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SUMMARY

Understanding the binding of ligands to macromolecular targets of pharmacological
relevance is an essential step for effective drug-design. The scenario gets complicated when
small molecules bind to a target that is both solvent-accessible and flexible. Structural
snapshots provided by experimental techniques namely X-ray and NMR are very useful to deal
with targets that are not very labile by providing only the long-lived and more populated (low
energy states) snapshots of binding partners. However, these techniques have limited scope
when plasticity of the ligand-binding site has to be accounted for. In those cases, fast
computational procedures have found to be a powerful supplementary tool to fill the paucity of

information on receptor flexibility.

The two most commonly used computational methods in drug design are structure-based
(SBDD) and ligand-based drug design (LBDD). The former method capitalizes on the structure
of the biological target, knowledge of binding site and structure of co-crystal ligand obtained
using either NMR or X-ray in order to predict the biological activity of the newly designed ligand.
Whereas in the cases where it is difficult to obtain knowledge about the 3D structure of the
protein, its binding site or the co-crystal ligand, LBDD is employed starting from the computer-
generated 3D model of the active ligand which is generally used as a template to design new
ligand whose binding affinity is forecasted before synthesis and development. There are cases
where the 3D structure of the active ligand is available through X-ray or NMR, yet computational
chemists performed LBDD to gain deeper insights that are otherwise difficult to obtain using

SBDD method.

In this PhD dissertation, well known SBDD methods such as protein modeling, de novo
ligand-design and molecular docking, and a well-known LBDD method, namely 3D-QSAR

CoMFA has been used to gain deeper insights about the binding site of the enzyme B-secretase
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SUMMARY (Continued)

(BACEL), the structure-activity relationship of its inhibitors, the predicted in silico blood-brain
barrier profile (log BB), side-chain flexibility of the BACEL binding site, and the steric and

electrostatic characteristics of BACEL1L inhibitors.

In Chapter 1, a brief introduction to Alzheimer’s disease (AD) is presented. Very little is known
about the etiology of AD, even though this disease was first diagnosed about 100 years ago.
However, extensive research work carried out during the past few decades delineated the
mechanism and understanding of production of amyloid plaques (AB) through the processing of
membrane-bound amyloid precursor protein (amyloid pathway) by a set of secretases (- and y-
secretase). Because the enzyme BACEL is the rate-limiting step in this vicious cascade, it is
considered to be one of the key targets for the therapeutic development of AD. The target

BACEL1 has been independently validated using several animal model studies.

The three-dimensional structure of BACE1 was immediately obtained since its isolation in
1999 by six different research groups. The first co-crystal structure of BACE1 bound to an active
ligand (OM99-2), solved in the year 2000 by Hong et al., has provided the knowledge of BACE1
binding site, location and importance of catalytically active aspartic acid and other key residues
required for inhibitor-design. The key challenges in BACEL inhibitor-design has also been
pointed out — very large active site, solvent-exposed regions, flexible binding site and
importance of crossing blood-barrier in order to render the therapeutic effect. Despite these

challenges, a BACEL1 inhibitor (CTS-21166) has successfully completed Phase lla clinical trials.

The beginning of Chapter 2 briefly summarizes the key SBDD methods that have been
widely employed today, and examples of certain key drugs that resulted out of this method.
Because previous knowledge of structural flexibility was available through perusal of literature,

we attempted to superimpose various X-ray crystal structures of BACEL publicly available in
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SUMMARY (Continued)

protein databank. We particularly inspected the BACE1 S2 binding site because our preliminary
modeling calculations and literature analysis suggests that the flexibility of this region is

unexplored from drug discovery perspective.

Our hypothesis to design novel BACEL ligand-scaffolds was: “selectively targeting
charged amino acid residues present in the solvent-exposed flexible binding site would result in
novel ligand scaffolds”. We proposed a three-step procedure to achieve our goals: (i) identify
potentially flexible amino acid residues in the BACE1 S2 binding site, and develop and validate
a computational procedure to design novel inhibitors that would target this residue; (ii) design
novel inhibitors that target the flexible residue identified above and prioritize them for synthesis
and biological tests; (iii) perform synthesis, biological testing and derive SAR of the novel
scaffolds and test its consistency with the proposed hypothesis. Because the enzyme BACEL1 is
expressed in brain, we calculated log BB for all our novel inhibitors in order to compare the
relative efficacy of these compounds in crossing the blood-brain barrier. As outlined in the first
step above, superimposition of BACE1 PDB structures and further inspection on the S2 region
revealed that Arg 235 undergoes greater flexibility compared to other residues such as Asn 233
and Ser 325 thereby making this residue ideal candidate for ligand targeting. The fact that the
side-chain of Arg 235 has a positively charged guanidine group opens up the possibility of

targeting ligands that can form directional, electrostatic interactions.

In order to design novel ligand scaffolds, the active ligand, compound 1, reported by
Stachel et al., was used as a template to probe the BACE1l S2 site. Using the software
RACHEL (Real-time Automated Combinatorial Heuristic Enhancement of Lead compounds),
novel ligand scaffolds were generated, docked (first using the tool FlexX and later using GOLD),

and prioritized for synthesis.
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SUMMARY (Continued)

Using standard organic chemistry reactions, we synthesized simple substituents (such as
hydroxyl, methoxy, etc.), aryls, biaryls (such as phenyl, heteroaromatic), sultams and fused-ring
compounds and were tested for its BACEL inhibitory activity in a cell-lysate assay. Simple
substituents fail to make good van der Waals (vdW) contacts with the residues in the S2 site
and hence displayed poor activity. Aryl substituents too displayed poor inhibitory activity and we
reasoned that these bulky substituents, under equilibrium conditions, have the tendency to

collide with the nearby residues thereby rendering the enzyme-inhibitor complex unstable.

The analysis of fused-ring compounds provides interesting observations as well as strong
evidence for our hypothesis. Prior to this, we characterized these compounds using 2D-NMR
techniques (COSY, HSQC and HMBC). Between the isomers, 5a-5¢ or 6a-6¢, we found that the
degree of lipophilicity and flexibility incorporated at the P2 position correlates well with the
BACEL1 inhibitory activity, with 5¢c and 6c being more active. Based on the Gold docking results,
we reasoned that this is due to the enhanced flexibility of the 7-membered ring and the vdW

contacts that it forms with the residues in the S2 site.

To account for the biological activity difference between the regioisomers 5a-5¢ compared to
6a-6¢c, we employed side-chain flexibility of Arg235 during GOLD docking. Visualization of
poses suggests that the regioisomers 5a-5¢ has an oxygen atom locked in a position amenable
for hydrogen bonding with side-chain NH, of Arg235 and hence offers a better BACE1 activity
compared to the regioisomers 6a-c. The synergistic combination of flexibility, lipophilicity, ability
to form electrostatic interactions with Arg235 and improved vdW contacts with residues at the
S2 site makes the fused-ring compounds 5a-5¢ a much better candidate series compared to 6a-
6¢. In addition, these results provide strong evidence to our hypothesis that it is advantageous

to target the positively charged Arg235 at the BACE1 S2 site to design novel ligand scaffolds.
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SUMMARY (Continued)

When mouse neuroblastoma cells (N2a) are treated with active BACE1 inhibitors 5b and
5¢, a reduction in AB4o production, ca. 65% and 35% respectively, compared to the control, was
observed. Thus, our SBDD method pursuits to probe the S2 site of BACE1 resulted in the novel

ligand scaffolds with improved inhibitory activity and a better log BB value.

The application of 3D-QSAR CoMFA method to understand the binding characteristics of
BACEL1 inhibitors is the focus of Chapter 3. The principle of CoMFA, the prerequisites, and the
key statistical parameters used in the study are also discussed. Our strategy to perform CoMFA
analysis consists of the following steps: (i) filter ligands whose activity is tested under identical
conditions; (ii) assign charges; (iii) align molecules using ROCS; (iv) calculate CoMFA field
values; (v) PLS analysis and deriving statistical parameters; and (vii) generate contour maps

and explain the trend in activity.

Our CoMFA analysis dataset consist of 51 compounds — 44 training set and 7 test set
compounds. Statistical analysis using PLS method yielded Ry, = 0.98, R%., = 0.64, R% oo =
0.67, SEE = 0.154, F = 287.219 and NOC = 7. The predictive power of the CoMFA model for
the external dataset (R%yeq) Was found to be 0.74 and was in excellent agreement with the
BACEL1 binding characteristics. The ratio of steric to electrostatic field contributions was found to
be 66:34 indicating the dominance of steric contribution. This high statistical significance
illustrated that these diverse inhibitors share structural commonalities important for binding to
BACE1l. We strongly believe this model should be useful for the identification, design and

development of novel BACEL inhibitors.
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1. INTRODUCTION
1.1. Background

The holy-grail of medicinal chemistry is the design and development of small molecules
that can act as suitable drugs with minimum side-effects and maximum efficacy. Since enzymes
are one of the important classes of drug targets, understanding the binding of small drug
molecules to enzymes of pharmacological relevance is considered an essential step for
effective drug-design. Even though the concept of drug-design has been used since 1910
during the time of Paul Ehrlich and Sacachiro Hata, who produced the antiprotozoal
arsphemamime,! the three-dimensional (3D) structure of macromolecular target was not
considered due to non-availability of sophisticated techniques. In fact, the first few X-ray crystal
structures were solved in late 1950s and early 1960s for the enzymes myoglobin and

hemoglobin.*®

Not only their findings helped understand the “tensed” and “relaxed” forms of
hemoglobin (depending on its oxygenation status), but it also opened up a new avenue of
research in medicinal chemistry — target flexibility. Multiple studies conducted later on proved
the fact that enzymes indeed are flexible structures and can adopt different conformations on a
wider range of scales, both in time and space, depending upon various conditions such as the
presence of substrate, inhibitor, water molecules, cofactors, ions, etc. (for review, see
reference).® However, the concept of target flexibility is still underutilized in drug design methods

primarily due to inadequate computational tools and difficulty in modeling intrinsic protein

flexibility.”
1.2. Role of molecular modeling methods in drug design

Classical drug discovery widely relied on atomic information extracted from X-ray and multi-
dimensional NMR techniques. The ‘time-averaged’ static snapshots provided by these powerful

techniques played an instrumental role to design and develop various drugs that do not require



details about target ‘plasticity’. However, emerging evidence posits the consideration of target
flexibility during in drug design. In situations where the structural information obtained from X-
ray and NMR are not sufficient enough, molecular modeling techniques have been found to be a

powerful supplementary tool.®**

Various modeling techniques have been successfully adopted to address the target
flexibility, including: (i) molecular docking to an ensemble of protein structures — to predict the
binding mode of putative ligand in a flexible binding site,° (ii) molecular docking that
incorporates induced-fit; (iii) molecular dynamics — a procedure to obtain more complete set of
protein conformers, especially those that are relatively high energy and undetectable, (iv)

6

dynamic pharmacophore modeling,*® and (v) fragment-based computational solvent mapping.*’

One of the critical points to consider while targeting flexible regions is the enthalpy-entropy
compensation phenomenon. The well-known Gibbs’ free energy equation suggests that
improving the enthalpic and/or entropic contributions results in favorable binding of small
molecule binding to the protein, as long as these contributions are not counteracted by the
opposite entropic or enthalpy changes. In brief, enthalpic optimization is achieved by positioning
the h-bonding donor/acceptor groups for optimal interactions with the binding residues.
However, if the structuring of these h-bonding groups inside the binding pocket result in
significant loss of conformational entropy, then the binding enthalpy is compensated resulting in
unaltered/reduced binding affinity. Thus, judicious incorporation of h-bonding groups in a
conformationally constrained system is a crucial step to improving the binding affinity. On the
other hand, entropic optimization is achieved by increasing the hydrophobicity of the ligand
molecule and the enthalpic penalty in this case is profound. It is therefore believed that enthalpic
optimization is a relatively difficult task compared to entropic optimization during design and

development of high-affinity ligand molecule.*®



Currently available state-of-the art computational programs have the ability to perform one
or more of the modeling calculations described above. A body of literature is available where all

these five approaches have been successfully applied.

For example, Huang et al. successfully validated a fast ensemble docking algorithm on 10
protein ensembles of 105 crystal structures and 87 ligands.” A success rate of about 93% was
obtained with the criterion of root mean square deviation <2.5 A if the top 5 poses of each ligand
were considered. Sherman et al. applied the induced-fit docking protocol for 21 diverse flexible
receptors and found that the RMSD is < 1.8 A for 18 cases.”® Novak et al. applied molecular
dynamics simulations and free-energy calculations to explore the role of ligand-induced
conformational changes in modulating the activity of three generations of Bcl-X, inhibitors.?* In
addition to the excellent agreement between predicted and measured binding affinities, they
also pointed out the role of Asn100 in the binding site that forms stabilizing interactions with the
ligand. Deng et al. developed a dynamic receptor-based pharmacophore model using a series
of representative conformations of HIV-1 integrase (HIV-IN).?* Conformations of the target were
sampled through a molecular dynamics study of the catalytic domain of HIV-IN monomer and an
ensemble of representative structures were collected via a probability-based representative
conformer sampling method that considers both the potential energy and structural similarity of
the protein conformations. This method was validated using a set of 128 known inhibitors with a
72% success rate. Application of this model resulted in inhibitors with significant improvement of
binding affinity from high mM to low micromolar range. Sheu et al. applied the concept of
computational solvent mapping to explore the “hot spots” of PPARYy ligand-binding domain by
moving six solvent probe molecules (acetonitrile, methanol, t-butanol, urea, acetone, phenol and
2-butanol) around 12 receptor structures including two structures without ligand, two structures
bound to a partial agonist and the eight structures bound to PPARy agonist.”® Their analysis

revealed ten binding “hot spots”, four in the ligand-binding pocket, two in the coactivator-binding



region, one in the dimerization domain, two around the ligand entrance site, and one minor site
without a known function. Along the lines of the docking method discussed above, we
developed a strategy to target solvent-exposed flexible binding sites of interest to design novel

scaffolds.
1.3. Solvent-exposed, flexible biological targets

Targeting flexible binding site becomes even more complicated when the target in
guestion is membrane-bound and solvent exposed. To the best of our knowledge, targeting
membrane-bound, solvent-exposed, flexible binding sites is not explored and understood as
well as targeting the buried ones, however, the modeling approaches described earlier can be
applied to this case as well.** Some of the key therapeutically relevant targets containing
solvent-exposed flexible binding-site and the corresponding diseases that they are linked to are
as follows: (1) B-Secretase 1 (Alzheimer’s disease),”® histone deacetylases or HDACs (cancer,
inflammation and neurodegeneration),?® Bcl-X, system (cancer),?’ glutamate racemase (anti-
microbial target),”® tyrosine kinase receptor (cancer),”® G-protein coupled receptors (wide-
variety of physiological processes including visual sense, smell, mood behavior, regulation of
immune-system, inflammation, and other diseases),*® estrogen receptors (aging, cancer,

obesity, and other diseases).*

In this PhD dissertation, emphasis will be given to structure- and ligand-based modeling of
BACE1, a target for Alzheimer’'s disease therapy. A brief summary of Alzheimer’'s disease,
BACE1 and its biological significance is due before discussing the computational modeling of

BACEL1 and its inhibitors.
1.4. Alzheimer’s disease

Dementia is the disease characterized by the decline of reasoning, memory and other

cognitive abilities. As the disease progresses, it results in impaired ability to perform everyday



function such as driving, household chores, and even personal care such as bathing, dressing,
and feeding. There are over ten different types of dementia reported thus far: (i) vascular
dementia; (ii) mixed dementia; (iii) dementia with Lewy bodies; (iv) Parkinson’s disease; (v)
fronto-temporal dementia; (vi) Creutzfeldt-Jacob dementia; (vii) normal pressure hydrocephalus;
(viii) Huntington’s disease; (ix) Wernicke-Korsakoff syndrome; (x) mild cognitive impairment.
Among these types of dementia, AD, which normally follows mild cognition impairment, is

considered to be the major type.*

AD was named after the German physician Dr. Alois Alzheimer. The disease was first
diagnosed in a patient named Ms. Auguste D on April 8, 1906 after she died. Upon inspection of
her brain, Dr. Alzheimer noted three major pathological features: (i) extracellular neuritic
plagues; (ii) intracellular neurofibrillary tangles (fibrils) and (iii) loss of synapse. The findings
were first reported by Dr. Alzheimer in a lecture he gave for South German neuropsychiatrists,
entitled “Ueber eine eigenartige Erkrankung der Hirnrinde” or (About a remarkable illness of the

cerebral cortex) on November 3, 1906.%

AD is a progressive, irreversible, brain disorder characterized by neurological and
behavioral disabilities associated with the production of plaques and tangles, synaptic loss and
neuroinflammation.** Over 5.3 million Americans are currently affected by this devastating brain
disease and the worldwide AD patients exceed over 16 million.*® AD puts a vast economic
burden on the society costing $172 billion annually in USA. The two greatest risk factors for AD
are age and genetics. The occurrence of this disease increases with age — most individuals
affected are above 65 or older. The likelihood of getting AD doubles every five years after 65.

About one-half of the population above 85 years old has AD.*

It has been over hundred years since AD was first diagnosed, but the scientific community

still did not understand the etiology. However, an improved understanding of production of



plagues and tangles has been achieved.”> %%

Amyloid plaques are extracellular protein
fragments that are aggregated between nerve cells in the disease conditions, whereas
neurofibrillary tangles (NFTs) are hyperphosphorylated forms of the microtubule-assisted tau
protein. The well-known functions of tau protein are thought to be stabilization of microtubules
and regulation of motor-driven axonal transport.®® In Alzheimer's disease condition, the tau
protein is excessively phosphorylated resulting in the formation of paired helical fragments
(PHF). This abnormal phosphorylation weakens the binding affinity of tau-microtubule binding,
thereby affecting the stabilization of microtubules and axonal transport. The production and
development of PHFs is a whole area of research by itself and hence will not be discussed in

this dissertation. The following discussion will be limited to our current understanding of

production of amyloid plaques and ways to mitigate it.
1.5. APP processing

In human brain, APP is processed via two different pathways — namely, non-amyloid
pathway (major) and amyloid pathway (minor) — as illustrated in figure 1. In the major non-
amyloid pathway, APP is cleaved by a-secretase within the amyloid beta (AB) sequence to
generate a large extracellular soluble fragment (SAPPa) and a smaller intracellular fragment
(C83). These fragments appear to have no pathological significance to AD, although sAPPa
may have neuroprotective characteristics.®*®> Concomitant cleavage of C83 by y-secretase
results in non-amyloidogenic p3, a 30kD peptide, as well as A intracellular domain (AICD). As
mentioned above, since a-secretase cleavage of APP happens with the AB sequence, this

pathway prevents the formation of Ap.

In the amyloid pathway, where endoproteolytic processing of the APP by consecutive
cleavages of BACE1 and y-secretase takes place, AB is produced.”® The enzyme BACE1

cleaves APP at the N-terminal side of the Ap sequence to secrete sAPPf3, producing the cell-



bound, carboxyl-terminal fragment C99. The C99 fragment is then cleaved by the y-secretase
producing AICD and amyloid peptides 39-43. It was reported that the majority of AB produced
via amyloid pathway is AB4 which is soluble and non-neurotoxic. The relatively minor product
ABs2 (10%), that is less soluble and more hydrophobic, has a tendency to undergo fast
aggregation and was reported to be toxic.*’ The correlation between Ap., and cognitive decline
is reported.”* Under normal physiological conditions, there is equilibrium between production

2

and clearance of toxic ABs.** However, under AD conditions, a pronounced decrease in the

clearance of AB4, was observed resulting in the excessive production and aggregation of AB4,
which in turn triggers a cascade of events such as oligomerization, fibril formation,
neuroinflammation, reactive oxygen species production, oxidative damage, calcium
dyshomeostasis, tau hyperphosphorylation, synaptic dysfunction, neuronal loss and eventually
resulting in dementia.”> This phenomenon has been referred as amyloid cascade hypothesis
and it was first proposed by Hardy et al.”> Because BACEL1 is the rate-limiting enzyme in the
amyloid pathway, it appears promising as a molecular target for the therapeutic intervention of
AD.** It is worth mentioning here that the amyloid cascade hypothesis is recently challenged
with a new, complex web of interactions model based on age proposed by Herrup.*® The fact
that brain structure and function decline over the age led the author to propose the three
necessary steps that could lead to AD: (i) an initiating injury; (ii) a chronic inflammation; and (iii)
a cellular change-of-state. Even though this model is in primitive stage requiring supporting
research from elsewhere, it is important to state that lowering of amyloid plagues may not

necessarily be considered as the gold standard for AD therapy.
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Figure 1. Processing of APP by secretases

1.6. Discovery of BACE1

BACE1 was discovered in 1999 by several research groups independently — Vassar et al.,
Hussain et al., Sinha et al., Yan et al., and Lin et al.*”** Several nomenclatures for BACE1 exist
in the literature — such as, BACE1, B-Secretase 1, Asp2 and memapsin 2 - however, in this
dissertation, only the term BACEL will be consistently used. BACEL belongs to the type-I
membrane-bound aspartic protease of the pepsin family. Similar to other aspartic proteases, it
contains the unique dual active-site motif (D-T/S-G-T/S) in its ectodomain. The structural

organization of BACEL is depicted as a cartoon in figure 2. A full length BACE1 has an N-



terminal signal peptide (residues 1-23), a Pro-peptide domain (residues 24-48), catalytic domain
(residues 49-454), a membrane-spanning region (residues 455-478) and a C-terminal
cytoplasmic tail (residues 479-501). Hussain et al. and Bennett et al. reported that mutation in

one of the two active aspartic acid residues result in complete loss of enzyme activity.*" >

SP Pro Dy, TG DzsgSG loop ™ C

1 23 48 228 421 454 478 501

Figure 2. Sequence organization of BACE1

1.7. BACEL1 expression levels in brain areas

The enzyme BACEL is ubiquitously expressed, however its transcript levels are found
highest in pancreas and neurons in the brain.*®> BACE1 activity in pancreas is rather low despite
its abundance due to the generation of alternatively spliced transcripts that produce BACE1l
variant with a reduced proteolytic activity.®> In contrast, BACE1 activity is higher in
hippocampus, cerebellum and frontal lobe regions of the brain.>®* Even though neurons are the
major sources of BACEL, astrocytes are known to be the alternative source. The latter is known
to be important for the clearance and degradation of AR and for acting as a barrier between
neurons and toxic deposits of AB.>* It was reported that resting astrocytes in brain do not
express detectable levels of BACEL, whereas cultured astrocytes display BACE1 promoter

activity, express BACE1 mRNA and active BACE1.>*
1.8. Enzymatic activity of BACE1

Purified BACEL has an optimal enzymatic activity at pH 4.5, which reflects its primary site

|50

of action inside the cel In fact, cell-surface expressed BACEL1 is transported to early
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endosomes and trans golgi network by endocytosis. It is believed that BACEL catalyzes APP

processing to release sAPPB and C99 after endocytosis.>*>°

1.9. Function of BACE1

The widely known function of BACEL1 is APP processing and this has been described in
detail. In addition to APP, other BACEL substrates are also reported which suggests a variety of
physiological functions of BACEL. It is beyond the scope of this dissertation to address the
significance of other substrates. However, briefly, these substrates include: a-2,6-
sialyltranferase (ST6Gal-1),>” Neuregulin-1 (NRG1) implicated in myelination,®® platelet selectin
glycoprotein ligand 1 (PSGL-1),>° and interlukin receptor type 1.°° The role of BACE1 in

regulating the voltage dependent sodium channel is also reported.®
1.10. BACEL1 as atarget for AD therapy

It has been hypothesized that therapeutics targeting APP processing may mitigate the
formation of toxic fragments and hence prevent plaque formation.”> ***" Since BACEL1 is the
rate-limiting enzyme in this cascade, it is considered as one of the propitious targets for AD.
Further studies have shown that -BACE1knock-out mice fail to produce AR thereby providing a
strong evidence that BACEL is indeed the sole enzyme with a bonafide B-secretase activity. It
was also reported that these mice are healthy, fertile, and appear normal in gross anatomy,

6265 Based on these results, it was

tissue histology, hematology and clinical chemistry.
suggested that inhibition of BACEL in humans may not have mechanism-associated toxicity.
Interestingly, overexpression of BACEL levels in mice resulted in abnormal production of AB.
However, results obtained from behavioral studies revealed memory impairment, subtle
behavioral changes, being timid, anxious and less inclined to explore compared to mice over

d. 62-63, 65-67

expressing BACEL suggesting that only partial inhibition of BACE1 may be desire In

humans, it has been shown that BACE1 levels are significantly elevated in vivo in rapidly
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autopsied brains of sporadic AD patients (< 3 hours) compared with age-matched non-AD

%870 and a correlation (R? = 0.54) between BACE1 activity and amyloid plaques count

patients,
was reported.”* It was, therefore, suggested that lowering of amyloid plaques in vivo may be
achieved by a decrease in production of ABs and A, through inhibition of BACEL, thus

opening up a new avenue for AD drug discovery.®” *

1.11. BACELl inhibitors in clinical trials

Despite the fact that the enzyme BACEL has been discovered a decade ago, clinical
development of an ideal BACE1L inhibitor is still far from reality. BACEL inhibitor design is
impeded by various challenges including: (1) ability of inhibitors to penetrate the blood-brain
barrier; (2) presence of an efflux transporter, phosphoglycoprotein (P-gp), at the blood-brain
barrier; (3) large and conformationally flexible BACE1 active site; (4) homology to other aspartic
proteases, specifically towards BACE2 even though its expression levels are higher in the
periphery compared to that in brain.*> " Even though both BACE1 and APP are membrane-
tethered, it has been suggested that the physiologically relevant cleavage of APP by BACEL1l
occurs in endosomes where the pH is optimal for BACE1 enzymatic machinery (pH = 4.5)"*"’
or in cholesterol rich lipid rafts.”® Therefore, further improvement of the cell membrane
permeation properties of BACEL inhibitors would be one of the most important tasks during lead
optimization. A proof of concept for an alternative to the passive permeation approach, a

BACEL1 inhibitor conjugated with a lipid fragment targeting endosomes, was recently reported by

Simons and co-authors.®®

Despite these challenges, Ghosh et al. recently developed an orally bioavailable small
molecule BACEL inhibitor (CTS21166) that displayed excellent efficacy, selectivity, brain
penetration and pharmacologic activity in preclinical studies.” The phase lla studies of this

inhibitor were promising and are awaiting further advancement.
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1.12. Scope of the current study

A growing body of literature in the form of publications, patents and proceedings supports
the significance of BACEL in AD pathogenesis. The abundant structural information available for
BACEL1l-inhibitor complexes, as well as the availability of powerful molecular modeling
techniques, fueled the design and development of BACEL inhibitors. Despite these advances,

there is still an unmet clinical need for the AD therapy.

In the present study, we have employed both the structure- and ligand-based drug design
methods to understand the binding characteristics of BACEL inhibitors. Our ultimate goal is to
further advance development of more active blood-brain permeable inhibitors of BACE1 as

potential therapeutics for AD.



2. STRUCTURE-BASED MODELING OF BETA-SECRETASEL INHIBITORS

2.1. Background

Contrary to traditional drug discovery, which relied heavily on serendipity, rational drug
discovery utilizes the knowledge of three dimensional structures of proteins and ligands. One of
the types of rational drug discovery is the structure-based drug design method (SBDD). In this
method, three dimensional structures of biological targets obtained using X-ray or multi-
dimensional NMR and knowledge of active site were are used as starting points for the effective
design of active and selective ligands that would eventually be tested in clinical trials. In the
case of difficulty in obtaining 3D structures of targets, computational homology modeling has
been used. A typical drug discovery pipeline begins with validation of target. Once the biological
target is validated and its atomic structure is solved (X-ray or NMR), several SBDD methods can
be used to identify hit compounds. Some of these methods are: (1) target-based high-
throughput screening that involves screening of compounds (several thousands to even
millions); (ii) target-based virtual screening that involves molecular docking and scoring of a
huge library of ligands on the target structure; and (iii) de novo design that involves growing
fragment of ligands inside the active site of the target using a database containing small
molecules and chemical fragments. In conjunction with various computational tools methods
including molecular docking, hit to lead transformation and lead optimization can be envisioned
before testing the compounds in clinical trials. Modern SBDD methods involve the synergistic
combination of techniques including X-ray crystallography, NMR, computational methods and

advanced chemical synthesis.

Explosion in structural information, proteomics and genomics resulted in hundreds of new
targets that were otherwise unknown and have provided ample opportunities for SBDD drug

discovery. In fact, SBDD is not limited to proteins, but can be applied to nucleic acids and

13
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membranes as well. The success of drugs such as saquinavir, ritonavir, indinavir and nelfinavir

can be attributed to the success of SBDD.

One of the key challenges in SBDD is to design drugs for flexible targets. Lead generation
obtained by considering only from a single, rigid target structure is prone to give misleading
results for a conformationally flexible target. Computational techniques have been judiciously
employed in these cases, despite the difficulty in sampling entire protein conformer system.
Modeling the side-chain flexibility of key residues in the binding pocket and accommodating
multiple protein structures are some of the techniques employed by computational chemists to

handle protein flexibility in SBDD.

In the present work, structure-based drug design using GOLD docking and de novo ligand

design using RACHEL has been employed to identify novel ligand scaffolds targeting BACEL.
2.2. Crystal structures of BACE1

The validation of BACEL as a target for AD has been discussed in the previous chapter.
The first X-ray crystal structure of BACEL in complex with an eight-residue inhibitor, OM99-2,
was solved at 1.9 A resolution by Hong et al in 1999 (figure 3).”” Based on the atomic
information obtained from this and multiple other crystal structures, it was found that the BACE1
is bilobal and pseudo 2-fold symmetric. The catalytic core of BACEL is conserved compared to
the other aspartic protease members, however, flexibility is pronounced in the binding regions.
For example, the active site region contains a flexible 8 hairpin loop (residues 67-77) also called
the flap region.” It is believed that this flap region controls the access of substrate to the
BACE1 binding pocket as well as to orient the substrate in optimal geometry for catalysis.” In
particular, the flap is reported to exist in open form (to allow the entry of substrate), close form
(to lock the substrate inside the binding pocket of BACE1) and other intermediate positions

depending upon the size of the substituents.”®® In addition, there is another flexible loop near
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the N terminus comprised of residues 9-14 (herein referred as 10s loop). Compared to other
aspartic proteases, the active site of BACEL is large, more open, less hydrophobic and

conformationally flexible."

The majorities of BACEL inhibitors, but not all, have tight hydrogen bonding network with
the catalytic aspartic residues (Asp32 and Asp228). For example, the substrate-based inhibitor
OM99-1, that occupies from S4 to S4’ binding sites, was found to involve in significant hydrogen
bonding and hydrophobic interactions with the residues present at the pertinent pockets (figure
3). In particular, a direct hydrogen bonding between the hydroxyl group of the hydroxyethylene
moiety of the inhibitor with the catalytic aspartic residues Asp32 and Asp228 was observed. As

of today, there are over a hundred publicly available BACE1 PDB structures.

Leu30, Asp32,  Ser3s, Valeo,

Glu125, lle126
Leu30, Tyr71, Le118, Pro70, Tyr198 ’ ’
lle110 GIn73, Phe108 < Tyr197, Tyr198
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Figure 3. OM99-2 in BACE1 active site”

2.3. Conformational flexibility of BACE1

Superposition of multiple X-ray crystal structures revealed that BACEL is a highly flexible
enzyme with experimentally determined motion in the flap region, the catalytic residues, 10s

loop, and the S2 site. The residues 67-77 present at the flap region adopt a B hairpin



16

conformation and reportedly exist in two conformations.®® The apo enzyme that lacks the
stabilizing interactions of these flap residues adopts an ‘open’ conformation, whereas the ligand-
bound enzyme adopts a ‘closed’ conformation by h-bonding with Tyr71. Recently, a ligand-
bound enzyme in a flap-open conformation was also reported.*®* McGaughey et al. showed that
the loop comprising the residues 9-14 can adopt two or more different conformations depending
on the size of the ligands and h-bonding with Thr232.2* The authors also observed that ligands
that possess a bulky P3 moiety modulate the enzyme to exist in an “up” conformation whereas
the ligands that have a small P3 moiety induce the ligands to exist in a ‘closed’ conformation.
Using this rationale, highly potent inhibitors has been developed.®> The flexibility of BACE1 S2
site had not been rigorously addressed from computational perspective at the time we
embarked on our research. In particular, the X-ray structure analysis suggests that the Arg235
present at the S2 site is highly flexible. Thus, the highly flexible, positively charged Arg235 could

be explored for future ligand-design efforts.
2.4. Rational for targeting S2 site of BACE1

Our interests in BACE1 S2 site flexibility stem from the preliminary modeling calculations
that we performed by superimposing various crystal structures of BACE1 publicly available in
the protein data bank.*® The major amino acid residues present in BACE1 S2 site are Asn233,
Arg235 and Ser325 out of which the fluctuations observed in Asn233 and Ser325 are minimal.
We believed Arg235 as a potential candidate for targeting due to the following reasons: (1) the
side-chain guanidine group in Arg235 is positively charged in neutral pH compared to the
neutral side-chains present in Asn233 and Ser325. Hence, targeting the guanidine side-chain
with appropriate ligand atoms will result in strong, electrostatic interactions that are directional in
nature; (2) the side-chain of Arg235 is highly flexible and hence adopts several conformations
as evidenced by visualization of several BACE1 PDB structures. We reasoned that the size and

electronic parameters of P2 substituents are the key determinants in controlling the Arg235
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movement. The extreme displacements of Arg235 observed in the X-ray structures of 2B8L and
1W51 is shown in figure 4. Docking of crystallographic 1W51 ligand in 2B8L binding site did not
provide any meaningful pose suggesting that the flexibility of the BACEL1 must be accounted
during in silico inhibitor design. This increased our curiosity to explore the side-chain
movements of Arg235 during docking calculations. It is imperative that the ligand component
that binds to the S2 site must be flexible enough in order to interact with Arg235 as well as with
the rest of the residues that form the S2 site. Our modeling analysis resulted in identifying the
attributes of an ideal P2 component of the ligand: (1) ability to interact with charged Arg235; (2)
ability to adapt its conformation in a flexible binding site; (3) containing fewer polar atoms. Any
compound that possesses more/all attributes listed above is expected to efficiently inhibit
BACEL and hence will provide strong evidence to our hypothesis. In fact, our modeling analysis
resulted in scaffolds containing an oxygen atom locked in a conformation that is amenable for h-
bonding with the Arg235 (enthalpic optimization). In addition, the fact that the fused-ring
compounds already contain a constrained ring (5 or 6 or 7-membered), the entropic penalty

during binding would be minimal (entropic optimization).
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Figure 4. Two different conformations of Arg235 in BACE1 PDB structures
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2.5. Experimental methods

2.5.1.  Overall design strategy

The overall strategy adopted during our pursuit of BACE1 inhibitor-design is summarized
below (figure 5). The software RACHEL (Real-time Automated Combinatorial Heuristic
Enhancement of Lead compounds) was used to generate the new scaffolds (fused-rings and
biaryls). The RACHEL scoring function was amended in order to obtain cyclic structures as hits.
FlexX software was used to dock the hits obtained using RACHEL. FlexX score and
visualization of poses in the binding pocket of BACE1 was utilized to analyze the results. With
inputs from medicinal chemists, two diverse series of fused-ring and biaryl compounds were

identified as hits and proceeded forward for chemical synthesis and biological testing.

Design Novel

Docking and Scorin
P2 fragments [ > (FIexX%nd Gold) 9 |::> Chemical Synthesis T >

using RACHEL

|C50 studies in a Structure-Activit |:'|> Efficacy of best
cell lysate assay :> Relationship y compounds in N2a cells

Figure 5. Strategy for BACEL inhibitor design

2.5.2. De novo ligand-design using RACHEL

De novo ligand-design using RACHEL, a software package for automated de novo
design, was selected to generate the new scaffolds. We elected to maintain the X and Y
substituents in ligand 1, while allowing changes in portions A, B, and C (figure 6). The bridging
group C was designed to maintain orientation of the polar groups (if any) in positions A and B, to

decrease the number of rotatable bonds, and to form an additional interaction with the binding
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site. The A, B, C fragments were allowed to be either “nothing” (in case of the fragment C only),
H, or a group selected from an in-house database of small molecule fragments. This database
was generated by RACHEL from a set of drugs and druglike small molecules found on the
DrugBank web-site.®” The RACHEL scoring function was amended to promote selection of
cyclic structures. Asn233 was selected as a target site for growing substituents. The molecular
weight of the substituents was limited to 200. The newly generated by RACHEL ligands were re-
docked to the binding site using FlexX docking software. Among all potential ligands generated
by RACHEL bi-cycles and biaryls stood up as groups of ligands having the binding poses
similar to those found in BACE1 X-rays, targeting S2 site, and having fewer or no hydrogen
bond donors or acceptors. Upon visual inspection and evaluation of synthetic accessibility two
scaffolds were selected for further synthetic elaboration: saturated bicycles with fused 6 or 7
ring systems containing a heteroatom and biaryls with 5- and 6-membered terminal aryl (Figure.
6). It was further decided not to use the actual FlexX docking score because (1) docking scores
are typically less reliable compared to the accuracy of the binding poses prediction, and (2) we
expected that the binding site residues in S2 may change their conformation to accommodate
the new substituents. To explore if these new chemotypes are indeed compatible with the
binding site of BACEL two diverse series of biaryl and 5,6,7-membered bicyclic ligands shown in

figure 6 were advanced for further medicinal chemistry efforts and biological testing.
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Figure 6. De novo design strategy utilized to find P2 fragments

2.5.3. Molecular docking using GOLD

The subsequent molecular modeling analysis was performed in the following way. The X-
ray coordinates of BACEL (PDB code: 2B8L) were downloaded from the Protein Databank. The
protonation state of two catalytically active aspartic acids (Asp32 and Asp228) is the subject of
debate. However, based on full-linear quantum chemical calculations carried out by Rajamani et
al., and virtual screening studies of a library of BACEL inhibitors conducted by Polgar et al., we
protonated Asp32. 8% The active site was defined as a sphere enclosing residues within 10A
of the bound ligand. The 3D structures of ligands were built using Sybyl 7.3 and energy
minimized using Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm, 5000 iterations, and
gradient of 0.005 kcal/mol/A as the termination criterion. The resulting minimized molecules
were docked to the binding site of BACE1 using the GOLD software.®® All poses outputted by
the docking program were visualized; however only the pose with the best fithess score was

used for the following SAR analysis. Wherever appropriate, docking under induced-fit mode was
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applied to accommodate the side-chain flexibility of Arg235. Prior to the SAR analysis, the ability
of the docking program to successfully reproduce the binding mode of co-crystallized ligand 1
was evaluated. It was found that GOLD was able to reproduce the X-ray binding mode of 1 with

RMSD of 0.36 A.

254, In silico prediction of blood-brain barrier penetration (log BB) of BACEL

inhibitors

We also calculated the logBB values to confirm that the new ligands exhibit improved
blood-brain permeation properties. The log BB values of all inhibitors 1, 2a-2c, 3a-3d, 4a-4b,
5a-5e, 6a-6c were calculated using Clark’s equation.” The original coefficients in the Clark
equation were refitted using the original data in the Clark paper to account for the difference
between the polar surface area and ClogP used by Clark and those generated by the Tripos
software. The contact van der Waals surface area (cvdWSA) was calculated using MOLCAD
separated surfaces between R; and the residues Thr231, Thr232, Asn233, Ser325, Arg235,
GIn73 and Thr72 proximal to R;. The figures were generated either with Vida 3.0 or with

Sybyl8.0.
2.5.5. Synthesis of BACEL inhibitors

The synthesis of BACEL1 inhibitors were carried out by our colleague Dr. Srinivas Reddy
Chirapu. The biaryl and fused-ring ligands were prepared using a common intermediate 12
according to a published procedure.”” The synthesis of biaryl ligands is shown in Scheme 1.
Commercially available substituted bromoisophthalic acid 7 was converted into 9 by 1)
hydrolysis of 7 with 1IN NaOH which afforded the monoacid 8 and 2) subsequent coupling of 8
with (R)-a-methylbenzylamine in the presence of EDCI and HOBt resulting in the formation of 9.
Intermediates 10 required for final products 2c and 3c were prepared by a Sonogashira

coupling of bromide 9 with the mono TMS derivative of acetylene and phenylacetylene,
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respectively. Suzuki coupling of 3-thiopheneboronic acid or 4-chlorophenylboronic acid with 9
resulted in intermediates 10 required for the final products 3a and 3b. Sultam intermediates 10
required for the final products 4a and 4b were prepared by coupling 10 with the corresponding
ring sultams. The final compounds 2c, 3a-3d, 4a-4b were obtained by hydrolysis of 10 to form
the acid intermediate 11 followed by subsequent coupling with the TFA salt of (2R, 3S)-N-1-2-
hydroxy-4-phenylbutane-1, 3-diamine.**®> Compounds 2a and 2b were prepared using hydroxy
and methoxy derivatives of diethyl esters of isophthalic acid in four steps: hydrolysis of one of
the ester group with 1IN NaOH, coupling with the left side fragment (R)-a-methylbenzylamine,
hydrolysis of the remaining ester group using 1N NaOH, and finally coupling with the TFA salt of

(2R, 3S)-N-1-2-hydroxy-4-phenylbutane-1, 3-diamine.

The bis-esters 15, 17 and 19 were prepared according to the reported procedures starting
from 14 (Scheme 2).°°" Subsequent selective hydrolysis of 17 yielded monoester 18a as a
major product whereas 19 resulted in monoester 20a as a major product. Further treatment of
16a, 18a and 20b with (R)-a-methylbenzylamine led to the corresponding intermediates 21-23
that upon hydrolysis and subsequent reaction with 12 resulted in the final products 5a, 5b and
6¢ (Scheme 3). Reaction of 16b, 18b and 20a with 12 resulted in intermediates 24-26 which
upon hydrolysis and subsequent coupling with (R)-a-methylbenzylamine led to the final ligands

5c, 6a, and 6b (Scheme 4).
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Scheme 1. General Synthesis of BACEL inhibitors
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Scheme 2. Hydrolysis pattern of fused-ring esters
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Scheme 3. Synthesis of final compounds 5a-5¢
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Reagents and conditions: (a) (R)-a-methylbenzylamine, EDCI/HOBt, 0 °C-r.t; (b) 1 N NaOH;
THF: MeOH (50:50), 0 °C to r.t.; (c) 12, EDCI/HOB, 0 °C to r.t.

Scheme 4. Synthesis of final compounds 6a-6c¢
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‘Ctor.t.; (c) (R)-a-methylbenzylamine, EDCI/HOBt, 0 ‘C to r.t.
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2.5.6. IC50 measurements

The ICso studies were carried out by Hikmet F. Nural and Xin Cheng supervised by Dr
Yong Shen our collaborators at the Sun Health Institute, Sun City, AZ. For ICs, measurements,
293T cells stably transfected with pcDNA-BACEL were maintained in 200ug zeocin/ml DMEM,
10% FBS. Cell were lysed by lysis buffer (PBS with 1%TritonX100 and 0.1%SDS), lysate were
adjusted to 4ug/ul. BACEL inhibitors were diluted to desired concentration with reaction buffer
(200mM Tris-HCI, 100mM NaCl, pH4.5). BACEL substrate (EDANS-SEVNLDAEFR-DABCYL)
was dissolved in DMSO as stock then diluted to 10uM working solution. 20ug of 293T/pcDNA-
BACEL cell lysate were mixed with BACEL inhibitor and the substrate. The final substrate
concentration was 5uM. Fluorescence was detected in microplate reader (Bio-tek) every 5min at
emission length 500 nm as well as excitation at about 430 nm. Maximal velocities were

calculated by the time point within 20min.

Similarly, 293 cells stably transfected with pcDNA-BACE2 were maintained in 200ug
G418/ml DMEM, 10% FBS. Cell were lysed by lysis buffer (PBS with 1%TritonX100 and
0.1%SDS), 5ug protein were used in the assay. BACE2 inhibitors were diluted to desired
concentration with reaction buffer (100mM Tris-HCI, 100mM NaCl, pH4.5). BACE2 substrate
(MCA-ERHADGLALALEPA(K-Dnp) was dissolved in DMSO as stock. Inhibitors were further
diluted to desired concentration with reaction buffer (100mM Tris-HCI, 100mM NacCl, pH4.5).
Cell lysate were mixed with BACE2 inhibitors and the substrate (final concentration 5uM).
Fluorescence was detected every 5min at emission length 430 nm as well as excitation at about

340 nm. Maximal velocities were calculated by the time point within 20 min.

The activity data of both BACE1 and BACE2 are presented in Table 1.
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2.5.7.  Assay to detect and quantify AR, reduction

The biological assay to quantify the AB4 reduction was carried out by Samer O. Abdul-
Hay supervised by Dr. Gregory R.J. Thatcher at UIC. The following procedure was implemented
to determine the efficacy of our best BACE1 inhibitors in reducing the AB40 production. Mouse
neuroblastoma cells (N2a) stably transfected with Myc-epitope tagged Swedish mutant APP 695
cDNA (a kind gift from Dr. Gopal Thinakaran) were cultured in 1:1 Opti-MEM/Dulbecco's
modified Eagle's medium (high glucose) containing 5% fetal bovine serum, 1%
penicillin/streptomycin and 0.2 mg/ml Geneticin (G418) in a humified air incubator at 37°C (5%
CO, — 95% O,). Cells were plated in 24 well plates for 24h at a concentration of 15x10* cell/well.
After 24h, the growth medium was discarded and replaced with 0.5 ml of serum reduced
medium consisting of Dulbecco’s modified Eagle’s medium (high glucose) and 0.2% fetal bovine
serum. Fifteen minutes after medium replacement, the cells were treated with drugs dissolved in
DMSO and incubated for 24h. At the end of the incubation period, 100 pl of conditioned media
were collected and the protease inhibitor AEBSF (4-(2-aminoethyl) benzenesulfonyl fluoride
hydrochloride) was immediately added at a final concentration of 1mM. AB40 concentration was
determined using human beta amyloid [1-40] colorimetric ELISA kit from Invitrogen. The

procedure was followed as instructed in the supplied protocol.
2.6. Results and Discussions
2.6.1. NMR studies of fused-ring compounds

The 2D-NMR studies were carried out Dr. David C. Lankin from UIC. Theoretically, two
regioisomeric monoesters could have been produced from each diester 15, 17, and 19 by
hydrolysis of the right-side ester or the left-side ester (Scheme 2). The structure of the
hydrolysis products produced from 17 and 19 were deduced in a self-consistent manner from

the interpreted results of extensive NMR studies using1-D '*H and **C, 2-D gradient-selected
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correlation spectroscopy (gCOSY), gradient-selected heteronuclear single quantum coherence
(gHSQC), and gradient-selected heteronuclear multiple-bond correlation spectroscopy(gHMBC).
The assignment strategy employed for the determination of the regioisomeric structure of the
monohydrolysis products represents a straight forward approach involving: 1) unambiguous
assignment the *H and *C NMR spectra for each of the hydrolysis products and 2) the careful
examination of the patterns of the Jc ; correlations present in the gHMBC 2-D spectrum of each
of the hydrolysis products, specifically the correlations pertaining to the respective carbonyl
carbons. In the generalized structure (n = 1 or 2; figure 7a), the aromatic ring proton located
between both carboxylate carbons will exhibit *Jc correlations in the gHMBC to both carbonyl
carbon signals (red and blue). The remaining aromatic ring proton (right side) will show the
indicated %Jc, correlation to only the carbonyl carbon on the right side (in red). If a carbonyl
exists as an ester moiety, i.e., with a methoxy group bonded to the carbonyl carbon, there will
be an additional correlation cross peak in the gHMBC 2-D spectrum arising from a 3Jc 4 coupling
to the protons of the methoxy group to that carbonyl carbon. In this way, unambiguous
assignment of the structure of the hydrolysis products can be made with confidence. This
concept is illustrated for the starting dimethyl ester 17 (n = 1, R = R’ = Me), for which all of the

'H and *C resonances were assigned (figures 7b and 7c).

In the case of the hydrolysis product 18a derived from 17, the 1-D proton NMR spectrum
(400 MHz, DMSO-ds) confirmed the presence of three chemically distinct methylene groups with
resonances centered at 61.921 (m), 3.027 (triplet, J = 5.2), and 4.175 (triplet, J = 6.6), each
integrating for two (2) protons and all associated with the 6-membered ring present in the
monohydrolyzed product. The gCOSY spectrum confirmed that the methylene groups
constituted an isolated mutually coupled proton spin system. A singlet (3H) appearing at 6 3.837
was assigned to the methyl group of the monoester moiety. Two doublets were observed

centered at 6 7.979 and & 7.428 (J = 1.5 Hz), which were shown to be spin coupled (gCOSY)
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and were assigned to the two aromatic protons present on the aromatic ring. The magnitude of
the J-coupling between the two aromatic protons confirmed the indicated meta—relationship.
The protonated carbons could be assigned from the gHSQC spectrum (*Jcy) and gHMBC
spectrum (?Jc and 3Jc ). A broad resonance (1H) appeared at ~ & 13 ppm and was assigned

to the proton of the free acid.

The gHMBC of hydrolysis product 18a from 17 showed correlations from the proton at &
7.979 to both of the carbonyl carbons at & 166.2 and 166.3 ppm. There was a correlation
observed from both the proton signal at & 7.428 to the carbonyl carbon appering at & 166.3 as
well as a correlation cross peak to the ester methyl group at & 3.837 indicating that the
hydrolysis of 17 proceeded at the left-side carbonyl in the generalized structure. In contrast, the
1-D proton NMR spectrum (400 MHz, DMSO-dg) of the hydrolysis product 20a from 19
confirmed the presence of four chemically distinct methylene groups with slightly broadened
resonances centered at (6 1.673, 1.899, 2.992-3.018 m, and 4.012 t (J = 6.6 Hz) each
integrating for two (2) protons and all associated with the 7-membered ring present in the mono-
hydrolyzed product from 19. As in the case of 20a, the gCOSY spectrum confirmed that these
resonances also constituted an isolated mutually coupled proton spin system. A singlet (3H) at &
3.854 was assigned to the methyl group of the monoester moiety. Two signals were observed at
0 7.937 and & 7.582, which were shown to be spin coupled (gCOSY) (J = 1.7 Hz) and which
were assigned to the two aromatic protons present on the aromatic ring. The magnitude of the
J-coupling between the two aromatic protons is also consistent with the indicated meta —
relationship. Similar to the NMR of 18a, the hydrolysis product of 17, a broad resonance (1H) at
~ ® 13 ppm was also observed and was assigned to the proton of the expected free acid
functionality. The protonated carbons could be easily assigned from the gHSQC spectrum
(*Jc+) . The gHMBC of hydrolysis product 20a from 19 showed correlations from the proton at &

7.937 to the both of the carbonyl carbons appearing at & 166.0 and 167.2 ppm. There was a
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correlation observed from the proton signal at & 7.582 to the carbonyl carbon at & 166.0. The
carbonyl at & 167.2 also showed a correlation in the gHMBC spectrum to a methyl singlet (d
3.854) indicating that the hydrolysis of 19 proceeded at the right-side carbonyl (red, in the
generalized structure). Analysis of the 2-D gCOSY, gHSQC, and gHMBC data together with the
1-D 'H and *CNMR data obtained for both hydrolysis products permitted a self-consistent
assignment of the *H chemical shifts and of the *C chemical shifts for both regioisomers. The
'H and **C NMR assignments of intermediates 17 and 19 and their hydrolysis products 18a and

20a are shown in figures 7d and 7e.
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Figure 7. General Structure of ligands and NMR structures

(a) General structure of ligands 17 and 19; (b) '"H NMR assignments for 17; (c) **C NMR
assignments for 17; (d) **C NMR assignments for 18a; (e) **C NMR assignments for 20a.
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Ligands -R;- R, BACEL1 ICs BACE2 ICs log BB®
(nM) (nM)
ba H 524 + 150 > 100000 -0.3
(0]
/
(0]
5b H 63+8 > 100000 -0.3
5c o H 56 £7 > 100000 -0.3
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O
5d 740 £ 95 2089 + 311 -0.3
O
5e 262 *+ 36 1949 + 207 -0.2
0]
\
6a 998 + 78 > 100000 -0.
O
6b 112 £ 12 > 100000 -0.4
@)
6¢ 89+ 13 > 100000 -0.2

dcalculated log BB

Table 1. BACE1 and BAC2 inhibition profile of P2 substituents

2.6.2.  Activity profile of simple substituents

The best docking poses were visualized in the binding site (figure 8a), and the SAR of the

synthesized compounds is discussed below. Substitution of R; by a simple hydroxyl or a
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methoxy group in 2a and 2b (Table 1) resulted in approximately 6- and 9-fold loss in BACE1
activity compared to ligand 1, respectively, a relatively small trade-off in exchange of
improvement of the druglike profile and BACE1/BACE?2 selectivity. The docking shows that the
solvent-exposed hydroxyl or methyl group in 2a and 2b do not form favorable contacts with the
binding site. In the induced-fit mode docking, the side-chain guanidine group of Arg235 is able
to interact with the hydroxyl or methoxy groups in 2a and 2b, respectively. Substitution of Ry in 1
with an acetylene moiety in 2c¢ led to an only 3—fold decrease in BACE1 activity. As well as in
the case of ligands 2a and 2b this is a small trade-off for replacing methyl sulfonamide group of
1 with a small acetylene group in 2c. This observation supports the notion that the loss of
hydrogen- bonding contribution may be compensated by non-directional vdW interactions of the
P2 substituents as a result of possible induced fit changes. Indeed, the docking shows that the
P2 acetylene moiety forms extensive vdW contact with the alkyl side-chains of Arg235 and
Thr231 located in S2. None of 2a-c ligands showed BACE2 inhibition below 100 pM
concentration. As expected, the relatively less polar 2a-c are predicted to have better log BB of -

0.3 compared to -0.9 for 1.

2.6.3.  Activity profile of biaryl substituents

Encouraged by these initial findings, we synthesized and tested ligands 3a-3d to explore
whether the S2 pocket can accommodate larger biaryl substituents. The docking poses of these
compounds are shown in Figure 8b. The 3-thiophene moiety in 3a did not influence significantly
the activity compared to 2b. A replacement of R; with the bulkier p-chlorophenyl moiety in ligand
3b led to a 3-fold increase in potency compared to 3a and an almost equal activity to 2c, a
ligand with a smaller R; acetylene substituent. An analysis of the docking pose of 3b shows that
binding of its p-chlorophenyl substituent requires a displacement of the conserved water
molecule WAT43 (in 2B8L) typically mediating hydrogen bonding between the sidechains of

Ser325, Arg235 and GIn326 (discussed below). It is likely that an induced fit disorder caused by
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the removal of the conserved water molecule may contribute to improved binding energy of
3b.” When Gold program was allowed to determine whether WAT43 should be bound or
displaced upon binding of 3b, the resulting ligand-protein complex did not contain WAT43.
Probing of the binding site with larger, extended substituents as in the phenylacetylene- and N-
benzyltriazole-containing ligands 3c and 3d resulted in a 1.4- and 1.6-fold loss of activity
compared to 3b, respectively. The loss was more pronounced in 3d where the benzyl
appendage appears to be completely solvent-exposed. Unlike 3c and 3d, ligands 3a and 3b fit
well within the cleft of the S2 pocket. The predicted log BB values for the biaryl series range

from modest -0.6 and -0.5 for compounds 3a and 3d, respectively, to -0.1 for both 3b and 3c.
2.6.4.  Activity profile of sultams

To explore the impact of rigidification/cyclization of the sulfonamide group of ligand 1 on
BACE1 and BACE2, compare the resulting ligands with biaryls without sulfonamide group, and
to find a future pharmacophore for the hot spot Asn233 (Leu246 in BACE2), we have tested two
ring sultams 4a and 4b. The six-membered sultam 4b is found to be about 11-fold more active
than five-membered sultam 4 and about 1.8-fold more active than ligand 1 at BACEL1. The five-
membered sultam 4a, on the other hand, was 12.6-fold more active at BACE2 than at BACEL.
An analysis of the binding modes of ligands shows that the SO, group in sultams point towards
the S2 site whereas the alicyclic ring is solvent-exposed (figure 8c). This predicted mode of
binding is very similar to the one that is observed in X-ray crystal structure of the 6-membered
sultam published during the preparation of this manuscript (PDB code: 2VNM). In 4b, one of the
SO, oxygen atoms forms a hydrogen-bond with backbone NH of Asn233 (N-O distance = 3.3 A,
N...H...O angle = 170°), whereas the other oxygen atom forms ion-dipole interactions with
epsilon nitrogen (NE) of Arg235 (distance = 2.8 A). Ligand 4a, owing to its constrained 5-
membered ring, forms weak hydrogen bond with Asn233 (N-O distance = 3.7 A, N...H...O angle

= 142°) and weak ion-dipole interactions with NE of Arg235 (distance= 3.7 A) and hence less
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active compared to 4b. Further, the cvdWSA in A% of 4a and 4b are 278 and 292 respectively.

The calculated logBB values of compounds 4a and 4b are similar to that of ligand 1.
2.6.5.  Activity profile of fused-ring compounds

Next, we synthesized a series of fused-ring compounds 5a-5c, 6a-6¢ which were
subsequently tested for inhibition of BACE1 (figures 8d and 8e). We synthesized and tested
three sets of regioisomers that differ by the size and position of the ring fused to the central
phenyl moiety. We found that the degree of lipophilicity and flexibility incorporated at P2 position
in 5a-5¢ and their regioisomers 6a-6¢ correlates with the BACEL inhibitory activity of the
ligands: (less lipophilic, less active) 5a < 5b < 5¢ (more lipophilic, more active) and similarly 6a
< 6b < 6¢. Upon docking using Gold under induced-fit mode, it was found that ligands 5c¢ and
6¢, containing the more flexible 7-membered ring, form better vdW contact with the enzyme as
compared with the ligands 5b and 5b, which contain only a moderately flexible 6-membered
ring. In contrast, ligands 5b and 6b possess more efficient vdW interactions with the binding site
than their 5-membered ring analogs 4a and 4a (figures 8d and 8e). The cvdWSA in A?
calculated under the induced-fit mode for 5a-5c are 183, 258, 266, whereas for compounds 6a-
6¢ itis 209, 197, and 227, respectively. The cvdWSA correlates with activity of compounds 5a-
5¢ but not 6a-6¢ suggesting that this parameter alone is not sufficient to explain the trend in

activity.

To find a plausible explanation for the difference in activity profiles of 5a-5¢ and their
regioisomers 6a-6¢, we analyzed the X-ray co-crystal structures of BACEL protein available in
Protein Data Bank. Two interesting observations result from this analysis. First, the group at the
P2 position appears to control the position of Arg235 through an induced-fit effect. Depending
on the steric bulk and electronic properties of the P2 substituent, Arg235 is forced to adopt

different conformations. The maximum change in the location of Arg235 was observed between
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1W51 and 2B8L with a deviation of 4.4A between the two guanidine carbon atoms in the Arg235
sidechain. Second, in those cases where the P2 has N-methylsulfonamide moiety (PDB codes:
1TQF, 2IRZ, 2B8L, 2IS0, 2NTR, 20AH, 2P4J, 2P8H, and 2PH®6), a conserved water molecule
mediates hydrogen bond between the sidechains of Arg235, Ser325 and GIn326. On the other
hand, if Arg235 changes its position as in 1W51 the water molecule is not observed in the
crystal structures. It appears that both observations are interconnected — those ligands
responsible for the movement of Arg235 also contribute to the displacement of the water
molecule and loss of the hydrogen bonds between this water molecule and residues Ser325,
Arg235 and GIn326. To account for the induced fit effect Arg235 was allowed to change
conformation during docking with Gold. Fused-ring compounds 5a-5¢ has an oxygen atom
locked in a position amenable for hydrogen bonding with side-chain NH, of Arg235. Our docking
experiments suggest that in order to facilitate this hydrogen bond, Arg235 must lose its contact
with water (WAT43 in 2B8L). Similar hydrogen-bonding interaction is not possible in
regioisomers 6a-6¢ because the ring precludes their contact with Arg235 and hence a near 2-
fold drop in potency compared to 5a-5c is observed. The calculated logBB is -0.3 for ligands 5a-
5¢ and -0.3, -0.4 and -0.2 for 6a-6c, respectively. It is improved compared to the ligand with the
sulfonamide moiety bound to S2 pocket. As with the other ligands in the biaryl and fused ring
series that according to the docking experiments require an induced fit, ligands 5a-c and 6a-c

did not show inhibition of BACE2.
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Figure 8. Gold docked poses of all fused-ring ligands in BACEL binding site

(a) Gold docked conformations of all ligands in BACE1 binding site. The P2 moieties are circled
yellow; (b) Biaryl compounds 3a-3d in BACE1 binding site; (c) Cyclic ring sultam compounds
4a-4b in BACEL binding site rendered as ribbon and tube representation. Residues Asn233 and
Arg235 are rendered as ball-and-stick representations; (d) Overlay of docked poses of ligands
5a-5c when side-chain flexibility of Arg235 is considered; (e) Overlay of docked poses of ligands
6a-6¢ when side-chain flexibility of Arg235 is considered; (f) Ligand 5e in BACEL1 binding site.
Different orientations of methyl group in Ala335 observed in X-ray crystal structure is rendered
as a ball-and-stick representation and circled in red for clarity.

2.6.6.  Activity profile of fluorinated compounds

Several publications have reported that fluorinated BACE1 inhibitors exhibited better
activity than the non-fluorinated ones due to increased lipophilicity.”® *® Unlike the compounds
described in these publications, both fluorinated compounds 5d and 5e are found to be less
active than non-fluorinated analogs 5b and 5c¢ by c.a. 5- and 12-fold, respectively. Ligand 5e

exhibits 2.8-fold better activity than 5d perhaps for the same reasons 5c is more active than 5a
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and 5b — larger area of contact with the binding site due to flexibility of the seven-membered
ring. To understand what could be the reason for overall lower activity of 5d and 5e compared to
their non-fluorinated analogs we visually inspected the crystal structures of BACEL with different
P2 substituents and found that the induced-fit effect of P2 affects the orientation of the methyl
group in Ala335 (Figure 8f). Of particular interest, the RMSD between CB atoms for crystal
structures 2P8H (P3 = p-fluoro-a-methylbenzylamino, P2 = N-methylsulfonamide) and 21QG (P3
= N, N-dipropanoyl and P2 = Me) is 1.2 A. Because of the proximity of the methyl group in
Ala335 and the fluorine atom in the BACEL inhibitors, any conformational changes in S2 may
result in mutual steric clashing. If an induced fit caused by the fused rings in series 5 and 6
takes place it may, indeed, affect the position of Ala 335 and explain the overall lower activity of
the fluorinated compounds 5d and 5e compared to their non-fluorinated analogs. The predicted

log BB values of 5d and 5e are almost the same as those of the non-fluorinated compounds.
2.6.7. Comparison of BACE1 and BACEZ2 inhibition profile

To find a possible explanation for BACE1 selectivity of the ligands we tried to compare
gualitatively the flexibility of the BACE1 and BACE2 proteins using their b-factors. A quantitative
comparison of the b-factors is not possible since there is large number of the same residues in
different X-ray structures of BACE1 proteins that differ in their b-factors depending on the co-
crystallized ligand. It is clear, however, that the flexibility patterns for the residues in the S2
pocket and adjacent to it areas of the BACE1 and BACEZ2 proteins are different, suggesting that

induced fit may play a role in an improved selectivity toward BACEL.
2.6.8. Effect of BACE1 inhibitors on APP processing

To investigate the effect of BACEL inhibitors on APP processing the most active ligands
5b and 5c were tested for reduction in AB4, production in mouse neuroblastoma cells (N2a)

transfected with Swedish mutant APP695 (figure. 9). Compounds 5b and 5c reduce ca. 65%
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and 35% of AB production, respectively, compared to the control. At the moment it is unclear
why almost equally active 5b and 5c exhibit 1.9-fold difference in reduction of AB40. It may be
related to their metabolic stability or delivery to the site of action. This observation is currently

actively investigated.

100+

75+

50+

25+

% of Ab40 production
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control 5b 5¢c

BACE1 inhibitor (10 uM)

Figure 9. Reduction of AB40 levels by BACE1 inhibitors detected in N2a cells stably transfected
with Swedish human APP

2.7. Conclusions

In summary, by using computer-aided drug design methods, we have designed,
synthesized, tested the activity of the fused-ring and biaryl compounds against BACE1, and
analyzed the resulting SAR using docking protocols. The fused-ring compounds are in general
more active than the biaryl-based ligands with an activity range from 56 nM to 998 nM. This is
comparable to the activity of the ligands with polar substituents occupying the S2 binding
pocket, which lends support for our initial hypothesis that the S2 site may be targeted with less
polar substituents. Most of the ligands displayed more favorable calculated logBB. The side-
chain flexibility of Arg235 and, perhaps, adjacent residues, and possibly the presence of a water
molecule mediating hydrogen bond interactions between Arg235, Ser325 and GIn326 in S2

appears to play an important role in accommodating the fused-ring and biaryl-based ligands in
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the binding site. The fused-ring ligands 5b and 5c combine the best attributes of acceptable
logBB, BACEL1 inhibitory activity, BACE2 selectivity, and ability to reduce the AB production. In
addition, the enthalpic optimization achieved by positioning oxygen atom amenable for h-
bonding with Arg235, and entropic optimization achieved by incorporating a constrained ring
that would undergo minimum conformation entropy loss during binding, makes compounds 5b
and 5c a successful example. The current work that describes computer-assisted design,
synthesis and screening of BACE1 inhibitors has been published.’® Finally, a similar structure-
guided molecular modeling approach may be used to explore other binding pockets of BACE1
to create new chemotypes for further development of therapeutics to treat AD and to serve as

general probes for drug discovery.



3. LIGAND-BASED MODELING OF BETA-SECRETASEL INHIBITORS
3.1. Introduction
3.1.1. Importance of 3D-QSAR in Drug Design

Despite the fact that the X-ray based SBDD has contributed to the discovery of a number
of drugs and late-stage clinical candidates, there exists some serious limitations: ambiguities in
identifying nitrogen and oxygenatoms, flexibility of ligand/proteins, induced-fit effects, scoring
accuracy, position of water molecules, effect of crystallization conditions on protein

conformation, etc.1%%103

In such cases, 3D-QSAR methods have proven to be a powerful
supplement to predict the binding affinity of an unknown compound. It is based on the simple
premise that medicinal chemists have known for several decades: compounds with similar
physical and chemical properties also have similar biological properties. The easy-to-use 3D-
QSAR method has resulted in several thousands of publications during the last decade itself (for

the most recent review, see references).’*+%

During the early stages, 3D-QSAR was
employed to predict the binding properties of focused structural analogs, however later
advancements such as pharmacophore modeling expanded the horizons to predict the binding

properties of diverse molecules.™®"*%®

One of the hot topics of debate in the field of CADD is whether 3D-QSAR is necessary if
one has the 3D-structure of the protein.’® Ambiguities in X-ray structures, time-intensive free-
energy perturbation calculations, approximations in force fields and electrostatic calculations,
inefficient parameterization of scoring functions have made 3D-QSAR an excellent, surrogate
method for the prediction of binding affinity of molecules. For a series of molecules and their
corresponding binding affinities (ICso or Kj), a 3D-QSAR equation may be derived in order to

forecast the binding affinity of unknown molecule(s) within the structural class. Like any

43



44

other methods, the 3D-QSAR methods do have limitations:*® (i) sensitivity of external dataset
prediction depends upon the nature of the bioactive conformation and alignment; (ii) influence of
basis set selection on predictive power; (iii) nature of molecular descriptors used in the study;
(iv) inability to extrapolate the model. Nevertheless, the role of 3D-QSAR methods in
combinatorial chemistry and high-throughput screening is continuously growing.'® In this
chapter, one of the powerful 3D-QSAR techniques, CoMFA, will be discussed in detail followed

by its applications in understanding the binding requirements of a series of BACEL inhibitors.
3.1.2. CoMFA - an introduction and overview

The inception of Comparative Molecular Field Analysis (COMFA) is traced back to the
days when Cramer and Milne made a first attempt to compare the molecules by aligning them in
space and mapping their molecular fields in a 3D grid.*® The technique has taken a full form
when the first COMFA application was published in predicting the binding affinity of steroids to
human corticosteroid and testosterone binding globulins. *** Since then over 1000 publications
have been reported worldwide that highlighted the improvement in methodology, scope and

applications of this technique (for review, see the references).'% 112113

The underlying idea of CoMFA is that differences in target property are often related to
differences in the shape of the non-covalent fields surrounding the tested molecules. The

following steps are required to derive a valid COMFA model:***

(i) selection of molecules for
training and test set. The major prerequisite in this step is that all the molecules included in the
dataset must interact with the same receptor in the same manner. Also, the biological activities
of the molecules must have been tested in identical conditions and the activity may span about
three or more log units of K; or ICsg; (ii) generation of multiple low-energy conformations of the

molecules in the dataset. The X-ray structure of the bioactive conformation of a ligand is a good

starting point. Some of the computational programs for the efficient, fast-generation of
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conformations are Omega, Tripos and MOE; (iii) Calculation of partial atomic charges of
molecules. The widely used charges are Gasteiger-Marsili, Gasteiger-Huckel, MMFF94,
AM1BCC; (iv) Alignment of molecules using a template ligand or a set of alignment rules. A
good alignment is the single most important requirement for doing a traditional CoMFA analysis.
The common substructure usually has the same conformation in all molecules, and other
remaining parts of the molecule are superimposed by adjusting the internal torsional angles.
Some of the widely employed alignment methods include FlexS, docking-based alignment,

database alignment, rapid overlay of chemical structures (ROCS),**®

etc.; (v) Placement of the
training set molecules in a three-dimensional grid to calculate the interaction energy using probe
molecules such as sp® carbon with a +1 charge. In this step, the interaction between the training
set molecules and the probe atoms at each grid point is calculated by calculating the magnitude
of the steric (Lennard-Jones) and electrostatic (Coloumbic) fields throughout the defined region.
(vi) Partial least-square (PLS) analysis of the calculated energy values and the descriptor values
to calculate the conventional r?, g° (cross-validated r?), standard error of prediction (SEP) in
order to identify the optimum number of components. (vi) Validation of CoMFA model by
predicting the activity of the unknowns. A good CoMFA model should show satisfactory
statistical significance, explanatory capability of the variance in the activity of the training set
and the predictive power of the potency of the new compounds.*** Once an acceptable COMFA

model is generated, then it can be manipulated using various graphic techniques such as

coefficient contour maps to understand the binding characteristics of the protein and the ligand.
3.1.3. Points to consider before CoMFA analysis

The application of any statistical method depends on a proper experimental design — in
this case, an appropriate selection of training set from which a QSAR model is derived and a
test set whose binding properties are to be predicted. When this is neglected in scenarios such

as biased dataset or including molecules containing diverse functionalities, severe problems can
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arise.'® Enough care must be taken such that the training set compounds should span at least
3 to 4 log units to obtain a meaningful model. The structures of training and test set compounds
should not be drastically different — usually congeneric series of ligands are preferred in order to

derive meaningful models.
3.1.4. Important concepts and their definitions used in QSAR analysis

The following are the some of the important concepts and definitions used in 3D-QSAR

analysis.

Correlation Coefficient (R?: A parameter which measures how closely the observed
data fits with the regression line. The value of R*falls between 0 and 1. An R? of 0 means there

is no correlation between observed biological activity and the parameters selected for the study.

Cross-validated R?(g%: A measure of "goodness of internal prediction”. If g> > 0.6, the
model is considered fairly good. If g*> = 0.4 — 0.6, the model is questionable. If g*> < 0.4, the

model is poor.
Predictive correlation coefficient (Rzpred): For test set,

55D — PRESS

R2pred =
pre S5D

where SSD = sum of squared deviations = ¥ [(target data value) — (target data mean)]?
PRESS = predictive sum of squares = % [(target data value) — (corresponding predicted

value)]?.

Leave One Out (LOO) method: A method to determine how accurately a model will be
able to predict data that it was not trained on. This is carried by training the model multiple times

using all but one of the training set data points. This method is commonly used for cross-
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validation analysis. Sometimes, leave-N-out method is also used where more than one data

points.

Bootstrapping: A validation method used in QSAR analysis to calculate the confidence

intervals (mean and standard deviation) for the parameters to be estimated.

Root mean square error (s): A measure of the target property uncertainty that is still
unexplained after deriving the QSAR equation. The magnitude of s is by the measurement scale

of a target property.

r PRESS
N
n—c—1

where n = number or rows and ¢ = number of components

QSAR eguation: An equation that describes prediction of a target property based on an

explanatory property, a set of coefficients and an intercept. For example,
Prediction = intercept + (explanatory1 * coeff1) + (explanatory2 * coeff2) + ...

Fisher Statistics (F-ratio or F-value): A weighted ratio of explain/unexplained target
property (R¥1-R?. A higher F-ratio in QSAR analysis is desired as this is an indication of

significantly greater ability of the QSAR model to predicting the targeting property.

Residual: The difference between actual and predicted value of a target property. A large

residual value means that that particular compound is not appropriately modeled.

Partial Least Square Analysis (PLS): A powerful tool for deriving multi-linear
relationships among columns of data. For a given data, PLS will look for linear expression
relating column variance in target properties (Y-block) to variations in explanatory properties (X-

block) so as to minimize the sum of squares of deviations from the model thus produced.
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Principal Component Analysis (PCA): A redundancy reduction mathematical procedure
that transforms a number of possible correlated variables into a smaller number of uncorrelated

variables called principal components.

3.1.5.  Scope of our study

The aim of the present study is to understand the SAR of BACEL1 inhibitors for which the
ICso values were measured in the same conditions. This analysis will help us not only to
elucidate the binding characteristics of the enzyme, but also to predict binding affinity of future

ligands.

3.2. Experimental Methods

3.2.1.  Overall scheme for CoOMFA analysis

The overall scheme for our CoMFA modeling analysis is shown in figure 10. Our strategy
to perform CoMFA analysis consists of the following steps: (i) filter ligands whose activity is
tested under identical conditions and sort them out in the training or test dataset; (i) minimize
the ligands and align them using ROCS; (iii) assign Gasteiger-Huckel charges; (iv) calculate
CoMFA field values; (v) PLS analysis and deriving statistical parameters; and (vii) generate

contour maps and explain the trend in activity.
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» Final model selected for further analysis to identify the structural
requirements for enzyme-ligand binding

Figure 10. Overall scheme of CoMFA modeling of BACEL1 inhibitors

3.2.2. Dataset for CoOMFA analysis

In the present work, a total of 51 BACEL1 inhibitors were selected for COMFA analysis.?*®*
117122 The general template for these compounds is illustrated in Figure 11. The reported
compounds albeit belong to a congeneric series showed variations in the nature of the
substituents and a broad inhibitory activity profile ranging from 2nM to 17 yM (4 logarithmic

units) thereby making this dataset ideal for performing 3D-QSAR analysis. Because the
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parameter g appears to be a necessary but not a sufficient condition for a model to have high
predictive power, an emphasis has been given in the current study for validation of the
developed models using an external test. Of the 51 compounds in the dataset, 44 of them were

randomly chosen as training set and the remaining 7 as test set (bold entries in Table 2).

S3

Series - |l S,

Series - |

. ;o Ry

: \/'\/N/'ﬁ\fRz

, i SH N PZ
Cs/ ) ,"O o . \@ (02N S,

S, P1

Series - |l

ZT

S;

Figure 11. Template of compounds and their corresponding BACEL1 interaction sites



51

3.2.3. Preparation of ligands

All our calculations were performed on a Linux workstation running Sybyl 9.0. The three-
dimensional structures of inhibitors were built starting from the X-ray structure of 2B8L, one of
the most active BACEL inhibitors. The X-ray structure of 2B8L ligand is used as a reference
ligand for future alignment purposes. Initial optimization of the structures was carried out using
the following settings: Tripos force field, BFGS method, gradient 0.0001 kcal/mol/A, Gasteiger-
Huckel charges and 5000 iterations. Conformational energies were computed with electrostatic

terms; the lowest energy structures finally minimized were used in alignment.
3.2.4.  Alignment methods for training and test dataset

The most crucial point in 3D-QSAR analysis is the alignment of molecules in the test
dataset because the CoMFA field values differ depending on the nature of the ligand pose. In
our study, we used a relatively new alignment methods called Rapid Overlay of Chemical
Structures (ROCS).*** In brief, ROCS performs fast, shape-based comparison based on the
premise that molecules have similar shapes if their volumes overlay well and any mismatch in
volume is a measure of dissimilarity. Prior to ROCS analysis, Gasteiger-Huckel charges were
assigned. In this method, a smooth Gaussian function is used to represent the molecular
volume in order to routinely minimize to the best global match. ROCS uses both shape and
chemistry (donor, acceptor, cation, hydrophobicity, etc.) to identify the conformations that
matches with the reference ligand. The best 3D overlay of each molecule in the data set,

obtained using ROCS, was used as an input for CoMFA calculations.
3.2.5. Biological Activity (IC50) and pIC50 calculations

The biological activity of BACE1 inhibitors used in our calculations was tested in identical

conditions.?*® 117122 The |C;, values were converted into plCs, using: plCso = -log 1Cso.
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3.2.6. Parameters for COMFA analysis

The CoMFA calculations were carried out by applying the default settings in the Sybyl
program. To derive the CoMFA descriptor fields, a 3D cubic lattice with grid spacing of 2A in x, y
and z were created to encompass the aligned molecules. CoMFA descriptors were calculated
using an sp® carbon as a probe atom with a van der Waals radius of 1.52 A and a charge of
+1.0 to steric (Lennard-Jones 6-12 potential) field energies and electrostatic (Coulombic
potential) fields with a distance-dependent dielectric energy values at each lattice point were

truncated at a default value of 30 kcal/mol.
3.2.7. Partial least-square (PLS) calculations and validations

To derive the 3D-QSAR, a partial least-square analysis (PLS) approach was used. The
calculated CoMFA molecular fields were used as independent variables and plCs, as dependent
variable. The optimal number of components was determined using cross-validation and leave-
one-out method. To speed up the calculations, columns with values below 2.0 kcal mol™* were
filtered off, i.e., those columns (lattice points) whose energy variance is less than 2.0 kcal/mol is
omitted from the analysis. The cross-validated R? (g% that resulted in optimum number of
components and lowest standard error of prediction were taken for final analysis to
calculateRzpred, F-value and standard error of estimate (SEE). To further assess the robustness

and the statistical confidence of the derived model, boot strapping analysis was performed.
3.2.8. CoMFA contour maps

The CoMFA contour maps were generated as a scalar product of coefficients and
standard deviation associated with each column. The favored and disfavored levels are fixed at
80% and 20%. Various colored fields are produced during visualization of CoMFA analysis. In

CoMFA contour maps, the steric fields are shown in green (more bulk favored) and blue (less
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bulk favored), whereas the electrostatic field contours are displayed in red (electronegative

substituents favored) and blue (electropositive substituents favored).
3.3. Results and Discussions

The purpose of 3D-QSAR studies using CoMFA is to build statistical and graphical models
in order to relate the properties of molecules (for example, ICso) to their chemical structures.'®
The statistical tools in 3D-QSAR include principal component analysis (PCA or factor analysis)
for uncovering relationships between descriptors, partial least squares (PLS) regression in order
to analyze continuous regression data (ICsy, K, etc.). Bootstrapping and cross-validation
techniques are used at the later stages of the analysis in order to test the predictive power of
the 3D-QSAR model, to diagnose chance correlation and to ensure the robustness of a model.
In 3D-QSAR analysis using CoMFA, the data and the results of the statistical analyses can be
displayed as scatter plots, distributions or histograms for improved understanding. Several
publications have been reported that highlights the success of CoMFA. A 3D-QSAR model built
using CoMFA can be used not only to predict the binding affinity of the unknowns but also as an
aid during lead optimization/design process.*** 2113123126 A tynical COMFA analysis requires
about 20 to 60 chemical compounds that meet the following requirements: (i) all the ligands bind
to the same receptor in the same binding pocket in the same binding mode; (ii) the biological
activity of these compounds must have been tested under identical conditions; (iii) ligands
should be a part of a congeneric series and thus must be efficiently aligned; (iv) the compounds
used in the dataset should have diverse functionalities and must display a broad activity range
(at least 3 or more logarithmic units). In a typical 3D-QSAR analysis, a potent ligand is used as

a template for aligning the remaining ligands in the database.

In the current study, 51 hydroxyethylamine-, amine-, hydroxyl-derived BACEL inhibitors

has been used. All these inhibitors not only bind to the catalytic site of the enzyme BACEL, but
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also display similar binding modes (based on X-ray data of the representative candidate
ligands). The ICs, values of these inhibitors are measured using identical conditions. For
simplification purposes, these 51 BACEL inhibitors were divided into three series: Series — |
comprises hydroxyethylamine derivatives, Series — Il comprises of primary amine or hydroxyl
derivatives and Series Il comprises of 2° amine derivatives. Overall, all these inhibitors display
diverse functionalities including polar, hydrophilic, hydrophobic, bulk groups. Further, the pICsg
of these inhibitors range from 4.76 to 8.7 (about four logarithmic units) thereby making these
inhibitors an ideal dataset for 3D-QSAR analysis. Table 2 lists the compounds chosen for our
study. Once the 3D structures of these inhibitors have been built, they have been randomly
divided into training and test set (entries in bold in Table 2) and proceeded for alignment. In the
present study, we used a relatively new alignment tool called ROCS that takes into account both
shape and chemistry during superposition of molecules. For alignment purposes, the X-ray
crystal structure of compound 38 has been used as a reference. The output conformations of
ROCS were ranked according to their similarity with the template molecule using Tanimoto
Coefficients. Every conformation of the inhibitors is then visually analyzed to identify the best
conformer for CoMFA analysis. Figure 12 shows the alignment of minimized conformations of

compounds in the CoMFA dataset generated using ROCS.
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Figure 12. ROCS alignment of compounds used in training and test dataset

3.3.1. CoMFA statistical analysis

The correlation between experimental and predicted ICs, values of both training and test
dataset used for CoMFA analysis is shown as a scattered plot (Figure 13) and tabulated in
Table 2. The best COMFA model yielded R%yy = 0.97, R’cy = 0.64, R% o0 = 0.67, SEE = 0.154, F
= 287.219 and NOC = 7. The fact that the residual values of the training set compounds is
within £ 0.4 pICsy represents the goodness fit of the QSAR model. The ultimate test for the
predictability of a CoMFA model in the drug design process is to predict the biological activity of

compounds in the test dataset. In our study, the predictive power of the CoMFA model for the
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external dataset, calculated using Microsoft Excel based on the statistical parameters generated
using CoMFA analyis (Rzpred) was found to be 0.74. Thus, our CoMFA model displays higher
predictivity both in regular cross-validation as well as in the prediction of test set compounds
indicating the robustness of the model. Furthermore, the statistical validity and the stability of
the CoMFA model was assessed by performing bootstrap analysis for 10 runs. An R%, value of
0.99 is a strong indication of the predictive power of our 3D-QSAR model. Finally, the ratio of
steric to electrostatic field contributions was found to be 65.8: 34.2 indicating the dominance of

steric contribution.

Table 2 lists the experimental, predicted and the residual I1Cs, values of both the training
and test dataset used for our CoMFA analysis. The histogram of residual values for the test
molecules for CoMFA is shown in Figure 14. Compound 34 is predicted to have a maximum
residual value. Inspection of aligned poses revealed that the 34 has a cyclopentanoyl group, a
small size group compared to the bulky P3 group in the template compound 38. As mentioned
in Chapter 2.3, the S3 site of BACEL can adopt different conformations depending upon the
nature of the P3 substituents. Both small and bulky P3 groups can be successfully
accommodated and was shown to possess nM activity. For example, compound 36 has a

smaller P3 group, yet better activity (ICso = 35 nM).
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Figure 13. Graph of actual vs. predicted activities of our best CoMFA model
obtained for: (top) training dataset; (bottom) test dataset
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Figure 14. Histogram of the residual values of test set compounds obtained for our
CoMFA model

3.3.2.  CoMFA steric contour maps

The 3D-QSAR contour maps from CoMFA analysis of BACEL inhibitors in the training
dataset illustrate clearly the steric and electrostatic requirements for ligand binding. It also tells
how the variation in the physiochemical interactions (steric and electrostatic) of the training set

compounds with the enzyme improves or decreases the activity.

In the CoMFA steric contour maps, the favorable areas that can accommodate more bulk
are indicated by green contours and the unfavorable steric areas in yellow. In figure 15,
prominent green contours present at the vicinity of the P3 and P1’ and P2’ positions and a
smaller green contour present at the P1 position indicate that steric bulk is favored at these
positions. This is consistent with the experimental results: for example, in series-1, the smaller
size of P3 in compound 24 (ICs, = 980 nM) is responsible for 10-fold less potency compared to
the bulky P3 position in compound 39 (ICs, = 10 nM). Interestingly, the most active members,

compounds 51 and 64 (ICs, = 2 nM) have less bulky steric substituents and are about five-fold
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more active than 39. This is because the residues 9-14 forming the S3 site (10s loop) of BACE1
is believed to exist in two or more conformations depending upon the size of the P3
substitutents and h-bonding with Thr232.%* Ligands with a bulky P3 moiety modulate the
enzyme and binds to it in an “up” conformation, whereas the ligand that has a smaller P3 moiety
binds and binds to a “down” conformation. Compound 38 makes tight vdW contact with the ‘up’
conformation of the BACE1 whereas compounds 51 and 64 binds to the “down” conformation of
the enzyme but still maintains tight vdW contacts. The two green contours present at the P3

positions is a reflection of two different classes of P3 substituents.

The prominent green contours present at the P1’ position parallels the trend observed in
experimental activities as a result of altered steric bulk. For example, in series |, compound 41
(R4 = H, ICso = 23 nM) is about 1.5-fold less active than compound 39 (R4 = cyclopropyl, ICso =
10 nM). Similarly, for series lll, as the size decreases from compounds 65 to 68, the activity
increases: 65 (H, 117 nM), 66 (Me, 8 nM), 67 (Et, 7 nM) and 68 (n-Pr, 4 nM). Improved steric

bulk at the P1’ position favors inhibitory activity.

In series 1ll, compound 66 with the bulky isobutyl substituent at the P2’ position has a
better activity (ICso = 8 nM) compared to the ethyl (71, 52 nM) or cyclopropyl (72, 24 nM). This is

consistent with the green contour present at the S2’ site.

There is also a large yellow polyhedron at the P2’ site which means steric bulk is
unfavorable at this region. Inspection of compounds 73 and 74 revealed that the P2’ groups of
these compounds, N-benzyl and carboxy group of the prolyl moiety, respectively, are embedded
in this unfavorable yellow contour region. Thus, the prediction from our CoMFA model that an
increase in steric bulk in this yellow region leads to decreased activity is consistent with the low

activity of 73 (139 nM) and 74 (17200 nM) compared to 72 (24 nM).
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Figure 15. CoMFA steric contour map with the most active compound 51. Green and
yellow polyhedra indicate regions where more steric bulk or less steric bulk,
respectively, will enhance the activity

3.3.3.  CoMFA electrostatic contour maps

In the CoMFA electrostatic maps, blue contours indicate the regions where electropositive
groups increase activity, whereas the red areas indicate the regions where electronegative
regions increase activity. The electrostatic contour map of our CoMFA model with the most

active compound 51 is shown in figure 16.

Majority of the compounds in our dataset, including the most active compounds 51 and
64, has a 1° or 2° nitrogen at the P1’ that perfectly entrenched into the positive charge favored
blue contour region. It has been shown in X-ray analysis that these positively charged 1° or 2°

nitrogen bind to the catalytic aspartic acid present in the binding site.
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Interestingly, the negatively carboxylic acid moiety (P2’ position) of compound 74 lies on
the blue contour where positively charged moiety is preferred. This mismatch in electrostatic
complementarity is one of the contributing factors for the poor activity of compound 50 in

addition to the steric hindrance.

The red contour in the vicinity of the P2 and P3 positions signifies the preference for
electronegative groups at this region. Consistent with this, compounds 38 to 45 that contains
electronegative oxygen (from keto group at R,) display better activity. From the X-ray crystal
structure analysis, it was found that these keto oxygen atoms indeed hydrogen bond with Thr-

232 in the BACEL binding site.

Similarly, the red contour present the vicinity of P2 and P1 position is consistent with the
presence of oxygen atom, which indeed was reported to bind to the backbone NH of GIn73.% All
the compounds in the dataset have oxygen at this position which is believed to be responsible

for activity.

The presence of oxygen at the vicinity of the P2’ position in compounds 65 to 74 is
reflected in the red contour map. Indeed, this oxygen is believed to engage in hydrogen bonding

with the NH backbone group of Thr72.%
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Figure 16. CoMFA steric contour map with the most active compound 51. Green and
yellow polyhedra indicate regions where more steric bulk or less steric bulk,
respectively, will enhance the activity

3.3.4. CoMFA electrostatic contour maps

In the CoMFA electrostatic maps, blue contours indicate the regions where electropositive
groups increase activity, whereas the red areas indicate the regions where electronegative
regions increase activity. The electrostatic contour map of our CoMFA model with the most

active compound 51 is shown in figure 16.

Majority of the compounds in our dataset, including the most active compounds 51 and
64, has a 1° or 2° nitrogen at the P1’ that perfectly entrenched into the positive charge favored
blue contour region. It has been shown in X-ray analysis that these positively charged 1° or 2°

nitrogen bind to the catalytic aspartic acid present in the binding site.
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Interestingly, the negatively carboxylic acid moiety (P2’ position) of compound 74 lies on
the blue contour where positively charged moiety is preferred. This mismatch in electrostatic
complementarity is one of the contributing factors for the poor activity of compound 50 in

addition to the steric hindrance.

The red contour at the vicinity of the P2 and P3 positions signifies the preference for
electronegative groups at this region. Consistent with this, compounds 38 to 45 that contains
electronegative oxygen display better activity. From the X-ray crystal structure analysis, it was
found that these oxygen atoms indeed hydrogen bond with Thr-232 present at the BACE1

binding site.

Similarly, the red contour present the vicinity of P2 and P1 position is consistent with the
presence of electronegative oxygen atom, which indeed was reported to bind to the backbone
NH of GIn73.%° All the compounds in the dataset have electronegative oxygen at this position

which is believed to be responsible for activity.

The presence of electronegative oxygen at the vicinity of the P2’ position in compounds
65 to 74 is reflected in the red contour map. Indeed, this oxygen is believed to hydrogen bond

with the NH backbone of Thr72.%°
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Figure 17. CoMFA electrostatic contour map with the most active compound 51.
Blue contours indicate regions where electropositive groups increase activity, whereas
red contours indicate regions where electronegative groups increase activity
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58 Me (CH)s | (R)-CH,OMe Me Ph NH, 6 8.22 8.27 -0.05

OMe
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59 Me H H Me Ph OH 1100 | 5.96 5.80 0.16
60 Me H H i-Pr Ph OH 14 7.85 7.669 0.18
61 Me H H Me Ph NH, 34 7.47 7.53 -0.06
62 Me Me MeOCH, Me Ph NH, 12 7.92 7.91 0.01
63 Me Me CH,F i-Pr Ph NH, 18 7.74 7.84 -0.10
64 Me H CH,F i-Pr Ph NH; 2 8.7 8.52 0.18
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Series Il

S.No R, ICso (NM) ICso Residual
Actual CoMFA
65 H 117 6.93 7.29 0.36
66 Me 8 8.1 8.01 0.09
67 Et 7 8.15 7.96 0.19
68 n-Pr 4 8.4 8.15 0.25
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69 -CH,CH,0OH ef\ 13 7.89 8.05 -0.16
N
H/\(
70 -CH,CH,SO,Me ef\ 13 7.89 7.90 -0.01
N
H/\(
71 Me NHEt 52 7.28 7.35 -0.07
72 Me NHc-Pr 24 7.62 7.3 0.32
73 Me NHBn 139 6.86 6.79 0.07
74 Me Proline 17200 4.76 4.83 -0.07

Table 2. Structures and activities of BACE1 inhibitors used in CoMFA modeling. Test set compounds are highlighted
in bold.
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3.4. Conclusions

The application of 3D-QSAR models for the prediction of binding affinity, hit-to-lead
optimization, and evaluation of toxicity is continuously emerging. In the current study, a 3D-
QSAR CoMFA model was developed using a diverse set of BACEL inhibitors that displayed a
broad range of potency. This study further enhances our current understanding of BACE1
inhibitors implicated in the treatment of Alzheimer’s disease. The main conclusions emerged

from this study are:

The reported 3D-QSAR models are statistically significant thereby demonstrating a sound
SAR for inhibitors that bind to the catalytic site of BACE1. For CoMFA analysis, the statistical
parameters are: R’y = 0.98, R%cy = 0.64, R’ oo = 0.67, SEE = 0.154 and F = 287.219. This
high statistical significance illustrates that these diverse inhibitors share structural
commonalities important for binding to BACELl. This model should be useful for the

identification, design and development of potential BACE1 inhibitors.

The BACEL1 binding site regions derived from the CoMFA analysis are consistent with the
physical structure of the BACEL ligand binding site as explained in the discussion section. The
CoMFA contour map correctly identifies the impact of more/less bulk group or

electropositive/electronegative groups on the ICs values.

We demonstrated that the CoMFA model generated in this study has good predictive
capability with low residuals to estimate the BACE1 binding affinity of an external test set. We
would like to point out that the best CoMFA model generated for the current training and test
dataset can be further refined by scrambling the compounds to increase the activity range of the

test dataset.
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