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ABSTRACT

Background:

MicroRNAs are essential key regulators of gene expression. They have significance in
essential biological process. MicroRNA expression patterns are promising biomarkers
for several tumor types including breast cancer. Many computational approaches are
proposed to classify miRNA functions in recent years. Here, we propose an integrative
approach to identify miRNA modules and its functional targets through the analysis of
global miRNA and mRNA expression data. Our interest is to identify functionally

correlated miRNA-mRNA modules that are involved in specific biological processes.

Results:

The Weighted Gene Co-expression Network Analysis (WGCNA) methodology was
applied to analyze miRNA and mRNA expression data in order to determine the
statistically significant modules of miRNA and the function of their targets. The process
can be divided into three categories: (1) identify which mRNAs were targeted by which
MiRNAs, (2) determination of miRNA regulatory modules, i.e. to identify a group of co-
expressed miRNAs and mRNAs. (3) Investigation of the miRNA regulatory modules i.e.

to find an involvement in specific biological process for a particular miRNA module.



Conclusion:

We used mRNA and miRNA expression data from Espen Enerly breast cancer study.
The proposed framework effectively captured miRNA modules. Through Gene Ontology
analysis, several biological processes involving miRNAs and their targeted mRNAs
were identified. To determine coherent miRNA-mRNA modules, we demonstrated that
MRNAs in one module exhibit higher correlation with the miRNAs in a module.
However, due to the fact that only the small numbers of mMRNA modules were detected
from the WGCNA analysis for this datasets, we were not able to find other miRNA-
MRNA modules. For that reason we converted our focus to the other miRNAs which are
not related to any modules. Therefore, the effectiveness of this approach has to be

further investigated using other datasets.
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CHAPTER 1

INTRODUCTION

1.1 WHAT IS microRNAs?

MicroRNAs, also known as miRNAs, were first discovered in 1993 by Victor Ambros,
Rosalind and Rhonda Feinbaum [15]. But not until early 2000s, miRNAs were
recognized as an individual class of biological regulators with conserved functions. They
regulate gene expression through target mRNA degradation or translational gene
silencing. They play an important role in many biological processes and in the

development of many diseases like cancer.

A miRNA, which plays a role in transcriptional and post-transcriptional regulation of
gene expression, is a small non-coding RNA molecule. MiRNAs are ~22 nucleotide
RNA sequences thatbindtoc o mp |l ement ar y s e g ue nmulépke targets
MRNAS, resulting in a gene silencing via translational repression or target degradation
[3, 6]. miIRNAs target ~60% of all genes, are abundantly present in all human cells.
They are well conserved in organisms and suggest that they are a vital part of genetic
regulation with an ancient origin. The plant miRNAs may bind their targets in both
coding and non-coding regions, whereas the animal miRNAs exhibit partial
complementarity to their mRNA targets. The majority of miRNAs are transcribed from
independent transcription units, but some are transcribed from introns of pre-mRNAs
[2]. mIRNA genes are found in a cluster of 2-7 genes having highly similar expression
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profiles suggesting that transcription of these miRNAs is controlled by common
promoters [6]. The mIRNA genes found between the introns are not transcribed by their
own promoter, but they are processed from the introns [2]. Some mMIRNAs are

expressed at different stages of development; some are expressed in different cells [2].

The miRNA gene is transcribed into primary miRNA (pri-miRNA) by an enzyme,
polymerase. Then it is processed by a nuclear RNase type Ill enzyme (Drosha) to
produce a 60 -70 nucleotide long stem loop precursor miRNA (pre-miRNA) [7]. Drosha
cleaves both strands of the stem near the base of primary stem loop [2]. The pre-
MiRNA then exported to the cytoplasm by the nuclear export factor Exportin 5 and the
Ran-GTP cofactor and trimmed by dicer into miRNA:miRNA* duplex [7, 8]. Drosha
processes one end of mMIRNA:miRNA* duplex in nucleus and Dicer processes other end
in cytoplasm [2]. One strand of mMiIRNA:miRNA* duplex is identified by the RNA-induced
silencing complex (RISC) and the other strand is generally degraded [9]. The miRNA

targets the specific 306UTR of mRNA transcript

Computational approaches have been unparalleled tools in understanding the biology of
miRANs. Many web-based miRNA data-bases are available to provide thousands of
published mIiRNA sequences, annotation and potential miRNA target genes.
Computations algorithms are developed to pri-miRNAs and to search for homologous

conserved miRNA genes in several animal species.

The pathways of miRNA biogenesis in animal cells are shown below:
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Figure 1 an animal miRNA Biogenesis [1]

The function of mMiRNA depends on the gene it targets. Experimentally, it is difficult to
identify new miRNA targets, even though there are many experimentally validated
mMiRNAs. The miRNA binds to the mRNA and it causes the mRNA cleavage or inhibits
the translation. In general, mMRNA cleavage occurs in plants and translation repression
occurs in animals [4]. A miRNA may have multiple different mRNA targets, and a target
might be targeted by multiple miRNAs. The figure below shows the various

configurations for miRNA-mRNA duplex.
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Figure 2 miRNA-mRNA duplex different configurations

In figure 2, A. represents near-perfect binding sites for one miRNA, B. represents
multiple target sites for one miRNA, C. represents strong binding sites for one miRNA,

and D. represents multiple target sites for multiple miRNAs.

Most miRNA based computational methods comprise of the prediction of miRNA genes
and their targets. To fulfill this requirement many web-based resources are being
developed. They can be used as computational target prediction tools, which can

provide number of targets for experimental validation.



1.2 miRNA TARGET PREDICTION AND ITS REGULATORY ROLE

Many algorithms have been developed to predict miRNA targets. Prediction of miRNA
targets in plant is very naive because of perfect complementarity between miRNA and
MRNA. Nonetheless it is tough in animals because of lack of perfect complementarity
between mMIRNA and mMRNA interaction. As a result, there are many different
computational approaches to predict miRNA targets. Since miRNAs are short, they
have limited sequence complementarity to their targets. The miRNA target prediction

principles used by most of the approaches are almost similar [4].

Some prediction criterions are described below:

1. The mi RNA and 306UTR region of MRNA have ¢
especially between the seed region of miRNA and mRNA. Complementarity
bet ween mi RNA and mMRNA edomibreandaf c3anoynpeas
domi nant seed andl336 compensatory

2. The thermodynamics of miIRNA and mRNA interaction can be computed by
currently available RNA folding packages and is used in many prediction
algorithms [4].

3.36UTR target regions of many mi RNAs are hi

[3].

The following figure shows Secondary structure of mMiRNA-mRNA interaction.
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Figure 3: secondary structure of miRNA-mRNA interaction
(a) Good or perfect complementarity at both the 5' and 3' ends of the miRNA.
(b) Perfect seed region complementarity at 5 end of the miRNA, but poor 3

complementarity.

(c) Seed region has a mis mat cdientcomplentebtdrity.e

mMiRNA target prediction approaches can be classified into 3 categories:

1. Complementarity searching based methods;
2. thermodynamics based methods;

3. Other methods.
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There are many miRNA target prediction tools: DIANA-microT, EIMMo, miRanda,
MirTarget2, miTarget, PicTar, Suport Vector Machine (SVM), rna22, RNahybrid,

TargetScan, TargetScanS.

There are many miRNA Target databases available: TarBase, MiRDB, and MiRecords.

As we know there are many target prediction tools and databases available, we used
MicroCosm Target Version 5 database that uses miRanda prediction tool [12] to identify
potential binding sites for a given miRNA in genomic sequences. Here, prediction is
purely sequence-based; we matched the sequence of mMiRNA and mRNA. We dor
consider any condition whether the target is actually regulated in particular (breast

cancer) cell type.

mMiRNAs are important regulators of various biological processes including cell
differentiation, cell death, cell adhesion, cell proliferation, immune response, defense
response, inflammatory response, signaling pathway, tissue homeostasis and
apoptosis. Recent studies showed that differentially expressed miRNAs in different
types of cancer, such as, breast cancer, colon cancer, kidney cancer, lung cancer,
prostate cancer and ovarian cancer. Recently, great efforts have been made to simplify
their regulatory mechanism.

The goal of this study is to predict the module-wise miRNA targets by applying a new
approach of Weighted Gene Co-expression Network Analysis (WGCNA) [17] in

combination with miRNA target prediction tool [12].



1.3 WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSIS

Correlation network enables network based gene screening methods which can be
used in various biological applications such as human genetics (for cancer), mouse
genetics, yeast genetics, analysis of brain imaging data, etc. Further, it can be used to
find modules of interconnected nodes, and highly connected hub nodes, which is
centrally located in the module. It can identify significant modules, annotate all network
nodes within identified modules, define network neighbor-hood of a given nodes, screen
nodes on module membership information and contrast one network with another

network [17].

A Weighted Gene Co-expression Network Analysis (WGCNA) is one of the applications
of correlation network. A WGCNA is a method for describing the correlation patterns
between genes and miRNAs across samples. A WGCNA is used to find out modules of
highly correlated genes. It summarizes such modules using the module eigen-gene or
an intra-modular hub gene, relating modules to external information and calculating

module membership measures.

A WGCNA is all about letting the data speak for themselves. It does not assume prior
pathway information but constructs modules in an unsupervised fashion. It can be
interpreted as a biologically motivated data reduction scheme. A WGCNA starts from
the level of thousands of genes, identifies clinically interesting gene modules, and finally
uses gene significance to identify key genes in the disease pathways for further

validation. A WGCNA alleviates the multiple testing problems inherent in microarray



data analysis. It focuses on the relationship between a few (typically less than 10)

modules.

In the above mentioned work, the analysis of the interaction is directly focused on
targets. In this study, we demonstrated a novel integrative method to analyze miRNA
and mRNA expression data in combination with Weighted Gene Co-expression Network
Analysis (WGCNA) methodology. We combined all information, which leads us to

predict module-wise miRNA targets and their effects on regulation of predicted genes.

In this work, the focus is on the differential expression analysis and WGCNA
methodology. Here, we have demonstrated how to construct a co-expression network,
how to identify the modules and how these modules are related to Gene information
from expression data. We further computed the significance of miRNA and mRNA
modules and construct the network using expression data with the ultimate goal to

predict module-wise miRNA targeted genes.



CHAPTER 2

METHODS

2.1FRAMEWORK

A novel structure using mRNA and miRNA expression data from Espen Enerly [16]
breast tumor study was demonstrated. The patients in this study were divided into two

groups: Estrogen Receptor Positive (ER+) and Estrogen Receptor Negative (ER-).

The flowchart below represents our framework

Data Input and Filtering Method

Differential Expression Analysis

Weighted Gene Gexpression Network Analysis

MIRNAC gene Target Prediction and its Significance

Construct modulevise miRNA gene Target Prediction Networ%

Figure 4: Framework of developed method
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2.2 HYPOTHESIS AND FLOWCHART
A. Dataset and Filtering Method

We started with mRNA and miRNA expression data from Espen Enerly breast cancer
study [16]. The patients in this study were divided into two groups: Estrogen Receptor
Positive (ER+) and Estrogen Receptor Negative (ER-). The dataset consists of 60 ER+
and 35 ER- samples. Here, we used Espen Enerly pre-processed dataset. The
expression data for this dataset were normalized.

C Filtering Methods [37]

1. For miRNAs, discard probes that are not associated with Homo sapiens.

2. For mRNAs, discard probes that are not associated to an Entrez gene IDs.

B. Differential Expression Analysis
Differentially expressed genes between ER+ and ER- samples were obtained. In this
section, we provided technical details about how we obtain differentially expressed

genes [26].

The differential expression analysis was performed on normalized data. For the mRNA
data, the normalized expression data were used and discarded the probes that are not
associated to an Entrez gene IDs. For the miRNA data, we discarded the probes which

are not associated with Homo sapiens.
C Hypothesis

11



Ho: miIRNA/mMRNA is not differentially expressed in ER- samples

Ha: miIRNA/mRNA is differentially expressed in ER- samples

The differential expression analysis was performed as described below:

a) Wel c hasts st an adapt at HestnWewfs esdt Wdedesttoddemo- tt

sample unequal variances to find out the p-value.

b) Arrange unadjusted p-values in an ascending order.

c) Convert unadjusted p-values into adjusted p-values using Benjamini-Hochberg
correction method.

d) The adjusted p-values threshold was set to 0.05.

e) Report only those probes whose adjusted p-value is less than 0.05.

Adjusted p-value is less than 0.05 than reject Hp i.e. miRNA/MRNA is differentially

expressed in ER- samples.

C. Overview of WGCNA Methodology

To construct a network, we began wi t h the <calcul ation of Peal

pairs of genes. We weighted the Pearson correlation by taking their absolute value and
raising themtothepower of b. Thi s teénfplasize strorg lcoyrelasions
and punish weak correlations on an exponential scale. These weighted correlations
represented the strengths between genes in the network. By accumulation of these
connection strengths for each gene, we produced a single number that describes how

strongly that gene is connected to all other genes in the network. The general

12
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framework of Weighted Gene Co-expression Network Analysis was used.

The flowchart below presents a brief overview of Weighted Gene Co-expression

Network Analysis [17].

Construct a gene co-expression network

ARationale: Make use of interaction patterns among
genes

ATools: Correlation as a measure of co-expression

Identify Modules

ARationale: Module based analysis
ATools: Hierarchical clustering, Dynamic Tree Cut

Relate modules to external information

AGene Information: Ontology, functional enrichment
ARationale: Find biologically interesting modules
ATools: DAVID web based tool

Figure 5: overview of WGCNA methodology

D. Predicting miRNA Target

The miRanda algorithm was one of the first miRNA target prediction algorithms and is

widely used for target prediction by multiple interfaces including http://microRNA.org

and MicroCosm Targets, available at http://www.ebi.ac.uk/enright-

srv/microcosm/htdocs/targets/v5/ . All miRNA i gene predictions were downloaded from

MicroCosm Targets Version 5.0 that currently uses the miRanda algorithm. The

algorithm ranks the probability of each gene to be a miRNA target and the probability of

13
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each miRNA to target a gene. The algorithm uses a weighted scoring system and
rewards complementarity andtBé BodE@uoditlythRNAhhe
demands strict complementarity at this so-called seed region. miRanda is a miRNA

target prediction algorithm that searches hig

seed region of miRNAs.

We used miRanda algorithm to identify potential binding sites for a given miRNA in
genomic sequences. miRanda method was originally developed to predict miRNA target
genes in Drosophila melanogaster [12], but was also used to predict human miRNA
targets. Enright, A. J., B. John et al. (2004) [12] improved the method by implementing a
strict model for the binding sites that require almost perfect complementarity in
Drosophila. Their analysis also suggested that miRNA genes, which comprise around
1% of the human genome, control the production of protein for 10% or more of all

human genes.

The resulting binding sites are then evaluated thermodynamically, using the Vienna

RNA folding package. The false positive rate is between 24% and 39%.

E.Fi sher6s Exact Test

Fi sherds test i's udeecdce. Fo shhet@ést tgsobupsdibfasi
categorical data. We used Fi sher 6s g338Jatc showt statistical significance
between miRNA modules to mMRNA module. This involves 2 x 2 contingency table. The

fisherods test cal cul at es an exact probabilit

different variables. If there is a small value in one of the cell of the contingency table the

14



fisherdos exact Theesstal use pr e me nt roe@stFdecsdbsethed s e x a
significance [34]. Exact p-value tend to be more conservative than most approximate

estimates, such as Chai squared test.

F. Construct a module-wise miRNA Target Prediction Network

To construct a module-wise miRNA target prediction network, we used the Biological

Network Analyzer (BiNA) version 2.3.1. BiNA provides sophisticated visualization style

for biological networks. For this, we used the concept of hierarchical and dynamic graph
structures with background imaging. A complex data framework allows mapping of

almost any data to the network.
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CHAPTER 3

RESULTS

A. Data set after Filtering Method and Differential Expression Analysis

Here, Espen Enerly pre-processed dataset was used. The Espen Enerly dataset
contains MRNA and miRNA expression profiles on ER+/ER- breast tumors. The
expression data for this dataset were normalized. The Table 1 below displays the
information about the dataset [16], number of samples in ER+ and ER- and number of
probes before pre-processing, before and after filtering method plus number of probes

that are differentially expressed.

Differentially expressed genes are shown in Supplementary Table 1.

Dataset Name Number of Number of Probes
samples
ER+ | ER- Before Before After | Differentially
pre- Filtering | Filtering | Expressed
processing
Espen Enerly (miRNA) 60 35 729 498 a77 49
Espen Enerly (MRNA) 60 35 41094 12837 12605 3030

Table 1: Dataset information after each steps

16




B. WGCNA Methodology

1) Construct the co-expression network

To construct a network, first, we calculated Pearson correlations [25] for all pairs of
genes in the network. We weighted the Pearson correlations by taking their absolute
value and raising them to power b, bec
samples is often small. We emphasized strong correlations and punished weak
correlations on an exponential scale. Weighted correlations represented the connection
strengths between genes in the network. For each gene, the connectivity is described
as how strongly that gene is connected to all other genes in the network. We used the
flowchart to present a brief overview of Weighted Gene Co-expression Network

Analysis as described earlier in methods.

Briefly, the absolute value of the Pearson correlation coefficient was calculated for all
pairwise comparisons of gene expression values across samples. The Pearson
correlation matrix is then transformed into an adjacency matrix A. We considered
networks where adjacency matrix A; calculates the connection strength between node i

to node j i.e. connection strength between gene pairs.
Adjacency matrix is defined as,
0 w € 1afw s

We studied networks whose adjacencies satisfy the following conditions:

17
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A weighted network adjacency can be defined by raising the co-expression similarity to
a power [5, 10]. The function adjacency calculates the adjacency matrix from the
expression data. The adjacency implies that the weighted adjacency A; between two

genes is proportional to their similarity on a logarithmic scale.
Tia€c 1 171 6@¢ i

Adjacency functions for weighted networks are required to choose threshold parameter
by applying the scale-free topology criterion. The network connectivity k(i) of the i
gene, expression profile x(i) is the sum of the connection strength with all other genes in

the network i.e. it shows how i gene is correlated with all other genes in the network.

To choose a power b, we used explieedis Zharigandf r ee t

Horvath 2005 [17].
2) Scale-free topology criterion

Many co-expression networks satisfy the scale free property [17]. The network exhibits

a scale free topology if the frequency distribution p(k) of the connectivity follows :

n'&x Q

Her e, the power o9 has not hi ng etheco-eéxpressiant h b t

network. To visualize the scale free topology, we plotted log(p(k)) versus log(k). The

18



model fitting index R? of the linear model that regress log(p(k)) on log(k). If R? of the
model approaches 1, then there is a straight line relationship between log(p(k)) and
log(k). We only considered those powers that lead to a network satisfying scale free
topology i.e. R> > 0.80. We considered the following points, when choosing the
adjacency parameter: (i) the mean connectivity should be high so that network contains

enough information, (ii) the slope of the regression line between log(p(k)) and log(k)

should be negative. We found the relationship between R®and b is character
saturation curve. Weusedt he | owest p o weionishreachédeln thiscasa,t ur at
we chose defaultval ue of b for unsigned network, 1. e.

3) Identify Modules (Module Detection)

Once the network is constructed, next step is module detection. Modules are clusters of
highly interconnected genes. In unsigned co-expression network, modules correspond

to clusters of genes with high absolute correlations.

We used average linkage hierarchical clustering coupled with a gene dissimilarity
measure to define a cluster tree of the network. The default choice is the Topological
Overlap Matrix (TOM) based dissimilarity measure [17, 23, 37]. A pair of genes is said
to have high topological overlap if they are both strongly connected to the same group
of genes. Topological overlap of two genes reflects their relative interconnectivity. The

Topological Overlap dissimilarity is used as an input of hierarchical clustering [24],

19
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Where, k; is the number of connections of anodewith Q@ B & and™@Q B & . The

use of topological overlap serves as a filter to exclude isolated connections during the

network construction.

Dissimilarity measure can also defined as,

Qi p 0

This dissimilarity measure, directly using adjacency matrix, computationally is much
faster than the Topological Overlap measure and often leads to approximately similar
modules. Here, we used dynamic branch cutting method [38] that offers the following
advantages: (i) it is capable of identifying nested clusters, (ii) it is flexible, and (iii) it is
suitable for automation. WGCNA implements two types of dynamic branch cutting
method. (i) Considers the shape parameters. (i) Hybrid method that combines the
advantages of hierarchical clustering and Partitioning around Medoids (PAM). One
drawback is that it can be difficult to determine how many clusters are present in the

given data set.

Module-wise genes and miRNAs are shown in the implementation of framework of

results section.

4) Functional Enrichment Analysis of Module genes

We selected the genes targeted by miRNA different modules and combined them [30].
The combination of selected genes could be used as input of functional enrichment

20



analysis software such as EASE, KEGG, Webgestalt, Ingenuity, etc. Here, we used web

based software DAVID tool [27, 31]. Module-wise functional enrichment analysis results

are shown in the implementation of framework of results section.

5) miRNA T gene Target Prediction

We used MicroCosm Targets Version 5 database that used miRanda algorithm to

predict the targets. miRanda algorithm is described in the methods section. Module-

wise miRNA - gene target predictions are shown in the implementation of framework of

results section.

6) Fi sher 6s

Exact

Test

It is a statistical significance test, which is used in the analysis of contingency tables.

The noti on b e ladt hedtis Bhovenhndhe talsdle b&ow:
miRNA j Module
Target (Y) Not Targ
MRNA | Gene in (X) A b a+b=dyx
i Gene not |C d c+d=dys
Module a+c=dy b + ds = |n=a+b+c+d
Tabl e 2: Notion behind Fisher 6s

Fisher follows the Hyper-geometric distribution:

21
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Thepval ue of Fisherdés Exact Test given by

n LWadQNiIw o

We can consider that p i value less than 0.05 is significant.

Here we found out that one module has genes that are associated with breast cancer in
ER- samples with their up/down regulation. Module-wise test results are shown in the

implementation of framework of results section.

7) Construction of miRNA T gene Prediction Network

The BINA was described in the methods section. The whole module-wise prediction is

shown in the section of implementation of framework of results.

C. IMPLEMENTATION of FRAMWORK

To implement the framework, we used two different programming languages i.e. R
script and JAVA script. The framework is divided into smaller scripts. The results are

stored in CSV files for each script.

Script 1: Pre-processed data and Normalization

The script was implemented in R language. It displays how one can convert miRNA and

22



MRNA expression data from .RData files to excel or .csv files. The miRNA data set
contains three objects: eset, eset.pos and eset.neg i.e. expression matrix. This
expression matrix is for 60 ER+ samples and 35 ER- samples. The rows are probes and
columns are samples. The mRNA data set contains only eset object. The first 60
columns are ER+ samples and the rest 35 columns are ER- samples. The row names
are Entrez gene IDs. After using filtering methods, the output is stored in

eset.ImiRNA.csv and eset.1ImRNA.csv.

Normalization is done by generic function. The normalized data are stored in

normalizedmiRNA.csv and normalizedmRNA.csv. miRNA files store miRNA name and

samples, whereas mRNA files store Gene Name, Entrez Gene IDs and samples.

The script generates following output files:

For miRNA,
mMiRNA GSM487074 | GSM487075 | GSM487076 | GSM487077 | GSM487079
hsa-let-7a 0.999973 0.999789 0.999867 0.99975 0.999655
hsa-let-7a* 0.251205 0.243577 0.241152 0.232222 0.241279
hsa-let-7b 0.999954 0.999893 0.999936 0.999567 0.999844
hsa-let-7b* 0.274006 0.27924 0.27535 0.261129 0.261013
hsa-let-7c 0.998916 0.997075 0.997324 0.993872 0.99274
hsa-let-7c* 0.245459 0.263959 0.251259 0.249377 0.250977
hsa-let-7d 0.97876 0.958962 0.95501 0.937092 0.929989
hsa-let-7d* 0.266529 0.267674 0.257304 0.255911 0.259014
hsa-let-7e 0.982685 0.970821 0.95451 0.984406 0.954175
hsa-let-7e* 0.255339 0.257482 0.246138 0.251169 0.243241

For mRNA,
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Gene

Name EntrezGene | GSM496925 | GSM496926 | GSM496927 | GSM496928
GATC 283459 0.403149 0.538238 0.35197 0.509032
EIFAE1B 253314 0.340214 0.254113 0.256225 0.22542
Al1BG 1 0.505659 0.485732 0.461343 0.532706
A2M 2 0.993427 0.996312 0.995695 0.99536
A2ML1 144568 0.31756 0.346977 0.26309 0.455636
A4GALT 53947 0.40038 0.536961 0.472546 0.492588
A4AGNT 51146 0.123726 0.093063 0.114332 0.159346
AAAS 8086 0.664529 0.581762 0.644784 0.558541
AACS 65985 0.778443 0.847711 0.846013 0.83547

Script 2: P- Value and Differential Expression Analysis

Again we used R language to implement the script. The differential expression analysis

is performed as descried in the methods section. In order to find the p-value of

normalized data of miRNA and mRNA, We | ¢ h 6 was tiseds Then, the adjusted p-

value was found by using Benjamini-Hochberg correction method. Further, we

considered only those miRNAs and mRNAs whose adjusted p-value is less than 0.05.

As a result, we found 49 miRNAs and 3030 mRNAs are differentially expressed. The

results stored in pvalmir49.csv and pvalmrna3030.csv.

The output of this script looks like:

For miRNA,

MiRNA pAdjusted.index rawp BH
1 | hsa-miR-29c* 204 | 2.65E-10 1.26E-07
2 | hsa-miR-149 85| 1.42E-09 3.39E-07
3 | hsa-miR-190b 125 | 7.46E-09 1.15E-06
4 | hsa-miR-342-3p 246 | 9.66E-09 1.15E-06
5 | hsa-miR-342-5p 247 | 4.53E-08 4.32E-06
6 | hsa-miR-339-5p 240 | 5.09E-07 4.04E-05
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7 | hsa-miR-29b-2* 202 | 2.63E-06 0.000179
8 | hsa-miR-224 178 | 5.74E-06 0.000342
9 | hsa-miR-505 335 | 7.24E-06 0.000383
10 | hsa-miR-146b-5p 81| 2.95E-05 0.001293

Table 3: (a) miRNAs differentially expressed between ER+ and ER-

For mRNA,

Gene

Name EntrezGene | pAdjusted.index rawp BH
KCNK15 60598 5845 6.20E-17 7.82E-13
ESR1 2099 3757 4.83E-14 3.05E-10
C6orfo7 80129 1738 3.25E-13 1.36E-09
AGR3 155465 973 1.85E-12 4.80E-09
PLCD4 84812 8436 1.90E-12 4.80E-09
RAB30 27314 9061 2.43E-12 5.10E-09
TES 26136 10927 4.46E-12 8.04E-09
PARD6B 84612 8006 6.06E-12 8.49E-09
CAl12 771 1844 6.06E-12 8.49E-09
GFRA1 2674 4647 1.13E-11 1.42E-08

Script 3: Weighted Gene Co-expression Network Methodology

A. Scale-f r e e

Table 3: (b) mMRNAs differentially expressed between ER+ and ER-

Tochoose a

mMiRNAs and 3030 mRNAs. We chose p o w e ¥ 6, Which is large enough to have

network exhibits the approximate scale free topology. Here, we focused on the linear

topol ogy

p asedearscale free gviterion on differentially expressed 49

Criter.:i

on

to choose
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regression model fitting index R? that quantifies how well a network satisfies a scale free

topology. The result showed network propertie

For miRNA: ER+ samples

Power | SFT.R.sq | slope | truncated.R.sq | mean.k. | median.k. | max.k.
1 1 0.0685 | 0.742 0.303 9.36 9.38 13.2
2 2| 0.00457 | 0.0768 -0.108 2.93 2.85 5.1
3 3 0.142 | -0.22 0.371 1.23 1.13 2.56
4 4 0.573 | -0.446 0.517 0.643 0.538 1.53
5 5 0.556 | -0.734 0.476 0.391 0.287 1.13
6 6 0.635| -0.711 0.584 0.264 0.167 | 0.889
7 7 0.102 | -1.71 -0.154 0.192 0.103 | 0.726
8 8 0.178 -2.4 0.0177 0.147 0.0657 | 0.632
9 9 0.123 | -1.92 -0.126 0.117 0.0425 | 0.595
10 10 0.174 | -2.84 -0.0579 | 0.0955 0.0279 | 0.561
11 12 0.219| -3.35 0.00713 | 0.0673 0.0129 | 0.499
12 14 0.27| -4.14 0.0717 0.05| 0.00586 | 0.444
13 16 0.252 | -3.46 0.0484 | 0.0384 0.0025 | 0.396
14 18 0.271 | -3.56 0.109 | 0.0303 | 0.00114 | 0.352
15 20 0.271| -3.62 0.0641 | 0.0244 | 0.000525 | 0.314

Table 4: (a) choices of power b i n miR

Scale Free Rsquared  slope

1 0.59 -0.71
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Figure6:(d)c hoi ces of power b for mi RNA ER+

ER- samples

Power | SFT.R.sq | slope truncated.R.sq | mean.k. | median.k. | max.k.

1 1| 0.00538| -0.235 0.481 11 10.7 15.9

2 2 0.0224 | -0.254 0.587 3.79 3.7 6.7

3 3 0.0791 | -0.294 0.602 1.66 1.65 3.36

4 4 0.235 | -0.496 0.213 0.868 0.943 1.94

5 5 0.359 | -0.415 0.176 0.522 0.501 1.26

6 6 0.694 -0.51 0.609 0.349 0.306 0.94

7 7 0.0563 -1.38 -0.178 0.253 0.179| 0.779

8 8 0.107 -2.37 -0.139 0.194 0.111| 0.736

9 9 0.19 -3.11 0.00653 0.155 0.0726 | 0.702

10 10 0.227 -3.3 0.125 0.128 0.0489 | 0.672
11 12 0.282 -3.94 0.167 | 0.0925 0.0224 | 0.618
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12 14 0.327 -4.53 0.168 | 0.0708 0.0108 | 0.569
13 16 0.367 -4.78 0.187 | 0.0562 | 0.00485 | 0.525
14 18 0.343 -4.4 0.161 | 0.0457 | 0.00223 | 0.484
15 20 0.361 -4.09 0.186 | 0.0379 | 0.00104 | 0.447

Table 4: (b) choices-samplepower b in

Scale Free Rsquared  slope

1 0.66 -0.51
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Figure 6: (b) choices-samnplespower b for

For mMRNA: ER+ samples

Power | SFT.R.sq | slope | truncated.R.sq | mean.k. | median.k. | max.k.
1 1 0.0852 | -1.32 0.979 494 | 4.90E+02 792
2 2 0.39| -1.94 0.99 124 | 1.20E+02 288
3 3 0.603 -2.2 0.986 38.9 | 3.62E+01 122
4 4 0.716 | -2.33 0.983 14.2 | 1.24E+01 57.1
5 5 0.769 | -2.43 0.986 5.77 | 4.76E+00 28.7
6 6 0.792 | -2.37 0.969 2.58 | 1.96E+00 15.2
7 7 0.828 | -2.23 0.953 1.25 | 8.69E-01 8.65
8 8 0.89| -2.25 0.971 0.649 | 4.06E-01 5.82
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i n mRN

sampl es

9 9 0.894 | -2.34 0.946 0.36 | 1.97E-01 4.42
10 10 0.947 | -2.18 0.984 0.213 | 9.85E-02 3.44
11 12 0.963| -1.79 0.956 | 0.0886 | 2.76E-02 2.18
12 14 0.366 | -2.42 0.291 | 0.0458 | 8.24E-03 2.04
13 16 0.377| -2.18 0.32 | 0.0283 | 2.68E-03 1.93
14 18 0.352 | -2.45 0.317 | 0.0201 | 9.16E-04 1.83
15 20 0.336| -2.21 0.304 | 0.0156 | 3.20E-04 1.74

Table 4: (c) choices of power D
scaleFree Rsquared  slope
1 0.77 -2.37
% e 4 = % S ]
|:§- S - 14 18 18 o E s
;‘- 10 1|5 20 ;‘- 1ID 1I5 2|O
Soft Threshold (power beta) Soft Threshold (power beta)
Figure 6: (c) choicesofpower b f or mMRNA ER+
ER-samples
Power | SFT.R.sq | Slope | truncated.R.sq | mean.k. | median.k. | max.k.

1 1 0.252 | -1.91 0.947 628 | 6.06E+02 1060

2 2 0.536 | -2.44 0.951 196 | 1.78E+02 498

3 3 0.711 | -2.44 0.982 74.8 | 6.33E+01 270

4 4 0.795| -2.47 0.982 32.7 | 2.53E+01 159

5 5 0.839 | -2.47 0.992 15.7 | 1.11E+01 99.6
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6 6 0.876 | -2.38 0.995 8.16 | 5.20E+00 65.2
7 7 09| -2.29 0.989 4.5 | 2.59E+00 44.2
8 8 0.916 -2.2 0.985 2.62 | 1.37E+00 30.8
9 9 0.929 2.1 0.981 1.59 | 7.53E-01 22
10 10 0.967| -1.95 0.986 1.01 | 4.26E-01 16.1
11 12 0.935| -1.82 0.92 0.447 | 1.46E-01 9
12 14 0.911| -1.74 0.886 0.224 | 5.52E-02 5.93
13 16 0.957 | -1.63 0.944 0.125 | 2.25E-02 4.37
14 18 0.961| -1.56 0.951 0.076 | 9.42E-03 3.37
15 20 0.931]| -151 0.919 | 0.0503 | 4.12E-03 2.75
Table4:(d)choi ces of powesamflesi n mMRNA

scaleFree Rsquared

1
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data set ER+, power= 6 scale R*2=0.59 , slope=-0.71
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data set ER-, power=6 scale R*2=0.66, slope= -0.51

Connectivity is highly preserved
in mMiIRNA samples.

In co-expression networks, the connectivity measures how correlated a

miRNA/gene is with all other network miRNAs/genes.

For mRNA,

data set ER+, power= 6 scale R*2=0.77, slope= -2.37
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Connectivity is not highly
preserved in mMRNA samples.

Figure 7: Network connectivity for (a) miRNAs and (b) mRNAs
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B. Adjacency matrix, Dissimilarity measure and Module Detection

Af t er c hfor miRNAragd nfRNA expression data for two phenotypes ER+
and ER-, the adjacency for each was found. It is useful to find modules in the network.

In order to implement this, R script was used. The theory is described in the method

section. Some of the conditions should be satisfied to find out the network adjacencies,

Adjacency matrix looks like,

For miRNA, ER+ samples: Result stored in ADJER+.txt

[’1] [!2] [13] [!4] [15] R [149]
[1,] 1.00E+00 | 8.54E-04 | 8.05E-02| 7.83E-09 | 7.27E-05 1.14E-09
[2,] 8.54E-04 | 1.00E+00| 2.66E-04| 1.74E-09 | 6.10E-07 3.85E-06
[3,] 8.05E-02 | 2.66E-04 | 1.00E+00 | 5.04E-07 | 2.61E-04 9.81E-11
[4,] 7.83E-09 | 1.74E-09| 5.04E-07| 1.00E+00 | 1.21E-01 1.05E-05
[5,] 7.27E-05| 6.10E-07| 2.61E-04| 1.21E-01 | 1.00E+00 1.93E-07
I
I
I
[49] 1.14E-09| 3.85E-06| 9.81E-11| 1.05E-05| 1.93E-07 |-- |-- | 1.00E+00
ER- samples Result stored in ADJER-.txt
[.1] [.2] [.3] [.4] [.5] -~ | [ [49]
[1,] 1| 0.000942 0.085988 | 6.43E-05 | 5.37E-10 3.34E-07
[2,] | 0.000942 1 0.000257 | 4.72E-06 | 1.32E-08 1.99E-08
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[3,] | 0.085988 | 0.000257 1| 0.000237 | 6.78E-08 4.86E-07
[4,]| 6.43E-05| 4.72E-06 | 0.000237 1] 0.125976 0.000865
[5,]| 5.37E-10| 1.32E-08 6.78E-08 | 0.125976 1 2.58E-05
[49,]| 3.34E-07 | 1.99E-08 4.86E-07 | 0.000865 | 2.58E-05 1.00E+00
Table 5: (a) adjacency matrix for miRNA
For mRNA, ER+ samples: Result stored in ADJER+m.txt
[,1] [.2] [.3] [,4] [,5] - | - | [,3030]
[1,] 1]0.003892 | 7.72E-06 | 0.000341 | 7.09E-06 0.000325
[2,] 0.003892 1] 0.006697 | 0.000496 | 0.000452 0.000249
[3,] 7.72E-06 | 0.006697 1]0.001686 | 3.26E-14 0.000135
[4,] 0.000341 | 0.000496 | 0.001686 1| 0.000144 0.000195
[5,] 7.09E-06 | 0.000452 | 3.26E-14 | 0.000144 1 8.76E-07
I
I
[3030,] | 0.000325 | 0.000249 | 0.000135 | 0.000195 | 8.76E-07 1
ER- : Result stored in ADJER-m.txt
[1] [,2] [.3] [,4] [,5] - | - |[,3030]
[1,] 1| 0.001632 | 0.066333 | 0.04377 | 0.002669 0.00076
[2,] 0.001632 1| 0.016613 | 0.00794 | 0.008784 0.006989
[3,] 0.066333 | 0.016613 1| 0.050861 | 0.019168 0.001297
[4,] 0.04377 | 0.00794 | 0.050861 1| 0.08481 0.011573
[5,] 0.002669 | 0.008784 | 0.019168 | 0.08481 1 0.098296
I
I
[3030,] 0.00076 | 0.006989 | 0.001297 | 0.011573 | 0.098296 1
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Table 5: (b) adjacency matrix for mMRNA

Dissimilarity can be approximately measured by

Its output is in the table below:

QQO i

p O

For miRNA, ER+ samples: Result stored in disSTOMER+.txt

[’1] [’2] [!3] [’4] [!5] N [749]
[1,] 0| 0.998869 | 0.911965 | 0.999987 | 0.999777 0.999997
[2,] 0.998869 0| 0.999573 | 0.999998 | 0.999997 0.999996
[3,] 0.911965 | 0.999573 0 | 0.999964 | 0.999521 0.999998
[4,] 0.999987 | 0.999998 | 0.999964 0| 0.879671 0.999999
[5,] 0.999777 | 0.999997 | 0.999521 | 0.879671 0 0.999999
I
I
I
[49] 0.999997 | 0.999996 | 0.999998 | 0.999999 | 0.999999 0
ER- : Result stored in disTOMER-.txt
[.1] [.2] [.3] [.4] [.5] - | | [49]
[1,] 0| 0.998869 | 0.911965 | 0.999987 | 0.999777 0.999997
[2,]]| 0.998869 0 | 0.999573 | 0.999998 | 0.999997 0.999996
[3,]] 0.911965 | 0.999573 0| 0.999964 | 0.999521 0.999998
[4,]] 0.999987 | 0.999998 | 0.999964 0| 0.879671 0.999998
[5,]] 0.999777 | 0.999997 | 0.999521 | 0.879671 0 0.999999
[49,]| 0.999997 | 0.999996 | 0.999998 | 0.999998 | 0.999999 0

Table 6: (a) dissimilarity measures for miRNA
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For mRNA, ER+ samples: Result stored in disTOMER+m.txt

[’1] [12] [’3] [!4] [!5] T ['3030]
[1,] 0 | 0.995585 | 0.998901 | 0.998693 | 0.999615 0.999471
[2,] 0.995585 0 | 0.993915 | 0.996741 | 0.997268 0.998318
[3,] 0.998901 | 0.993915 0| 0.994627 | 0.999377 0.99801
[4,] 0.998693 | 0.996741 | 0.994627 0 | 0.999338 0.9992
[5,] 0.999615 | 0.997268 | 0.999377 | 0.999338 0 0.999882
I
I
[3030,] | 0.999471 | 0.998318 | 0.99801 0.9992 | 0.999882 0
ER- samples: Result stored in disTOMER-m.txt
[.1] [.2] [.3] [.4] [.5] - |- | [,3030]
[1,] 0| 0.989214 | 0.971138 | 0.968537 | 0.986701 0.989539
[2,] 0.989214 0 | 0.980514 | 0.980713 | 0.982671 0.991045
[3,] 0.971138 | 0.980514 0| 0.953618 | 0.976725 0.98471
[4,] 0.968537 | 0.980713 | 0.953618 0| 0.947647 0.968189
[5,] 0.986701 | 0.982671 | 0.976725 | 0.947647 0 0.945542
I
I
[3030,] | 0.989539 | 0.991045 | 0.98471 | 0.968189 | 0.945542 0

Table 6: (a) dissimilarity measures for mRNA
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Module Detection

For miRNA, ER+ samples

mMiRNA hierarchical clustering dendrogram ER+ data set,
N = 60 and Module membership data set ER+
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From, clustering we can say that miRNA modules are highly preserved.
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Figure 8: (a) Hierarchical clustering for miRNA ER+ and ER- samples
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For mRNA,

ER+ samples

mRNA hierarchical clustering dendrogram ER+ data set,
n = 60 and Module membership data set ER+
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From, clustering we can say that mMRNA modules are not highly preserved.

ER- samples

mRNA hierarchical clustering dendrogram ER- data set,
n = 35 and Module membership data set ER—
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Figure 8: (b) Hierarchical clustering for mMRNA ER+ and ER- samples
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The whole module-wise network is shown in the following table:

For miRNA ER+ samples is stored in: CancerNetmiRNAER+

colorhl | miRNA pAdjusted.index | rawp BH

blue hsamiR505 335 7.24E06 0.000383
blue hsamiR18a 122 0.000333 0.008364
blue hsamiR505* 336 0.000662 0.012271
blue hsamiR19a 144 0.001451 0.019222
blue hsamiR-18b 123 0.001511 0.019484
turquoise | hsamiR29c* 204 2.65E10 1.26E07
turquoise | hsamiR190b 125 7.46E09 1.15E06
turguoise | hsamiR29b-2* 202 2.63E06 0.000179
turquoise | hsamiR29c 203 3.64E05 0.001336
turquoise | hsamiR148b 84 0.000956 0.015193
grey hsamiR149 85 1.42E09 3.39E07
grey hsamiR342-3p 246 9.66E09 1.15E06
grey hsamiR342-5p 247 4.53E08 4.32E06
grey hsamiR339-5p 240 5.09E07 4.04E05
grey hsamiR224 178 5.74E06 0.000342
grey hsamiR146b5p 81 2.95E05 0.001293
grey hsamiR99b 476 3.12E05 0.001293
grey hsamiR135b 63 3.25E05 0.001293
grey hsalet-7e* 10 4.59E05 0.001564
grey hsamiR374a 266 5.48E05 0.001742
grey hsamiR339-3p 239 6.13E05 0.001826
grey hsamiR628-3p 409 0.000233 0.00653
grey hsamiR4995p 327 0.000306 0.0081
grey hsamiR125a5p 42 0.000386 0.009212
grey hsamiR452 302 0.000488 0.010283
grey hsamiR223 176 0.000489 0.010283
grey hsamiR625 406 0.000496 0.010283
grey hsamiR26a 187 0.000617 0.012262
grey hsamiR10b* 29 0.000669 0.012271
grey hsamiR9 456 0.000781 0.013752
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grey hsamiR629 411 0.000807 0.013752
grey hsamiR9* 457 0.000935 0.015193
grey hsamiR623 404 0.001177 0.018108
grey hsamiR181d 111 0.001266 0.018434
grey hsamiR378* 277 0.001275 0.018434
grey hsamiR23a 179 0.001318 0.018497
grey hsamiR148a 82 0.001365 0.018599
grey hsamiR4235p 288 0.001982 0.024122
grey hsamiR326 227 0.001986 0.024122
grey hsamiR101* 19 0.002023 0.024122
grey hsamiR103 20 0.002294 0.026688
grey hsamiR432 296 0.002761 0.031356
grey hsamiR424 289 0.00307 0.03405
grey hsalet-7e 9 0.004105 0.044073
grey hsamiR26b* 189 0.004158 0.044073
grey hsamiR146a 80 0.004494 0.046599
grey hsalet-7i 14 0.00471 0.047801
grey hsamiR-30a* 209 0.004912 0.048653
grey hsamiR375 269 0.004998 0.048653
MiRNA ER- samples is stored in : CancerNetmiRNAER-

colorh2 | miRNA pAdjusted.index | rawp BH

blue hsamiR505 335 7.24E06 0.000383
blue hsamiR18a 122 0.000333 0.008364
blue hsamiR505* 336 0.000662 0.012271
blue hsamiR19a 144 0.001451 0.019222
blue hsamiR18b 123 0.001511 0.019484
turquoise | hsamiR29c* 204 2.65E10 1.26E07
turquoise | hsamiR190b 125 7.46E09 1.15E06
turquoise | hsamiR-29b-2* 202 2.63E06 0.000179
turquoise | hsamiR29c 203 3.64E05 0.001336
turquoise | hsamiR148b 84 0.000956 0.015193
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grey hsamiR149 85 1.42E09 3.39E07

grey hsamiR342-3p 246 9.66E09 1.15E06

grey hsamiR342-5p 247 4.53E08 4.32E06

grey hsamiR339-5p 240 5.09E07 4.04E05

grey hsamiR224 178 5.74E06 0.000342
grey hsamiR146b-5p 81 2.95E05 0.001293
grey hsamiR99b 476 3.12E05 0.001293
grey hsamiR135b 63 3.25E05 0.001293
grey hsalet-7e* 10 4.59E05 0.001564
grey hsamiR374a 266 5.48E05 0.001742
grey hsamiR339-3p 239 6.13E05 0.001826
grey hsamiR628-3p 409 0.000233 0.00653
grey hsamiR4995p 327 0.000306 0.0081
grey hsamiR125a5p 42 0.000386 0.009212
grey hsamiR452 302 0.000488 0.010283
grey hsamiR223 176 0.000489 0.010283
grey hsamiR625 406 0.000496 0.010283
grey hsamiR26a 187 0.000617 0.012262
grey hsamiR-10b* 29 0.000669 0.012271
grey hsamiR9 456 0.000781 0.013752
grey hsamiR629 411 0.000807 0.013752
grey hsamiR9* 457 0.000935 0.015193
grey hsamiR623 404 0.001177 0.018108
grey hsamiR181d 111 0.001266 0.018434
grey hsamiR378* 277 0.001275 0.018434
grey hsamiR23a 179 0.001318 0.018497
grey hsamiR148a 82 0.001365 0.018599
grey hsamiR4235p 288 0.001982 0.024122
grey hsamiR326 227 0.001986 0.024122
grey hsamiR101* 19 0.002023 0.024122
Grey hsamiR103 20 0.002294 0.026688
Grey hsamiR432 296 0.002761 0.031356
Grey hsamiR424 289 0.00307 0.03405
Grey hsalet-7e 9 0.004105 0.044073
Grey hsamiR26b* 189 0.004158 0.044073
Grey hsamiR146a 80 0.004494 0.046599
Grey hsalet-7i 14 0.00471 0.047801
Grey hsamiR-30a* 209 0.004912 0.048653
Grey hsamiR375 269 0.004998 0.048653
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Table 7: module-wise listing for miRNA

Module-wise listing of miRNAs and mRNAs for ER+ and ER- samples are stored in a

file CancerNetmRNAER+ and CancerNetmiRNAER- respectively.

Script 4: miRNA Functional Target Prediction

The script was implemented in JAVA. We used MicroCosm Target Version 5 data base
to predict the targets, which was implemented on miRanda algorithm. miRanda is
described in methods. It reads the miRNA predefined targets and mRNA in modules
from the individual file. The miRNA targeted gene is found in the mRNA module using

dynamic programming. This represents module-wise target prediction.

The module-wise results are stored in mimTargetERpos and mimTargetERneqg

Script 5: Fisher's Exact Test

This was executed in R. The theory is described in Method section. Fi sher 6s exact
shows the miRNA targets are enriched within the mRNA modules or not. Here, we used
one-sided p-value that shows positive association between miRNA modules and mRNA

modules that means miRNA targets are enriched in mMRNA modules.

Here are the results of comparison of differentially expressed Vs non-differentially

expressed targets of the miRNA modules in ER+ and ER- samples.

MiRNA ER+ samples P-value Significance
Module ER- samples | (One sided) | P-value < 0.05
1 Blue ER+ 0.3953 No
ER- 0.3953 No
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2 Turquoise ER+ 1 No
ER- 1 No
3 Grey ER+ 0.9878 No
ER- 0.9773 No
Table 8: (a) Fisherodés test or mi

genes and non-differentially expressed genes

RNA modul

€es

From above table we can see that, the one sided P-value is not less than 0.05 which is

statistically not significant. It means that the same genes that are not targeted by

miRNAs modules are found in the mRNA modules.

The module-wise results had shown in the table below:

ER+ samples:

MiRNA MRNA P i value Significance
Module Module (One sided) | P-value < 0.05
1 Blue Blue 1 No
Brown 0.7533 No
Turquoise 0.7740 No
Grey 0.1829 No
2 Turquoise Blue 0.1526 No
Brown 0.8851 No
Turquoise 0.1247 No
Grey 0.9347 No
3 Grey Blue 0.8767 No
Brown 0.9828 No
Turquoise 0.5962 No
Grey 0.1284 No
Table 8: (b) Fisherdés test for mi
ER- samples:

RNA modul €
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P 1 value
miRNA MRNA (One sided) | Significance
Module Module P-value < 0.05
1 Blue Black 6.3*107(-5) Yes
Blue 0.9466 No
Brown 0.5724 No
Green 0.5386 No
Red 0.5030 No
Turquoise 0.8062 No
Yellow 1 No
Grey 0.5673 No
2 Turquoise Black 0.2233 No
Blue 0.3939 No
Brown 0.7956 No
Green 0.9439 No
Red 0.7335 No
Turquoise 0.2247 No
Yellow 0.7663 No
Grey 0.7052 No
3 Grey Black 0.5260 No
Blue 0.9491 No
Brown 0.02834 Yes
Green 0.2473 No
Red 0.7192 No
Turquoise 0.3694 No
Yellow 0.4277 No
Grey 0.7093 No
Tabl e 8: (c) Fisherds test for mi RNA modul es

From above tables, we d i aherstdéd Pfvalue i not less than 0.05 which is
statistically not significant. It means that the same genes targeted by miRNAs modules
are not enriched in the mRNA modules in ER+ samples; but we found that the one
sided P-value is less than 0.05 which is statistically significant. It means that the same
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genes targeted by miRNA Blue modules are enriched in the mRNA Black modules.

FUNCTIONAL ENRICHMENT ANALYSIS:

Functional Enrichment Analysis is done using web based tool DAVID. As we found
different modules for miRNA and mRNA, here we presented module-wise Functional
Enrichment is shown in ER+ samples and ER- samples. We combined the targets of
mMiRNA one module and miRNA other module in mRNA module, we showed the
enrichment of miIRNA module to mMRNA module. The result contains Gene Symbol,
Gene Name, Chromosome, KEGG Pathways, GO terms: BP (Biological Process), CC
(Cellular Component) and MF (Molecular Function). The result stored for modules in

appendix.

From Fi s h desthmiRNABeand Grey modules and mRNA Black and Brown
modules are significant in ER- samples. The significant mRNA modules i.e. Black and

Brown were shown.

Functional enrichment analysis for individual modules stored in the following files:

Black mMRNA module for ER- samples: annotationtableBL.xIsx

Blue mRNA module for ER- samples: annotationtableBLU.xIsx

Brown mRNA module for ER- samples: annotationtableBR.xIsx

Green mRNA module for ER- samples: annotationtableGR.xIsx

Red mRNA module for ER- samples: annotationtableR.xIsx
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Turquoise MRNA module for ER- samples: annotationtableTUR.xIsx

Yellow mRNA module for ER- samples: annotationtableY.xIsx

Clustering information for combined targets of miRNA two modules with their biological

processes is stored in the table below; we merely showed those categories whose FDR

is less than 10%:

Blue Module of mRNA targeted by miRNA Blue and Turquoise module

Fold

Category | Term Count | % PValue | Genes Enrichment| FDR

GO:00015

01~

skeletal

system
GOTERM _| developm 27.27| 0.0078 9.5303
BP_FAT |ent 3 273 09 | BMP1, COL3Al, TRAF6| 18.17465 12

Table 9: (a) functional enrichment analysis for mMRNA
Other mRNA targeted by miRNA Blue and Turquoise module
Fold

Category | Term Count % | PValue| Genes Enrichment FDR

G0O:00068

98~

receptor

mediated DAB2, LRP1, DRD3,
GOTERM_| endocytos 1.343| 0.0040| FOLR1, IGF2R, SORL1, 6.8728
BP_FAT |is 7 57 91 | LRP2 4.557951 22

Table 9: (b) functional enrichment analysis for mMRNA
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mrna/annotationtableTUR.xlsx
mrna/annotationtableY.xlsx

Interpretation of above tables: miRNA in Blue and Turquoise modules are involved in 2

different biological processes such as skeletal system development and receptor

mediated endocytosis.

More

feagreymbluenturmi.xlsx

information stored as feabluembluenturmi.xlsx and

Other mRNA targeted by miRNA Blue module and other miRNAs

Category

Term

Count

%

PValue

Genes

Fold
Enrichment

FDR

GOTERM |
BP_FAT

G0:00182
12~peptid
yl-tyrosine
modificati
on

11

0.784
593

0.0040
21

OSM, IL12RB2, TPST1,
ERBB4, FYN, IFNG, CLH
RELN, INSR, DDR2, BT}

2.867869

7.0977
72

GOTERM |
BP_FAT

G0:00164
77~cell
migration

36

2.567
76

0.0042
36

NRTN, CCK, GIPC1,
CXCL12, ITGAM, VCAM
AZU1, CTTNBP2, SBDS
DOCK2, OVOL2, SAA1,
IFNG, KRT2, CLASPZ2,
CAP1, NR2F1, PTPRK,
LMX1B, BARHL2,
NEUROG2, SIX4, COL5
SLIT2, CDH13, ID1, FYN
ITGAS, LRP6, ADAM17,
HBEGF, RELN, SELE,
PLAU, MYH10, LRP5

1.632305

7.4626
77

GOTERM |

BP_FAT

G0:00015
01~skeletal
| system
developm

ent

40

2.853
067

0.0048
51

MMP9, CYTL1, FHL2,
HOXD13, POSTN, EXTL
GLI3, GLI1, SBDS, HOX
CHD7, HOXA4, JUND,
ANKRD11, COL12A1,
COL11A2, AXIN2, PCSK
MINPP1, CMKLR1, DLL{
HSPGZ2, IGF1, SIX4,
SMAD1, NPR3, CACNA]
INHBA, CTSK, CHRDL2
RPS6KAS3, TULP3,
HOXC11, KAZALD1,
COL1A2, TFAP2A, STC]
ATP6VOAZIF2AK3,

CDH11

1.569196

8.5026
61
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mrna/feagreymbluenturmi.xlsx

DLC1, CADM4, MYBPC2,
COL21A1, CLDNG6, CLSTN
CASK, LMO7, L1CAM,
POSTN, LY9, CD151, CXC
DDR2, CDH22, AZGP1, CC
DGCRG6, COL12A1, DLGS5,
ZYX, COL11A2, B@B1,
F11R, PTPRK, ICAM4,
ICAM2, FLOT2, COL22A1,
PCDHB2, ACTN1, MFGES,
CTNNA1, AMBP, HES1,
ARVCF, CD36, HAS1, GPH
NPTN, ADAM17, LAMC2,
RELN, TGFB1I1, LIMS1, G
CDHa3, ITGAM, ALCAM,
VCAM1, NPHP4, LGALS3E
COL7A1L, FAT4, ITGB7, BA
CD4, SSX2IP, HAPLNS3,
LRRN2, COL15A1, HSPG2
CD99, ITGAS, NID2, COL5

GO0:00071 MUC4, CDH13, COL14A1,
GOTERM_| 55~cell 5.420| 0.0049| ITGAS5, PKP3, SELE, IL2, F 8.7070
BP_FAT | adhesion 76| 827 73 | CDH11 1.3587 62
DRD3, LDLR, ADORAZ2A,
SORL1, SNX2, EEA1L, ITSN
ASGR1, DABEOLR1, FCNZ
CAP1, TRIP10, DBNL,
GO0:00103 MRC1L1, MFGES8, ELMO3,
24~memb LMBRI1L, CD36, LRP1,
rane GAPVD], IGF2R, LRP12,
GOTERM _| invaginati 2.139| 0.0050| LRP6, SH3KBP1, LRP2, Bl| 1.70650| 8.9155
BP_FAT | on 30 8 98 | CD14, DNM1, LRP5 1 01
DRD3, LDLR, ADORAZ2A,
SORL1, SNX2, EEABNZ,
ASGR1, DAB2, FOLR1, FC
CAP1, TRIP10, DBNL,
MRC1L1, MFGES, ELMO3,
LMBRI1L, CD36, LRP1,
G0O:00068 GAPVD], IGF2R, LRP12,
GOTERM_| 97~endoc 2.139| 0.0050| LRP6, SH3KBP1, LRP2, Bl| 1.70650| 8.9155
BP_FAT | ytosis 30 8 98 | CD14, DNM1, LRP5 1 01
47
DLC1, CADM4, MYBPC/
G0:00226 COL21A1, CLDNG,
10~biologi CLSTN1, CASK, LMO7,
GOTERM _| cal 5.420| 0.0051| LICAM, POSTN, LY9, 8.6042
BP_FAT | adhesion 76| 827 25| CD151, CXCL12, DDR2, 1.356761 9




CDH22, AZGP1, CD96,
DGCRG6, COL12A1, DLG
ZYX, COL11A2, BOC, C
F11R, PTPRK, ICAM4,
ICAM2, FLOT2, COL22A
PCDHB2, ACTN1, MFGE
CTNNA1, AMBP, HES1,
ARVCRZD36, HAS1,
GPR56, NPTN, ADAM17
LAMC2, RELN, TGFB1l1
LIMS1, GNE, CDHS,
ITGAM, ALCAM, VCAM]
NPHP4, LGALS3BP,
COL7A1L, FAT4, ITGB7,
BAI1, CD4, SSX2IP,
HAPLNS, LRRNZ,
COL15A1, HSPG2, CD9
ITGA3, NID2, COL5A1,
MUC4, CDH13, COL14A
ITGAS5, PKP3, SELE, IL2
FEZ1, CDH11

MYOD1, IL9R, DRD3,
MYL2, GDF5, DDR2,
DAB2, FAM107A, CHD7
HSF1, PPP2CA, IFNG,
CREG1, TAF9, ACTL6A
AGRN, PRL, INSR,
BRMSIL, ENOL1,
ADAM10, CRYAB,
SPTBN4, BARHIAARN,
PSRC1, IGF1, CAPRINZ
OSM, VEGFB, NTRKS,

G0:00400 INHBA, CDH13, CTH,

08~regulat EP300, LRP12, KAZALD
GOTERM | ion of 2.995| 0.0052| HBEGF, ADAM17, UTSZ 9.2119
BP_FAT | growth 42 72 75| IGFBP2, IL2 1.541355 02

HIST2H2AA3, HIST1H2E

G0:00063 HISTIH1IGUV39H1,

33~chrom H1FX, NAP1L3, CBX6,

atin CHDS8, CHD7, SET, CDY

assembly HIST1H2BI, HIST1H3A,

or CHD1, H2AFX, HIST3H4
GOTERM | disassemb 1.426| 0.0056| CDY2A, HIST1H2AM, 9.8596
BP_FAT ly 20 534 65 | ASF1A, HDACS, HIST1H 1.970762 17

Table 9: (c) functional enrichment analysis for mRNA
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Interpretation of above tables: miRNA in Blue module and other miRNAs are involved in

different biological processes such as cell migration, cell and biological adhesion,

regulation of growth, skeletal system development and endocytosis, etc. more

information stored in feagreymbluengreymi.xlsx

Other mRNA targeted by miRNA Turquoise module and other miRNAs

Fold
Enrich
Category | Term Count % | PValue| Genes ment FDR
LMX1BMMP9, ADAMTSLA4,
G0:00301 ELN, HSPG2, ANXA2P1,
98~extrac SPINKS5, COL5A1, APLP2,
ellular COL14A1, KAZALD1, SMOC
matrix FOXF1, COL1A2, COL12A1
GOTERM _| organizati 1.371| 0.0011| LOX, COL11A2, BAGALT7,| 2.3206| 2.1118
BP_FAT |on 19| 841 69 | COL11A1 21 77
MMP9, CYTL1, FHL2,
HOXD13, EXTL1, GLI3, GLI
SBDS, HOXC9, CHD7, HOX
JUND, ANKRD11, COL12A1
PKD1, COL11A2, AXIN2,
COL11A1, PCSK5, MINPP1
CMKLR1, DLL3, HSPG2, IG
SIX4, SMAD1, NPR3,
GO0:00015 ANXA2P1, CACNALS, INHBE
0l1~skeleta CTSK, CHRDL2, RPS6KA3,
| system TULP3, HOXC11, KAZALD]
GOTERM _| developm 3.032| 0.0012| COL1A2, TFAPZATC]1, 1.6724| 2.2012
BP_FAT | ent 42| 491 19 | ATP6VOA4, EIF2AK3, CDH] 09 34
G0:00301
99~collage
n fibril COL14A1, LMX1B, COL1A2
GOTERM _| organizati 0.649| 0.0013| COL12A1, LOX, COL11A2, | 3.9421| 2.4776
BP_FAT |on 9| 819 74 | ANXA2P1, COL11A1, COL5S 08 41
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NRTN, CCK, GIPC1, CXCLI1
ITGAM, VCAM1, AZU1,
CTTNBPZ2, SBDS, DOCKZ2,
OVOL2, SAAL, CKLF, IFNG
KRT2, CLASP2, CAP1, NR2
PTPRK, LMX1B, BARHL2,
NEUROGZ2, SIX4, COL5A1,
SLIT2, CDH13, ID1, FYN,

GO0:00164 ITGA5, LRP6, ADAM17,
GOTERM _| 77~cell 2.671| 0.0018| HBEGF, RELN, BARLAU, 1.7028| 3.2653
BP_FAT | migration 37 48 18 | MYH10, LRP5 51 6
G0:00181
08~peptid
yl-tyrosine OSM, IL12RB2, ERBB4, FY
GOTERM _| phosphory 0.794| 0.0025| IFNG, CLK4, ABI1, RELN, IN 3.0375| 4.6358
BP_FAT | lation 11| 224 98 | DDR2, BTK 18 74
SLC22A16, NRTN, CCK, Gl
CXCL12, ITGAM, VCAM1,
AZU1, CTTNBP2, SBDS,
DOCK2, OVOL2, SAAL, CK
IFNG, KRT2, CLASP2, CAP
NR2F1, PTPRK, LMX1B,
BARHL2, NEUROG2, SIX4,
COL5A1, SLIT2, CDH13, ID
G0:00488 FYN, ITGA5, CATSPER1, L
GOTERM_| 70~cell 2.815| 0.0035| ADAM17, HBEGF, RELN, S| 1.6136| 6.1997
BP_FAT | motility 39| 884 01| PLAU, MYH10, LRP5 53 35
SLC22A16, NRTN, CCK, Gl
CXCL12, ITGAM, VCAM1,
AZU1, CTTNBP2, SBDS,
DOCK2, OVOL2, SAA1, CK
IFNG, KRT2, CLASP2, CAP
NR2F1, PTPRK, LMX1B,
BARHL2, NEUROG2, SIX4,
GO:00516 COL5A1, SLIT2, CDH13, ID
74~localiz FYN, ITGA5, CATSPER], L
GOTERM | ation of 2.815| 0.0035| ADAM17, HBEGF, RELN, S| 1.6136| 6.1997
BP_FAT | cell 39| 884 01 | PLAU, MYH10, LRP5 53 35
G0:00182
12~peptid
yl-tyrosine OSM, IL12RB2, ERBBA4, FY
GOTERM_| modificati 0.794| 0.0036| IFNG, CLKABI1, RELN, INS| 2.9109| 6.3910
BP_FAT |on 11| 224 13| DDR2, BTK 55 08
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ERBB4, LMX1B, MMP9,
ADAMTSLA4, ELN, HSPG2,
G0:00430 PCDHB2, CACNB4, ANXA2
62~extrac CACNALS, SPINK5, COLSA
ellular APLP2, COL14A1, KAZALD
structure SMOC1, FOXF1, COL1AZ2,
GOTERM_| organizati 1.732| 0.0043| COL12A1, AGRN, LOX, 1.8702| 7.6926
BP_FAT |on 24| 852 77 | COL11A2, BAGALT7, COL1 84 98

Table 9: (d) functional enrichment analysis for mMRNA

Interpretation of above tables: miRNA in Turquoise module and other miRNAs are
involved in different biological processes such as cell migration, cell motility, localization
of cell, skeletal system development, extracellular matrix organization and extracellular

structure organization. More information stored as feagreymturngreymi.xIsx

Functional enrichment analysis for individual modules stored in the following files:

Blue mMRNA module for ER- samples: annotationBLU.xIsx

Other mRNA module for ER- samples: annotationGREY .xIsx

Results for genes in all modules of ER+ samples with Gene Ontology and KEGG
Pathway information with genes location on chromosome were shown in the following

files:

Blue mRNA module for ER+ samples: annotationtableBLU.xIsx

Brown mRNA module for ER+ samples: annotationtableBR.xIsx

Turquoise MRNA module for ER+ samples: annotationtableTUR.xIsx
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Functional enrichment analysis for individual modules stored for ER+ samples in the

following files:

Other mRNA for ER+ samples: annotationGREY .txt

UP/DOWN REGULATION OF miRNAS AND GENES

Finally, key genes targeted by miRNAs within all modules were identified. Then their up

regulation and down regulation compare to estrogen receptor negative samples were

demonstrated.

MiRNA expression with Estrogen Receptor negative factor is shown in the table below.

Modules Up Regulated in ER- samples Down Regulated in ER- samples
BLUE hsa-miR-18a, hsa-miR-18b,

hsa-miR-19a, hsa-miR-505,

hsa-miR-505*

TURQUOISE hsa-miR-29c¢*, hsa-miR-190b, hsa-
miR-29b-2*, hsa-miR-29c, hsa-miR-
148b

GREY hsa-miR-224, hsa-miR-146b-5p, | hsa-miR-149, hsa-miR-342-3p, hsa-

hsa-miR-135b, hsa-miR-374a,
hsa-miR-452, hsa-miR-223,
hsa-miR-9, hsa-miR-9*, hsa-
miR-378*, hsa-miR-23a, hsa-
miR-148a, , hsa-miR-424

miR-342-5p, hsa-miR-339-5p, hsa -
miR-99b, hsa-let-7e*, hsa-miR-339-
3p, hsa-miR-628-3p, hsa-miR-499-
5p, hsa-miR-125a-5p, hsa-miR-625,
hsa-miR-26a, hsa-miR-10b*, hsa-
miR-629, hsa-miR-623, hsa-miR-
181d, hsa-miR-423-5p, hsa-miR-326,
hsa-miR-101*, hsa-miR-103, hsa-
miR-432, hsa-let-7e, hsa-miR-26b*,
hsa-miR-146a, hsa-let-7i, hsa-miR-
30a*, hsa-miR-375
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mrna/posannotationGREY.xlsx

Table 10: (a) module-wise up/down regulation for miRNA in ER-

Based on literature, some miRNAs, shown in Red color, are related to breast cancer.

MRNA expression with ER+ vs ER- factor are stored as updownregulation.xslx , it

shows up and down regulation of genes in ER- samples.

Modules Up Regulated in ER- samples Down Regulated in ER- samples
BLACK NUP133,TCP11L1,ARHGAP29, PEX3,CR2,WNT11,BTNL9
FBX046,PAPSS1,C210rf99,
DHRS1,NR1H4,RPL7L1,SPRED2,0
LFML3
BLUE NES,C200rf194,FAM86B1,TLE?2, APOBEC3D,PER2,0SBP2,ZNF
MOCS3,HCLS1,CEBPB,ASH2L, 294, TRAF3IP3, C70rf31,UTRN,
LBP, ZNF563,LYK5,ASB13, FOXC1,SLC39A6,DNAJC5B,
PPFIBP2,STAG3,PLA2G3, ZNF195,ZNF71,REEPS3,
GABRP,ACCN4,COL3A1,BMP1, MIPOL1, PODN,HR, TRAF6,
CTAGEP,CASP8AP2,KCTD21, ICT1,FTSJ2,UQCRFS1,SOCS2,
HES5,FRK,WDR76,MTERF, INTS4,SNORA70,CERK,CCDC2
SULF1,LPIN1 3, VWCE
BROWN CYB561D1,MR1,PRSS21,LSS,
ZNF289,ABCC5, DFNB31,
PIGM,CD2, MUC3A,PHACTR?2,
IBCH,CYC1, C210rf121,RHPN1,
GPATCHS8
GREEN TBX4 OMAL,PPFIA1,CCDC102A,
NAV1, TMEM39A, PRKDC,
FLRT3,SYT6, ANG, JPH3,
BCAS3,LGALS3, KCNK16,
RNH1, ZC3H18
RED SAMD14,C130rf30,NANOG, NKPD1

KPNAG6,SPATA13,RNF11,

SLC35B2,RRP12,RBM15,ATP2A1,

ZNF165,MDM4,TOP1IMT,ACTR6
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updownregulation.xlsx

TURQUOISE | HIST1H2BM,LENG4,C30rf19, LOH3CR2A,LRSAM1,

MLLTS3,FBXO8,GOSR2,PAGE?2, SYNGAP1, C130rf18, CREG1,
SETDB2,SREBF1,HOXD10, CILP2,LPO,HLA-DQB1, MAP1A,
ATP6AP2, PROS1,C150rf48, AMTA1,C100rf107, C170rf68,
MSH3,YPEL3,TNFSF11,PTPRZ1,M | BVES,BAG3,LOC51149, PBX1,
EGF10, IGSF21,FABP6,PMM2, LZIC,GRM8,SUSD3

GDI2,CYP4F11,KL,TANC1,
RGS19,ZDHHC21,SPRY?2,
ENTPD3,MBOAT1,LSAMP,
CTNNAL1,PCM1,PRB1,WDFY4,
BEX1,TRPM4,CLEC14A,TRIP13,
LCN12,AMD1,GPR110,RBPMS2,
CDH5,C20rf15,UPF3A,PIP4K2A,
COX11,SLC2A6,ZNF652,
C100rf84,TM2D2,RPS6KA4,
PLCH1,ENG, SMARCC2,HCRTRZ2,
TCL1A,I1ISG20,0CA2,FGFRL1,
TGS1,CD59,CD207,PIM1,ZBTB2,
MAPKS8IP2,DPH4,SH3D19,
ZNF415,PRDM1,TTC16,FAM19A4,
GALM,LPHN2,PLA2G12A,ACRV1],
MGC24039,LAMB2,FAM29A,
GPNMB,ZNF462,AKAP13

YELLOW TMEMS58,MVD,CYP2U1,RARA,
HPS5,LYPD6,DEPDC6,NBR1,
BAHD1,APOL4,FCGRZ2B,
LEPRE1L, RIPK2,C210rf71,
LILRB3,ROR

Table 10: (b) module-wise up/down regulation for mRNA in ER-

VISUALIZATION:

The visualization of module-wise miRNA - gene target prediction network is done using
BiNA software. From the Fishe r 6 s E x ave tan detesnine that miRNA Blue and

Grey Modules and mRNA Black and Brown modules are important in ER- samples.

miRNA Blue module targets mRNA Black module is shown in the table below:
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MiRNA Regulation in ER- | Target genes Regulation in ER-
Blue Module | samples MRNA Black Module samples
hsa-miR-505 | Up TCP11L1 Up
hsa-miR-18a |Up | --—--—--
hsa-miR-505* | Up BTNL9, PAPSS1, Down, Up
Up NUP133, OLFML3, PEXS, | Up, Up, Down, Down
hsa-miR-19a CR2,
hsa-miR-18b | Up DHRS1 Up

Table 11: (a) inverse correlation of miRNAs with their targets

From above table, we can say that miRNAs hsa-miR-505* and hsa-miR-19a have

expression pattern that inversely correlated with targeted genes BTNL9 and PEX3,

CR2, respectively. They definitely could be the functional targets.

Other miRNA targets mRNA Brown module is shown in the table below:

MiRNA Regulation in ER- | Target genes Regulation in ER-
samples MRNA Brown Module | samples

hsa-miR-149 Down RHPN1 Down

hsa-miR-342-3p | Down LSS, CD2 Down, Down

hsa-miR-342-5p |Down | ---eeee-

hsa-miR-339-5p | Down DFNB31 Down

hsa-miR-224 Up CHRMS3 Down

hsa-miR-146b-5p |lUp | cemeeeee

hsa-miR-99b Down |-

hsa-miR-135b Up CD2 Down

hsa-let-7e* Down | e

hsa-miR-374a Up | e

hsa-miR-339-3p | Down CYC1, ZNF289 Down, Down

hsa-miR-628-3p |Down | -m-meee-

hsa-miR-499-5p |Down | --m-mee-

hsa-miR-125a-5p | Down ZNF289 Down

hsa-miR-452 Up | e

hsa-miR-223 S
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hsa-miR-625 Down | e
hsa-miR-26a Down MR1 Down
hsa-miR-10b* Down | e

hsa-miR-9 Up | e

hsa-miR-629 Down CHRM3 Down
hsa-miR-9* Up HIBCH Down
hsa-miR-623 Down | e

hsa-miR-181d Down | e

hsa-miR-378* Up DFNB31 Down
hsa-miR-23a Up ABCC5 Down
hsa-miR-148a Up | e

hsa-miR-423-5p | Down RHPN1 Down
hsa-miR-326 Down | e

hsa-miR-101* Down | e

hsa-miR-103 Down | e

hsa-miR-432 Down | e

hsa-miR-424 Up PHACTR?2 Down
hsa-let-7e Down MUC3A, ABCC5 Down, Down
hsa-miR-26b* Down | e

hsa-miR-146a Down | e

hsa-let-7i Down ABCC5 Down
hsa-miR-30a* Down | e

hsa-miR-375 Down | e

Table 11: (b) inverse correlation of miRNAs with their targets

From above table, we can say that miRNAs hsa-miR-224, -135b, -424, -378* and -23a
have expression pattern that inversely correlated with targeted genes CHRM3, CD2,

HIBCH, DFNB31 and ABCCS5.

Inverse correlation between miRNA and their targets suggests that they definitely could

be the functional targets.

The whole module-wise miRNA i gene target prediction results are stored in a file;
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ER+ samples: mimTargetERpos and ER- samples: mimTargetERneg

mMiRNA Blue Module target the mRNA Black module:

hsa-miR-19a hsa-miR-505* hsa-miR-18b hsa-miR-505

N

CR2 PEX3 OLFML3 NUP133 BTNLY PAPSS1 DHRS1 TCP11L1

Figure 9: (a) miRNA targeted genes in blue module of miRNA

Here pink color indicates down regulation of miRNA/gene and pistachio color indicates

up regulation in ER- samples.

mMiRNA Blue Module target the mRNA all modules including other mRNAs:

Figure 9: (b) miRNA targeted genes in blue module of miRNA

Similarly, miRNA Turquoise Module target the mRNA all module:

Figure 9: (c) miRNA targeted genes in turquoise module of mMiIRNA
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mrna/mimTargetERpos.csv
mrna/mimTargetERneg.csv

MiRNA Blue Module target the mRNA all modules including other mRNAs:

Figure 9: (d) miRNA targeted genes in turquoise module of miRNA

Similarly, miRNA other Module targets the mRNA Brown module:

hsa-miR-135b hsa-miR-342-3p hsa-miR-26a

hsa-let-Ti hsa-miR-23a

MR1 HIBCH MUC3A ABCCS PHACTR2

. - ~ » hsa-miR-423-5p hsa-miR-149 hsa-miR-125a-5p
hsa-miR-378* hsa-miR-339-5p hsa-miR-224 hsa-miR-629

CHRM3 RHENT

ZNF239 CcYc1

Figure 9: (e) miRNA targeted genes in rest of mMiRNAs

Here pink color indicates down regulation of miRNA/gene and pistachio color indicates

up regulation in ER- samples.

mMiRNA other Module targets all MRNA modules including other mRNAS:
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Figure 9: (f) miRNA targeted genes in rest of mMiRNAs
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