA 
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Interpretation of above tables: miRNA in Blue and Turquoise modules are involved in 2 

different biological processes such as skeletal system development and receptor 

mediated endocytosis. More information stored as feabluembluenturmi.xlsx and 

feagreymbluenturmi.xlsx 

Other mRNA targeted by miRNA Blue module and other miRNAs 

Category Term Count % PValue Genes 
Fold 

Enrichment FDR 

GOTERM_
BP_FAT 

GO:00182
12~peptid
yl-tyrosine 
modificati
on 11 

0.784
593 

0.0040
21 

OSM, IL12RB2, TPST1, 
ERBB4, FYN, IFNG, CLK4, 
RELN, INSR, DDR2, BTK 2.867869 

7.0977
72 

GOTERM_
BP_FAT 

GO:00164
77~cell 
migration 36 

2.567
76 

0.0042
36 

NRTN, CCK, GIPC1, 
CXCL12, ITGAM, VCAM1, 
AZU1, CTTNBP2, SBDS, 
DOCK2, OVOL2, SAA1, 
IFNG, KRT2, CLASP2, 
CAP1, NR2F1, PTPRK, 
LMX1B, BARHL2, 
NEUROG2, SIX4, COL5A1, 
SLIT2, CDH13, ID1, FYN, 
ITGA5, LRP6, ADAM17, 
HBEGF, RELN, SELE, 
PLAU, MYH10, LRP5 1.632305 

7.4626
77 

GOTERM_
BP_FAT 

GO:00015
01~skeleta
l system 
developm
ent 40 

2.853
067 

0.0048
51 

MMP9, CYTL1, FHL2, 
HOXD13, POSTN, EXTL1, 
GLI3, GLI1, SBDS, HOXC9, 
CHD7, HOXA4, JUND, 
ANKRD11, COL12A1, 
COL11A2, AXIN2, PCSK5, 
MINPP1, CMKLR1, DLL3, 
HSPG2, IGF1, SIX4, 
SMAD1, NPR3, CACNA1S, 
INHBA, CTSK, CHRDL2, 
RPS6KA3, TULP3, 
HOXC11, KAZALD1, 
COL1A2, TFAP2A, STC1, 
ATP6V0A4, EIF2AK3, 
CDH11 1.569196 

8.5026
61 
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GOTERM_
BP_FAT 

GO:00071
55~cell 
adhesion 76 

5.420
827 

0.0049
73 

DLC1, CADM4, MYBPC2, 
COL21A1, CLDN6, CLSTN1, 
CASK, LMO7, L1CAM, 
POSTN, LY9, CD151, CXCL12, 
DDR2, CDH22, AZGP1, CD96, 
DGCR6, COL12A1, DLG5, 
ZYX, COL11A2, BOC, CIB1, 
F11R, PTPRK, ICAM4, 
ICAM2, FLOT2, COL22A1, 
PCDHB2, ACTN1, MFGE8, 
CTNNA1, AMBP, HES1, 
ARVCF, CD36, HAS1, GPR56, 
NPTN, ADAM17, LAMC2, 
RELN, TGFB1I1, LIMS1, GNE, 
CDH3, ITGAM, ALCAM, 
VCAM1, NPHP4, LGALS3BP, 
COL7A1, FAT4, ITGB7, BAI1, 
CD4, SSX2IP, HAPLN3, 
LRRN2, COL15A1, HSPG2, 
CD99, ITGA3, NID2, COL5A1, 
MUC4, CDH13, COL14A1, 
ITGA5, PKP3, SELE, IL2, FEZ1, 
CDH11 1.3587 

8.7070
62 

GOTERM_
BP_FAT 

GO:00103
24~memb
rane 
invaginati
on 30 

2.139
8 

0.0050
98 

DRD3, LDLR, ADORA2A, 
SORL1, SNX2, EEA1, ITSN2, 
ASGR1, DAB2, FOLR1, FCN2, 
CAP1, TRIP10, DBNL, 
MRC1L1, MFGE8, ELMO3, 
LMBR1L, CD36, LRP1, 
GAPVD1, IGF2R, LRP12, 
LRP6, SH3KBP1, LRP2, BIN1, 
CD14, DNM1, LRP5 

1.70650
1 

8.9155
01 

GOTERM_
BP_FAT 

GO:00068
97~endoc
ytosis 30 

2.139
8 

0.0050
98 

DRD3, LDLR, ADORA2A, 
SORL1, SNX2, EEA1, ITSN2, 
ASGR1, DAB2, FOLR1, FCN2, 
CAP1, TRIP10, DBNL, 
MRC1L1, MFGE8, ELMO3, 
LMBR1L, CD36, LRP1, 
GAPVD1, IGF2R, LRP12, 
LRP6, SH3KBP1, LRP2, BIN1, 
CD14, DNM1, LRP5 

1.70650
1 

8.9155
01 
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GOTERM_
BP_FAT 

GO:00226
10~biologi
cal 
adhesion 76 

5.420
827 

0.0051
25 

DLC1, CADM4, MYBPC2, 
COL21A1, CLDN6, 
CLSTN1, CASK, LMO7, 
L1CAM, POSTN, LY9, 
CD151, CXCL12, DDR2, 1.356761 

8.6042
9 



CDH22, AZGP1, CD96, 
DGCR6, COL12A1, DLG5, 
ZYX, COL11A2, BOC, CIB1, 
F11R, PTPRK, ICAM4, 
ICAM2, FLOT2, COL22A1, 
PCDHB2, ACTN1, MFGE8, 
CTNNA1, AMBP, HES1, 
ARVCF, CD36, HAS1, 
GPR56, NPTN, ADAM17, 
LAMC2, RELN, TGFB1I1, 
LIMS1, GNE, CDH3, 
ITGAM, ALCAM, VCAM1, 
NPHP4, LGALS3BP, 
COL7A1, FAT4, ITGB7, 
BAI1, CD4, SSX2IP, 
HAPLN3, LRRN2, 
COL15A1, HSPG2, CD99, 
ITGA3, NID2, COL5A1, 
MUC4, CDH13, COL14A1, 
ITGA5, PKP3, SELE, IL2, 
FEZ1, CDH11 

GOTERM_
BP_FAT 

GO:00400
08~regulat
ion of 
growth 42 

2.995
72 

0.0052
75 

MYOD1, IL9R, DRD3, 
MYL2, GDF5, DDR2, 
DAB2, FAM107A, CHD7, 
HSF1, PPP2CA, IFNG, 
CREG1, TAF9, ACTL6A, 
AGRN, PRL, INSR, 
BRMS1L, ENO1, 
ADAM10, CRYAB, 
SPTBN4, BARHL2, ATRN, 
PSRC1, IGF1, CAPRIN2, 
OSM, VEGFB, NTRK3, 
INHBA, CDH13, CTH, 
EP300, LRP12, KAZALD1, 
HBEGF, ADAM17, UTS2R, 
IGFBP2, IL2 1.541355 

9.2119
02 

GOTERM_
BP_FAT 

GO:00063
33~chrom
atin 
assembly 
or 
disassemb
ly 20 

1.426
534 

0.0056
65 

HIST2H2AA3, HIST1H2BC, 
HIST1H1C, SUV39H1, 
H1FX, NAP1L3, CBX6, 
CHD8, CHD7, SET, CDYL2, 
HIST1H2BI, HIST1H3A, 
CHD1, H2AFX, HIST3H2A, 
CDY2A, HIST1H2AM, 
ASF1A, HDAC8, HIST1H4H 1.970762 

9.8596
17 

Table 9: (c) functional enrichment analysis for mRNA 

48 



Interpretation of above tables: miRNA in Blue module and other miRNAs are involved in 

different biological processes such as cell migration, cell and biological adhesion, 

regulation of growth, skeletal system development and endocytosis, etc. more 

information stored in feagreymbluengreymi.xlsx 

Other mRNA targeted by miRNA Turquoise module and other miRNAs 

Category Term Count % PValue Genes 

Fold 
Enrich
ment FDR 

GOTERM_
BP_FAT 

GO:00301
98~extrac
ellular 
matrix 
organizati
on 19 

1.371
841 

0.0011
69 

LMX1B, MMP9, ADAMTSL4, 
ELN, HSPG2, ANXA2P1, 
SPINK5, COL5A1, APLP2, 
COL14A1, KAZALD1, SMOC1, 
FOXF1, COL1A2, COL12A1, 
LOX, COL11A2, B4GALT7, 
COL11A1 

2.3206
21 

2.1118
77 

GOTERM_
BP_FAT 

GO:00015
01~skeleta
l system 
developm
ent 42 

3.032
491 

0.0012
19 

MMP9, CYTL1, FHL2, 
HOXD13, EXTL1, GLI3, GLI1, 
SBDS, HOXC9, CHD7, HOXA4, 
JUND, ANKRD11, COL12A1, 
PKD1, COL11A2, AXIN2, 
COL11A1, PCSK5, MINPP1, 
CMKLR1, DLL3, HSPG2, IGF1, 
SIX4, SMAD1, NPR3, 
ANXA2P1, CACNA1S, INHBA, 
CTSK, CHRDL2, RPS6KA3, 
TULP3, HOXC11, KAZALD1, 
COL1A2, TFAP2A, STC1, 
ATP6V0A4, EIF2AK3, CDH11 

1.6724
09 

2.2012
34 

GOTERM_
BP_FAT 

GO:00301
99~collage
n fibril 
organizati
on 9 

0.649
819 

0.0013
74 

COL14A1, LMX1B, COL1A2, 
COL12A1, LOX, COL11A2, 
ANXA2P1, COL11A1, COL5A1 

3.9421
08 

2.4776
41 
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GOTERM_
BP_FAT 

GO:00164
77~cell 
migration 37 

2.671
48 

0.0018
18 

NRTN, CCK, GIPC1, CXCL12, 
ITGAM, VCAM1, AZU1, 
CTTNBP2, SBDS, DOCK2, 
OVOL2, SAA1, CKLF, IFNG, 
KRT2, CLASP2, CAP1, NR2F1, 
PTPRK, LMX1B, BARHL2, 
NEUROG2, SIX4, COL5A1, 
SLIT2, CDH13, ID1, FYN, 
ITGA5, LRP6, ADAM17, 
HBEGF, RELN, SELE, PLAU, 
MYH10, LRP5 

1.7028
51 

3.2653
6 

GOTERM_
BP_FAT 

GO:00181
08~peptid
yl-tyrosine 
phosphory
lation 11 

0.794
224 

0.0025
98 

OSM, IL12RB2, ERBB4, FYN, 
IFNG, CLK4, ABI1, RELN, INSR, 
DDR2, BTK 

3.0375
18 

4.6358
74 

GOTERM_
BP_FAT 

GO:00488
70~cell 
motility 39 

2.815
884 

0.0035
01 

SLC22A16, NRTN, CCK, GIPC1, 
CXCL12, ITGAM, VCAM1, 
AZU1, CTTNBP2, SBDS, 
DOCK2, OVOL2, SAA1, CKLF, 
IFNG, KRT2, CLASP2, CAP1, 
NR2F1, PTPRK, LMX1B, 
BARHL2, NEUROG2, SIX4, 
COL5A1, SLIT2, CDH13, ID1, 
FYN, ITGA5, CATSPER1, LRP6, 
ADAM17, HBEGF, RELN, SELE, 
PLAU, MYH10, LRP5 

1.6136
53 

6.1997
35 

GOTERM_
BP_FAT 

GO:00516
74~localiz
ation of 
cell 39 

2.815
884 

0.0035
01 

SLC22A16, NRTN, CCK, GIPC1, 
CXCL12, ITGAM, VCAM1, 
AZU1, CTTNBP2, SBDS, 
DOCK2, OVOL2, SAA1, CKLF, 
IFNG, KRT2, CLASP2, CAP1, 
NR2F1, PTPRK, LMX1B, 
BARHL2, NEUROG2, SIX4, 
COL5A1, SLIT2, CDH13, ID1, 
FYN, ITGA5, CATSPER1, LRP6, 
ADAM17, HBEGF, RELN, SELE, 
PLAU, MYH10, LRP5 

1.6136
53 

6.1997
35 

GOTERM_
BP_FAT 

GO:00182
12~peptid
yl-tyrosine 
modificati
on 11 

0.794
224 

0.0036
13 

OSM, IL12RB2, ERBB4, FYN, 
IFNG, CLK4, ABI1, RELN, INSR, 
DDR2, BTK 

2.9109
55 

6.3910
08 
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GOTERM_
BP_FAT 

GO:00430
62~extrac
ellular 
structure 
organizati
on 24 

1.732
852 

0.0043
77 

ERBB4, LMX1B, MMP9, 
ADAMTSL4, ELN, HSPG2, 
PCDHB2, CACNB4, ANXA2P1, 
CACNA1S, SPINK5, COL5A1, 
APLP2, COL14A1, KAZALD1, 
SMOC1, FOXF1, COL1A2, 
COL12A1, AGRN, LOX, 
COL11A2, B4GALT7, COL11A1 

1.8702
84 

7.6926
98 

 

Table 9: (d) functional enrichment analysis for mRNA 

Interpretation of above tables: miRNA in Turquoise module and other miRNAs are 

involved in different biological processes such as cell migration, cell motility, localization 

of cell, skeletal system development, extracellular matrix organization and extracellular 

structure organization. More information stored as feagreymturngreymi.xlsx 

Functional enrichment analysis for individual modules stored in the following files: 

Blue mRNA module for ER- samples: annotationBLU.xlsx 

Other mRNA module for ER- samples: annotationGREY.xlsx 

Results for genes in all modules of ER+ samples with Gene Ontology and KEGG 

Pathway information with genes location on chromosome were shown in the following 

files: 

Blue mRNA module for ER+ samples: annotationtableBLU.xlsx 

Brown mRNA module for ER+ samples: annotationtableBR.xlsx 

Turquoise mRNA module for ER+ samples: annotationtableTUR.xlsx 
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Functional enrichment analysis for individual modules stored for ER+ samples in the 

following files: 

Other mRNA for ER+ samples: annotationGREY.txt 

 

UP/DOWN REGULATION OF miRNAS AND GENES 

Finally, key genes targeted by miRNAs within all modules were identified. Then their up 

regulation and down regulation compare to estrogen receptor negative samples were 

demonstrated. 

miRNA expression with Estrogen Receptor negative factor is shown in the table below. 

Modules Up Regulated in ER- samples Down Regulated in ER- samples 

   

BLUE hsa-miR-18a, hsa-miR-18b, 
hsa-miR-19a, hsa-miR-505, 
hsa-miR-505* 

 

TURQUOISE  hsa-miR-29c*, hsa-miR-190b, hsa-
miR-29b-2*, hsa-miR-29c, hsa-miR-
148b 

GREY hsa-miR-224, hsa-miR-146b-5p, 
hsa-miR-135b, hsa-miR-374a, 
hsa-miR-452, hsa-miR-223, 
hsa-miR-9, hsa-miR-9*, hsa-
miR-378*, hsa-miR-23a, hsa-
miR-148a, , hsa-miR-424 
 

hsa-miR-149, hsa-miR-342-3p, hsa-
miR-342-5p, hsa-miR-339-5p, hsa -
miR-99b, hsa-let-7e*, hsa-miR-339-
3p, hsa-miR-628-3p, hsa-miR-499-
5p, hsa-miR-125a-5p, hsa-miR-625, 
hsa-miR-26a, hsa-miR-10b*, hsa-
miR-629, hsa-miR-623, hsa-miR-
181d, hsa-miR-423-5p, hsa-miR-326, 
hsa-miR-101*, hsa-miR-103, hsa-
miR-432, hsa-let-7e, hsa-miR-26b*, 
hsa-miR-146a, hsa-let-7i, hsa-miR-
30a*, hsa-miR-375 
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Table 10: (a) module-wise up/down regulation for miRNA in ER- 

Based on literature, some miRNAs, shown in Red color, are related to breast cancer. 

mRNA expression with ER+ vs ER- factor are stored as updownregulation.xslx , it 

shows up and down regulation of genes in ER- samples. 

Modules Up Regulated in ER- samples Down Regulated in ER- samples 

   

BLACK NUP133,TCP11L1,ARHGAP29, 
FBXO46,PAPSS1,C21orf99, 
DHRS1,NR1H4,RPL7L1,SPRED2,O
LFML3 

PEX3,CR2,WNT11,BTNL9 

BLUE NES,C20orf194,FAM86B1,TLE2, 
MOCS3,HCLS1,CEBPB,ASH2L, 
LBP, ZNF563,LYK5,ASB13, 
PPFIBP2,STAG3,PLA2G3, 
GABRP,ACCN4,COL3A1,BMP1, 
CTAGEP,CASP8AP2,KCTD21, 
HES5,FRK,WDR76,MTERF, 
SULF1,LPIN1 

APOBEC3D,PER2,OSBP2,ZNF
294,TRAF3IP3, C7orf31,UTRN, 
FOXC1,SLC39A6,DNAJC5B, 
ZNF195,ZNF71,REEP3, 
MIPOL1, PODN,HR,TRAF6, 
ICT1,FTSJ2,UQCRFS1,SOCS2, 
INTS4,SNORA70,CERK,CCDC2
3, VWCE 

BROWN  CYB561D1,MR1,PRSS21,LSS, 
ZNF289,ABCC5, DFNB31, 
PIGM,CD2, MUC3A,PHACTR2, 
IBCH,CYC1, C21orf121,RHPN1, 
GPATCH8 

GREEN TBX4 OMA1,PPFIA1,CCDC102A, 
NAV1, TMEM39A, PRKDC, 
FLRT3,SYT6, ANG, JPH3, 
BCAS3,LGALS3, KCNK16, 
RNH1, ZC3H18 

RED SAMD14,C13orf30,NANOG, 
KPNA6,SPATA13,RNF11, 
SLC35B2,RRP12,RBM15,ATP2A1, 
ZNF165,MDM4,TOP1MT,ACTR6 

NKPD1 
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TURQUOISE HIST1H2BM,LENG4,C3orf19, 
MLLT3,FBXO8,GOSR2,PAGE2, 
SETDB2,SREBF1,HOXD10, 
ATP6AP2, PROS1,C15orf48, 
MSH3,YPEL3,TNFSF11,PTPRZ1,M
EGF10, IGSF21,FABP6,PMM2, 
GDI2,CYP4F11,KL,TANC1, 
RGS19,ZDHHC21,SPRY2, 
ENTPD3,MBOAT1,LSAMP, 
CTNNAL1,PCM1,PRB1,WDFY4, 
BEX1,TRPM4,CLEC14A,TRIP13, 
LCN12,AMD1,GPR110,RBPMS2, 
CDH5,C2orf15,UPF3A,PIP4K2A, 
COX11,SLC2A6,ZNF652, 
C10orf84,TM2D2,RPS6KA4, 
PLCH1,ENG, SMARCC2,HCRTR2, 
TCL1A,ISG20,OCA2,FGFRL1, 
TGS1,CD59,CD207,PIM1,ZBTB2, 
MAPK8IP2,DPH4,SH3D19, 
ZNF415,PRDM1,TTC16,FAM19A4, 
GALM,LPHN2,PLA2G12A,ACRV1, 
MGC24039,LAMB2,FAM29A, 
GPNMB,ZNF462,AKAP13 

LOH3CR2A,LRSAM1, 
SYNGAP1, C13orf18, CREG1, 
CILP2,LPO,HLA-DQB1, MAP1A, 
AMTA1,C10orf107, C17orf68, 
BVES,BAG3,LOC51149, PBX1, 
LZIC,GRM8,SUSD3 
 

YELLOW  TMEM58,MVD,CYP2U1,RARA, 
HPS5,LYPD6,DEPDC6,NBR1, 
BAHD1,APOL4,FCGR2B, 
LEPRE1, RIPK2,C21orf71, 
LILRB3,ROR 

 

Table 10: (b) module-wise up/down regulation for mRNA in ER- 

VISUALIZATION: 

The visualization of module-wise miRNA - gene target prediction network is done using 

BiNA software. From the Fisherôs Exact Test, we can determine that miRNA Blue and 

Grey Modules and mRNA Black and Brown modules are important in ER- samples.  

miRNA Blue module targets mRNA Black module is shown in the table below:  
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miRNA  

Blue Module 

Regulation in ER- 

samples  

Target genes  

mRNA Black Module  

Regulation in ER- 

samples 

hsa-miR-505 Up TCP11L1 Up 

hsa-miR-18a Up --------  

hsa-miR-505* Up BTNL9, PAPSS1,  Down, Up 

hsa-miR-19a 
Up NUP133, OLFML3, PEX3, 

CR2,  
Up, Up, Down, Down 

hsa-miR-18b Up DHRS1 Up 

 

Table 11: (a) inverse correlation of miRNAs with their targets 

From above table, we can say that miRNAs hsa-miR-505* and hsa-miR-19a have 

expression pattern that inversely correlated with targeted genes BTNL9 and PEX3, 

CR2, respectively. They definitely could be the functional targets. 

Other miRNA targets mRNA Brown module is shown in the table below:  

miRNA  

 

Regulation in ER- 

samples 

Target genes  

mRNA Brown Module  

Regulation in ER- 

samples 

hsa-miR-149 Down RHPN1 Down 

hsa-miR-342-3p Down LSS, CD2 Down, Down 

hsa-miR-342-5p Down --------  

hsa-miR-339-5p Down DFNB31 Down 

hsa-miR-224 Up CHRM3 Down 

hsa-miR-146b-5p Up --------  

hsa-miR-99b Down --------  

hsa-miR-135b Up CD2 Down 

hsa-let-7e* Down --------  

hsa-miR-374a Up --------  

hsa-miR-339-3p Down CYC1, ZNF289 Down, Down 

hsa-miR-628-3p Down --------  

hsa-miR-499-5p Down --------  

hsa-miR-125a-5p Down ZNF289 Down 

hsa-miR-452 Up --------  

hsa-miR-223 Up --------  
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hsa-miR-625 Down --------  

hsa-miR-26a Down MR1 Down 

hsa-miR-10b* Down --------  

hsa-miR-9 Up --------  

hsa-miR-629 Down CHRM3 Down 

hsa-miR-9* Up HIBCH Down 

hsa-miR-623 Down --------  

hsa-miR-181d Down --------  

hsa-miR-378* Up DFNB31 Down 

hsa-miR-23a Up ABCC5 Down 

hsa-miR-148a Up --------  

hsa-miR-423-5p Down RHPN1 Down 

hsa-miR-326 Down --------  

hsa-miR-101* Down --------  

hsa-miR-103 Down --------  

hsa-miR-432 Down --------  

hsa-miR-424 Up PHACTR2 Down 

hsa-let-7e Down MUC3A, ABCC5 Down, Down 

hsa-miR-26b* Down --------  

hsa-miR-146a Down --------  

hsa-let-7i Down ABCC5 Down 

hsa-miR-30a* Down --------  

hsa-miR-375 Down --------  

 

Table 11: (b) inverse correlation of miRNAs with their targets 

From above table, we can say that miRNAs hsa-miR-224, -135b, -424, -378* and -23a 

have expression pattern that inversely correlated with targeted genes CHRM3, CD2, 

HIBCH, DFNB31 and ABCC5. 

Inverse correlation between miRNA and their targets suggests that they definitely could 

be the functional targets. 

The whole module-wise miRNA ï gene target prediction results are stored in a file; 
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ER+ samples: mimTargetERpos and ER- samples: mimTargetERneg  

miRNA Blue Module target the mRNA Black module: 

 

Figure 9: (a) miRNA targeted genes in blue module of miRNA 

Here pink color indicates down regulation of miRNA/gene and pistachio color indicates 

up regulation in ER- samples. 

miRNA Blue Module target the mRNA all modules including other mRNAs: 

 

Figure 9: (b) miRNA targeted genes in blue module of miRNA 

Similarly, miRNA Turquoise Module target the mRNA all module: 

Figure 9: (c) miRNA targeted genes in turquoise module of miRNA 
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mrna/mimTargetERpos.csv
mrna/mimTargetERneg.csv


miRNA Blue Module target the mRNA all modules including other mRNAs: 

 

Figure 9: (d) miRNA targeted genes in turquoise module of miRNA 

Similarly, miRNA other Module targets the mRNA Brown module: 

 

Figure 9: (e) miRNA targeted genes in rest of miRNAs 

Here pink color indicates down regulation of miRNA/gene and pistachio color indicates 

up regulation in ER- samples. 

miRNA other Module targets all mRNA modules including other mRNAs: 
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Figure 9: (f) miRNA targeted genes in rest of miRNAs 
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