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SUMMARY 

Understanding the binding of ligands to macromolecular targets of pharmacological 

relevance is an essential step for effective drug-design. The scenario gets complicated when 

small molecules bind to a target that is both solvent-accessible and flexible. Structural 

snapshots provided by experimental techniques namely X-ray and NMR are very useful to deal 

with targets that are not very labile by providing only the long-lived and more populated (low 

energy states) snapshots of binding partners. However, these techniques have limited scope 

when plasticity of the ligand-binding site has to be accounted for.  In those cases, fast 

computational procedures have found to be a powerful supplementary tool to fill the paucity of 

information on receptor flexibility. 

The two most commonly used computational methods in drug design are structure-based 

(SBDD) and ligand-based drug design (LBDD). The former method capitalizes on the structure 

of the biological target, knowledge of binding site and structure of co-crystal ligand obtained 

using either NMR or X-ray in order to predict the biological activity of the newly designed ligand. 

Whereas in the cases where it is difficult to obtain knowledge about the 3D structure of the 

protein, its binding site or the co-crystal ligand, LBDD is employed starting from the computer-

generated 3D model of the active ligand which is generally used as a template to design new 

ligand whose binding affinity is forecasted before synthesis and development. There are cases 

where the 3D structure of the active ligand is available through X-ray or NMR, yet computational 

chemists performed LBDD to gain deeper insights that are otherwise difficult to obtain using 

SBDD method.  

In this PhD dissertation, well known SBDD methods such as protein modeling, de novo 

ligand-design and molecular docking, and a well-known LBDD method, namely 3D-QSAR 

CoMFA has been used to gain deeper insights about the binding site of the enzyme β-secretase  



 
 

xvii 

SUMMARY (Continued) 

(BACE1), the structure-activity relationship of its inhibitors, the predicted in silico blood-brain 

barrier profile (log BB), side-chain flexibility of the BACE1 binding site, and the steric and 

electrostatic characteristics of BACE1 inhibitors.  

In Chapter 1, a brief introduction to Alzheimer‟s disease (AD) is presented. Very little is known 

about the etiology of AD, even though this disease was first diagnosed about 100 years ago. 

However, extensive research work carried out during the past few decades delineated the 

mechanism and understanding of production of amyloid plaques (Aβ) through the processing of 

membrane-bound amyloid precursor protein (amyloid pathway) by a set of secretases (β- and γ-

secretase). Because the enzyme BACE1 is the rate-limiting step in this vicious cascade, it is 

considered to be one of the key targets for the therapeutic development of AD. The target 

BACE1 has been independently validated using several animal model studies. 

The three-dimensional structure of BACE1 was immediately obtained since its isolation in 

1999 by six different research groups. The first co-crystal structure of BACE1 bound to an active 

ligand (OM99-2), solved in the year 2000 by Hong et al., has provided the knowledge of BACE1 

binding site, location and importance of catalytically active aspartic acid and other key residues 

required for inhibitor-design. The key challenges in BACE1 inhibitor-design has also been 

pointed out – very large active site, solvent-exposed regions, flexible binding site and 

importance of crossing blood-barrier in order to render the therapeutic effect. Despite these 

challenges, a BACE1 inhibitor (CTS-21166) has successfully completed Phase IIa clinical trials.  

The beginning of Chapter 2 briefly summarizes the key SBDD methods that have been 

widely employed today, and examples of certain key drugs that resulted out of this method. 

Because previous knowledge of structural flexibility was available through perusal of literature, 

we attempted to superimpose various X-ray crystal structures of BACE1 publicly available in 
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SUMMARY (Continued) 

protein databank. We particularly inspected the BACE1 S2 binding site because our preliminary 

modeling calculations and literature analysis suggests that the flexibility of this region is 

unexplored from drug discovery perspective.  

Our hypothesis to design novel BACE1 ligand-scaffolds was: “selectively targeting 

charged amino acid residues present in the solvent-exposed flexible binding site would result in 

novel ligand scaffolds”. We proposed a three-step procedure to achieve our goals: (i) identify 

potentially flexible amino acid residues in the BACE1 S2 binding site, and develop and validate 

a computational procedure to design novel inhibitors that would target this residue; (ii) design 

novel inhibitors that target the flexible residue identified above and prioritize them for synthesis 

and biological tests; (iii) perform synthesis, biological testing and derive SAR of the novel 

scaffolds and test its consistency with the proposed hypothesis. Because the enzyme BACE1 is 

expressed in brain, we calculated log BB for all our novel inhibitors in order to compare the 

relative efficacy of these compounds in crossing the blood-brain barrier. As outlined in the first 

step above, superimposition of BACE1 PDB structures and further inspection on the S2 region 

revealed that Arg 235 undergoes greater flexibility compared to other residues such as Asn 233 

and Ser 325 thereby making this residue ideal candidate for ligand targeting. The fact that the 

side-chain of Arg 235 has a positively charged guanidine group opens up the possibility of 

targeting ligands that can form directional, electrostatic interactions.  

In order to design novel ligand scaffolds, the active ligand, compound 1, reported by 

Stachel et al., was used as a template to probe the BACE1 S2 site.  Using the software 

RACHEL (Real-time Automated Combinatorial Heuristic Enhancement of Lead compounds), 

novel ligand scaffolds were generated, docked (first using the tool FlexX and later using GOLD), 

and prioritized for synthesis.  
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Using standard organic chemistry reactions, we synthesized simple substituents (such as 

hydroxyl, methoxy, etc.), aryls, biaryls (such as phenyl, heteroaromatic), sultams and fused-ring 

compounds and were tested for its BACE1 inhibitory activity in a cell-lysate assay. Simple 

substituents fail to make good van der Waals (vdW) contacts with the residues in the S2 site 

and hence displayed poor activity. Aryl substituents too displayed poor inhibitory activity and we 

reasoned that these bulky substituents, under equilibrium conditions, have the tendency to 

collide with the nearby residues thereby rendering the enzyme-inhibitor complex unstable.  

The analysis of fused-ring compounds provides interesting observations as well as strong 

evidence for our hypothesis. Prior to this, we characterized these compounds using 2D-NMR 

techniques (COSY, HSQC and HMBC). Between the isomers, 5a-5c or 6a-6c, we found that the 

degree of lipophilicity and flexibility incorporated at the P2 position correlates well with the 

BACE1 inhibitory activity, with 5c and 6c being more active. Based on the Gold docking results, 

we reasoned that this is due to the enhanced flexibility of the 7-membered ring and the vdW 

contacts that it forms with the residues in the S2 site. 

To account for the biological activity difference between the regioisomers 5a-5c compared to 

6a-6c, we employed side-chain flexibility of Arg235 during GOLD docking. Visualization of 

poses suggests that the regioisomers 5a-5c has an oxygen atom locked in a position amenable 

for hydrogen bonding with side-chain NH2 of Arg235 and hence offers a better BACE1 activity 

compared to the regioisomers 6a-c. The synergistic combination of flexibility, lipophilicity, ability 

to form electrostatic interactions with Arg235 and improved vdW contacts with residues at the 

S2 site makes the fused-ring compounds 5a-5c a much better candidate series compared to 6a-

6c. In addition, these results provide strong evidence to our hypothesis that it is advantageous 

to target the positively charged Arg235 at the BACE1 S2 site to design novel ligand scaffolds. 
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SUMMARY (Continued) 

When mouse neuroblastoma cells (N2a) are treated with active BACE1 inhibitors 5b and 

5c, a reduction in Aβ40 production, ca. 65% and 35% respectively, compared to the control, was 

observed. Thus, our SBDD method pursuits to probe the S2 site of BACE1 resulted in the novel 

ligand scaffolds with improved inhibitory activity and a better log BB value.  

The application of 3D-QSAR CoMFA method to understand the binding characteristics of 

BACE1 inhibitors is the focus of Chapter 3. The principle of CoMFA, the prerequisites, and the 

key statistical parameters used in the study are also discussed. Our strategy to perform CoMFA 

analysis consists of the following steps: (i) filter ligands whose activity is tested under identical 

conditions; (ii) assign charges; (iii) align molecules using ROCS; (iv) calculate CoMFA field 

values; (v) PLS analysis and deriving statistical parameters; and (vii) generate contour maps 

and explain the trend in activity. 

Our CoMFA analysis dataset consist of 51 compounds – 44 training set and 7 test set 

compounds.  Statistical analysis using PLS method yielded R2
NV = 0.98, R2

CV = 0.64, R2
LOO = 

0.67, SEE = 0.154, F = 287.219 and NOC = 7. The predictive power of the CoMFA model for 

the external dataset (R2
pred) was found to be 0.74 and was in excellent agreement with the 

BACE1 binding characteristics. The ratio of steric to electrostatic field contributions was found to 

be 66:34 indicating the dominance of steric contribution. This high statistical significance 

illustrated that these diverse inhibitors share structural commonalities important for binding to 

BACE1. We strongly believe this model should be useful for the identification, design and 

development of novel BACE1 inhibitors. 
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1. INTRODUCTION 

1.1. Background 

The holy-grail of medicinal chemistry is the design and development of small molecules 

that can act as suitable drugs with minimum side-effects and maximum efficacy. Since enzymes 

are one of the important classes of drug targets, understanding the binding of small drug 

molecules to enzymes of pharmacological relevance is considered an essential step for 

effective drug-design.  Even though the concept of drug-design has been used since 1910 

during the time of Paul Ehrlich and Sacachiro Hata, who produced the antiprotozoal 

arsphemamime,1  the three-dimensional (3D) structure of macromolecular target was not 

considered due to non-availability of sophisticated techniques. In fact, the first few X-ray crystal 

structures were solved in late 1950s and early 1960s for the enzymes myoglobin and 

hemoglobin.2-5  Not only their findings helped understand the “tensed” and “relaxed” forms of 

hemoglobin (depending on its oxygenation status), but it also opened up a new avenue of 

research in medicinal chemistry – target flexibility. Multiple studies conducted later on proved 

the fact that enzymes indeed are flexible structures and can adopt different conformations on a 

wider range of scales, both in time and space, depending upon various conditions such as the 

presence of substrate, inhibitor, water molecules, cofactors, ions, etc. (for review, see 

reference).6 However, the concept of target flexibility is still underutilized in drug design methods 

primarily due to inadequate computational tools and difficulty in modeling intrinsic protein 

flexibility.7   

1.2. Role of molecular modeling methods in drug design 

Classical drug discovery widely relied on atomic information extracted from X-ray and multi-

dimensional NMR techniques. The „time-averaged‟ static snapshots provided by these powerful 

techniques played an instrumental role to design and develop various drugs that do not require
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details about target „plasticity‟. However, emerging evidence posits the consideration of target 

flexibility during in drug design. In situations where the structural information obtained from X-

ray and NMR are not sufficient enough, molecular modeling techniques have been found to be a 

powerful supplementary tool.8-14   

Various modeling techniques have been successfully adopted to address the target 

flexibility, including: (i) molecular docking to an ensemble of protein structures – to predict the 

binding mode of putative ligand in a flexible binding site,6  (ii) molecular docking that 

incorporates induced-fit; (iii) molecular dynamics – a procedure to obtain more complete set of 

protein conformers, especially those that are relatively high energy and undetectable,15  (iv) 

dynamic pharmacophore modeling,16  and (v) fragment-based computational solvent mapping.17   

One of the critical points to consider while targeting flexible regions is the enthalpy-entropy 

compensation phenomenon. The well-known Gibbs‟ free energy equation suggests that 

improving the enthalpic and/or entropic contributions results in favorable binding of small 

molecule binding to the protein, as long as these contributions are not counteracted by the 

opposite entropic or enthalpy changes. In brief, enthalpic optimization is achieved by positioning 

the h-bonding donor/acceptor groups for optimal interactions with the binding residues. 

However, if the structuring of these h-bonding groups inside the binding pocket result in 

significant loss of conformational entropy, then the binding enthalpy is compensated resulting in 

unaltered/reduced binding affinity. Thus, judicious incorporation of h-bonding groups in a 

conformationally constrained system is a crucial step to improving the binding affinity. On the 

other hand, entropic optimization is achieved by increasing the hydrophobicity of the ligand 

molecule and the enthalpic penalty in this case is profound. It is therefore believed that enthalpic 

optimization is a relatively difficult task compared to entropic optimization during design and 

development of high-affinity ligand molecule.18   
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Currently available state-of-the art computational programs have the ability to perform one 

or more of the modeling calculations described above. A body of literature is available where all 

these five approaches have been successfully applied.  

For example, Huang et al. successfully validated a fast ensemble docking algorithm on 10 

protein ensembles of 105 crystal structures and 87 ligands.19  A success rate of about 93% was 

obtained with the criterion of root mean square deviation <2.5 Å if the top 5 poses of each ligand 

were considered. Sherman et al. applied the induced-fit docking protocol for 21 diverse flexible 

receptors and found that the RMSD is ≤ 1.8 Å for 18 cases.20  Novak et al. applied molecular 

dynamics simulations and free-energy calculations to explore the role of ligand-induced 

conformational changes in modulating the activity of three generations of Bcl-XL inhibitors.21  In 

addition to the excellent agreement between predicted and measured binding affinities, they 

also pointed out the role of Asn100 in the binding site that forms stabilizing interactions with the 

ligand. Deng et al. developed a dynamic receptor-based pharmacophore model using a series 

of representative conformations of HIV-1 integrase (HIV-IN).22  Conformations of the target were 

sampled through a molecular dynamics study of the catalytic domain of HIV-IN monomer and an 

ensemble of representative structures were collected via a probability-based representative 

conformer sampling method that considers both the potential energy and structural similarity of 

the protein conformations. This method was validated using a set of 128 known inhibitors with a 

72% success rate. Application of this model resulted in inhibitors with significant improvement of 

binding affinity from high mM to low micromolar range. Sheu et al. applied the concept of 

computational solvent mapping to explore the “hot spots” of PPARγ ligand-binding domain by 

moving six solvent probe molecules (acetonitrile, methanol, t-butanol, urea, acetone, phenol and 

2-butanol) around 12 receptor structures including two structures without ligand, two structures 

bound to a partial agonist and the eight structures bound to PPARγ agonist.23  Their analysis 

revealed ten binding “hot spots”, four in the ligand-binding pocket, two in the coactivator-binding 
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region, one in the dimerization domain, two around the ligand entrance site, and one minor site 

without a known function. Along the lines of the docking method discussed above, we 

developed a strategy to target solvent-exposed flexible binding sites of interest to design novel 

scaffolds.  

1.3. Solvent-exposed, flexible biological targets 

Targeting flexible binding site becomes even more complicated when the target in 

question is membrane-bound and solvent exposed. To the best of our knowledge, targeting 

membrane-bound, solvent-exposed, flexible binding sites is not explored and understood as 

well as targeting the buried ones, however, the modeling approaches described earlier can be 

applied to this case as well.24  Some of the key therapeutically relevant targets containing 

solvent-exposed flexible binding-site and the corresponding diseases that they are linked to are 

as follows: (1) β-Secretase 1 (Alzheimer‟s disease),25  histone deacetylases or HDACs (cancer, 

inflammation and neurodegeneration),26  Bcl-XL system (cancer),27  glutamate racemase (anti-

microbial target),28  tyrosine kinase receptor (cancer),29  G-protein coupled receptors (wide-

variety of physiological processes including visual sense, smell, mood behavior, regulation of 

immune-system, inflammation, and other diseases),30  estrogen receptors (aging, cancer, 

obesity, and other diseases).31   

In this PhD dissertation, emphasis will be given to structure- and ligand-based modeling of 

BACE1, a target for Alzheimer‟s disease therapy. A brief summary of Alzheimer‟s disease, 

BACE1 and its biological significance is due before discussing the computational modeling of 

BACE1 and its inhibitors. 

1.4. Alzheimer’s disease  

Dementia is the disease characterized by the decline of reasoning, memory and other 

cognitive abilities. As the disease progresses, it results in impaired ability to perform everyday 
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function such as driving, household chores, and even personal care such as bathing, dressing, 

and feeding. There are over ten different types of dementia reported thus far: (i) vascular 

dementia; (ii) mixed dementia; (iii) dementia with Lewy bodies; (iv) Parkinson‟s disease; (v) 

fronto-temporal dementia; (vi) Creutzfeldt-Jacob dementia; (vii) normal pressure hydrocephalus; 

(viii) Huntington‟s disease; (ix) Wernicke-Korsakoff syndrome; (x) mild cognitive impairment. 

Among these types of dementia, AD, which normally follows mild cognition impairment, is 

considered to be the major type.32   

AD was named after the German physician Dr. Alois Alzheimer. The disease was first 

diagnosed in a patient named Ms. Auguste D on April 8, 1906 after she died. Upon inspection of 

her brain, Dr. Alzheimer noted three major pathological features: (i) extracellular neuritic 

plaques; (ii) intracellular neurofibrillary tangles (fibrils) and (iii) loss of synapse. The findings 

were first reported by Dr. Alzheimer in a lecture he gave for South German neuropsychiatrists, 

entitled “Ueber eine eigenartige Erkrankung der Hirnrinde” or (About a remarkable illness of the 

cerebral cortex) on November 3, 1906.33   

AD is a progressive, irreversible, brain disorder characterized by neurological and 

behavioral disabilities associated with the production of plaques and tangles, synaptic loss and 

neuroinflammation.34  Over 5.3 million Americans are currently affected by this devastating brain 

disease and the worldwide AD patients exceed over 16 million.35 AD puts a vast economic 

burden on the society costing $172 billion annually in USA. The two greatest risk factors for AD 

are age and genetics. The occurrence of this disease increases with age – most individuals 

affected are above 65 or older. The likelihood of getting AD doubles every five years after 65. 

About one-half of the population above 85 years old has AD.35  

It has been over hundred years since AD was first diagnosed, but the scientific community 

still did not understand the etiology. However, an improved understanding of production of 
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plaques and tangles has been achieved.25, 36-37   Amyloid plaques are extracellular protein 

fragments that are aggregated between nerve cells in the disease conditions, whereas 

neurofibrillary tangles (NFTs) are hyperphosphorylated forms of the microtubule-assisted tau 

protein. The well-known functions of tau protein are thought to be stabilization of microtubules 

and regulation of motor-driven axonal transport.38 In Alzheimer‟s disease condition, the tau 

protein is excessively phosphorylated resulting in the formation of paired helical fragments 

(PHF). This abnormal phosphorylation weakens the binding affinity of tau-microtubule binding, 

thereby affecting the stabilization of microtubules and axonal transport. The production and 

development of PHFs is a whole area of research by itself and hence will not be discussed in 

this dissertation. The following discussion will be limited to our current understanding of 

production of amyloid plaques and ways to mitigate it. 

1.5. APP processing 

In human brain, APP is processed via two different pathways – namely, non-amyloid 

pathway (major) and amyloid pathway (minor) – as illustrated in figure 1. In the major non-

amyloid pathway, APP is cleaved by -secretase within the amyloid beta (A) sequence to 

generate a large extracellular soluble fragment (sAPP) and a smaller intracellular fragment 

(C83). These fragments appear to have no pathological significance to AD, although sAPP 

may have neuroprotective characteristics.39  Concomitant cleavage of C83 by γ-secretase 

results in non-amyloidogenic p3, a 30kD peptide, as well as A intracellular domain (AICD). As 

mentioned above, since -secretase cleavage of APP happens with the A sequence, this 

pathway prevents the formation of A.  

In the amyloid pathway, where endoproteolytic processing of the APP by consecutive 

cleavages of BACE1 and γ-secretase takes place, Aβ is produced.25  The enzyme BACE1 

cleaves APP at the N-terminal side of the A sequence to secrete sAPP, producing the cell-
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bound, carboxyl-terminal fragment C99. The C99 fragment is then cleaved by the γ-secretase 

producing AICD and amyloid peptides 39-43. It was reported that the majority of A produced 

via amyloid pathway is A40 which is soluble and non-neurotoxic. The relatively minor product 

A42 (10%), that is less soluble and more hydrophobic, has a tendency to undergo fast 

aggregation and was reported to be toxic.40  The correlation between A42 and cognitive decline 

is reported.41  Under normal physiological conditions, there is equilibrium between production 

and clearance of toxic A42.
42  However, under AD conditions, a pronounced decrease in the 

clearance of A42 was observed resulting in the excessive production and aggregation of A42 

which in turn triggers a cascade of events such as oligomerization, fibril formation, 

neuroinflammation, reactive oxygen species production, oxidative damage, calcium 

dyshomeostasis, tau hyperphosphorylation, synaptic dysfunction, neuronal loss and eventually 

resulting in dementia.40  This phenomenon has been referred as amyloid cascade hypothesis 

and it was first proposed by Hardy et al.25  Because BACE1 is the rate-limiting enzyme in the 

amyloid pathway, it appears promising as a molecular target for the therapeutic intervention of 

AD.43-45 It is worth mentioning here that the amyloid cascade hypothesis is recently challenged 

with a new, complex web of interactions model based on age proposed by Herrup.46 The fact 

that brain structure and function decline over the age led the author to propose the three 

necessary steps that could lead to AD: (i) an initiating injury; (ii) a chronic inflammation; and (iii) 

a cellular change-of-state. Even though this model is in primitive stage requiring supporting 

research from elsewhere, it is important to state that lowering of amyloid plaques may not 

necessarily be considered as the gold standard for AD therapy. 
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Figure 1. Processing of APP by secretases 

 

1.6. Discovery of BACE1 

BACE1 was discovered in 1999 by several research groups independently – Vassar et al., 

Hussain et al., Sinha et al., Yan et al., and Lin et al.47-51  Several nomenclatures for BACE1 exist 

in the literature – such as, BACE1, β-Secretase 1, Asp2 and memapsin 2 - however, in this 

dissertation, only the term BACE1 will be consistently used.  BACE1 belongs to the type-I 

membrane-bound aspartic protease of the pepsin family. Similar to other aspartic proteases, it 

contains the unique dual active-site motif (D-T/S-G-T/S) in its ectodomain. The structural 

organization of BACE1 is depicted as a cartoon in figure 2. A full length BACE1 has an N-
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terminal signal peptide (residues 1-23), a Pro-peptide domain (residues 24-48), catalytic domain 

(residues 49-454), a membrane-spanning region (residues 455-478) and a C-terminal 

cytoplasmic tail (residues 479-501).  Hussain et al. and Bennett et al. reported that mutation in 

one of the two active aspartic acid residues result in complete loss of enzyme activity.47, 52   

 

Figure 2. Sequence organization of BACE1 

 

1.7. BACE1 expression levels in brain areas 

The enzyme BACE1 is ubiquitously expressed, however its transcript levels are found 

highest in pancreas and neurons in the brain.50  BACE1 activity in pancreas is rather low despite 

its abundance due to the generation of alternatively spliced transcripts that produce BACE1 

variant with a reduced proteolytic activity.53  In contrast, BACE1 activity is higher in 

hippocampus, cerebellum and frontal lobe regions of the brain.53  Even though neurons are the 

major sources of BACE1, astrocytes are known to be the alternative source. The latter is known 

to be important for the clearance and degradation of Aβ and for acting as a barrier between 

neurons and toxic deposits of Aβ.54  It was reported that resting astrocytes in brain do not 

express detectable levels of BACE1, whereas cultured astrocytes display BACE1 promoter 

activity, express BACE1 mRNA and active BACE1.54  

1.8. Enzymatic activity of BACE1 

Purified BACE1 has an optimal enzymatic activity at pH 4.5, which reflects its primary site 

of action inside the cell.50  In fact, cell-surface expressed BACE1 is transported to early 
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endosomes and trans golgi network by endocytosis. It is believed that BACE1 catalyzes APP 

processing to release sAPPβ and C99 after endocytosis.55-56    

1.9. Function of BACE1 

The widely known function of BACE1 is APP processing and this has been described in 

detail. In addition to APP, other BACE1 substrates are also reported which suggests a variety of 

physiological functions of BACE1. It is beyond the scope of this dissertation to address the 

significance of other substrates. However, briefly, these substrates include: α-2,6-

sialyltranferase (ST6Gal-1),57  Neuregulin-1 (NRG1) implicated in myelination,58  platelet selectin 

glycoprotein ligand 1 (PSGL-1),59  and interlukin receptor type II.60  The role of BACE1 in 

regulating the voltage dependent sodium channel is also reported.61  

1.10. BACE1 as a target for AD therapy 

It has been hypothesized that therapeutics targeting APP processing may mitigate the 

formation of toxic fragments and hence prevent plaque formation.25, 36-37  Since BACE1 is the 

rate-limiting enzyme in this cascade, it is considered as one of the propitious targets for AD. 

Further studies have shown that -BACE1knock-out mice fail to produce Aβ thereby providing a 

strong evidence that BACE1 is indeed the sole enzyme with a bonafide β-secretase activity. It 

was also reported that these mice are healthy, fertile, and appear normal in gross anatomy, 

tissue histology, hematology and clinical chemistry.62-65  Based on these results, it was 

suggested that inhibition of BACE1 in humans may not have mechanism-associated toxicity. 

Interestingly, overexpression of BACE1 levels in mice resulted in abnormal production of Aβ. 

However, results obtained from behavioral studies revealed memory impairment, subtle 

behavioral changes, being timid, anxious and less inclined to explore compared to mice over 

expressing BACE1 suggesting that only partial inhibition of BACE1 may be desired.62-63, 65-67   In 

humans, it has been shown that BACE1 levels are significantly elevated in vivo in rapidly 
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autopsied brains of sporadic AD patients (< 3 hours) compared with age-matched non-AD 

patients,68-70  and a correlation (R2 = 0.54) between BACE1 activity and amyloid plaques count 

was reported.71  It was, therefore, suggested that lowering of amyloid plaques in vivo may be 

achieved by a decrease in production of A40 and A42 through inhibition of BACE1, thus 

opening up a new avenue for AD drug discovery.37, 44  

1.11. BACE1 inhibitors in clinical trials 

Despite the fact that the enzyme BACE1 has been discovered a decade ago, clinical 

development of an ideal BACE1 inhibitor is still far from reality. BACE1 inhibitor design is 

impeded by various challenges including: (1) ability of inhibitors to penetrate the blood-brain 

barrier; (2) presence of an efflux transporter, phosphoglycoprotein (P-gp), at the blood-brain 

barrier; (3) large and conformationally flexible BACE1 active site; (4) homology to other aspartic 

proteases, specifically towards BACE2 even though its expression levels are higher in the 

periphery compared to that in brain.45, 72  Even though both BACE1 and APP are membrane-

tethered, it has been suggested that the physiologically relevant cleavage of APP by BACE1 

occurs in endosomes where the pH is optimal for BACE1 enzymatic machinery (pH = 4.5)73-77  

or in cholesterol rich lipid rafts.78  Therefore, further improvement of the cell membrane 

permeation properties of BACE1 inhibitors would be one of the most important tasks during lead 

optimization. A proof of concept for an alternative to the passive permeation approach, a 

BACE1 inhibitor conjugated with a lipid fragment targeting endosomes, was recently reported by 

Simons and co-authors.55  

Despite these challenges, Ghosh et al. recently developed an orally bioavailable small 

molecule BACE1 inhibitor (CTS21166) that displayed excellent efficacy, selectivity, brain 

penetration and pharmacologic activity in preclinical studies.45 The phase IIa studies of this 

inhibitor were promising and are awaiting further advancement. 
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1.12. Scope of the current study 

A growing body of literature in the form of publications, patents and proceedings supports 

the significance of BACE1 in AD pathogenesis. The abundant structural information available for 

BACE1-inhibitor complexes, as well as the availability of powerful molecular modeling 

techniques, fueled the design and development of BACE1 inhibitors. Despite these advances, 

there is still an unmet clinical need for the AD therapy.  

In the present study, we have employed both the structure- and ligand-based drug design 

methods to understand the binding characteristics of BACE1 inhibitors. Our ultimate goal is to 

further advance development of more active blood-brain permeable inhibitors of BACE1 as 

potential therapeutics for AD. 
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2. STRUCTURE-BASED MODELING OF BETA-SECRETASE1 INHIBITORS 

2.1. Background 

Contrary to traditional drug discovery, which relied heavily on serendipity, rational drug 

discovery utilizes the knowledge of three dimensional structures of proteins and ligands. One of 

the types of rational drug discovery is the structure-based drug design method (SBDD). In this 

method, three dimensional structures of biological targets obtained using X-ray or multi-

dimensional NMR and knowledge of active site were are used as starting points for the effective 

design of active and selective ligands that would eventually be tested in clinical trials. In the 

case of difficulty in obtaining 3D structures of targets, computational homology modeling has 

been used. A typical drug discovery pipeline begins with validation of target. Once the biological 

target is validated and its atomic structure is solved (X-ray or NMR), several SBDD methods can 

be used to identify hit compounds. Some of these methods are: (1) target-based high-

throughput screening that involves screening of compounds (several thousands to even 

millions); (ii) target-based virtual screening that involves molecular docking and scoring of a 

huge library of ligands on the target structure; and (iii) de novo design that involves growing 

fragment of ligands inside the active site of the target using a database containing small 

molecules and chemical fragments. In conjunction with various computational tools methods 

including molecular docking, hit to lead transformation and lead optimization can be envisioned 

before testing the compounds in clinical trials. Modern SBDD methods involve the synergistic 

combination of techniques including X-ray crystallography, NMR, computational methods and 

advanced chemical synthesis.  

Explosion in structural information, proteomics and genomics resulted in hundreds of new 

targets that were otherwise unknown and have provided ample opportunities for SBDD drug 

discovery. In fact, SBDD is not limited to proteins, but can be applied to nucleic acids and 
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membranes as well.  The success of drugs such as saquinavir, ritonavir, indinavir and nelfinavir 

can be attributed to the success of SBDD.  

One of the key challenges in SBDD is to design drugs for flexible targets. Lead generation 

obtained by considering only from a single, rigid target structure is prone to give misleading 

results for a conformationally flexible target. Computational techniques have been judiciously 

employed in these cases, despite the difficulty in sampling entire protein conformer system. 

Modeling the side-chain flexibility of key residues in the binding pocket and accommodating 

multiple protein structures are some of the techniques employed by computational chemists to 

handle protein flexibility in SBDD.  

In the present work, structure-based drug design using GOLD docking and de novo ligand 

design using RACHEL has been employed to identify novel ligand scaffolds targeting BACE1. 

2.2. Crystal structures of BACE1 

The validation of BACE1 as a target for AD has been discussed in the previous chapter. 

The first X-ray crystal structure of BACE1 in complex with an eight-residue inhibitor, OM99-2, 

was solved at 1.9 Å resolution by Hong et al in 1999 (figure 3).79  Based on the atomic 

information obtained from this and multiple other crystal structures, it was found that the BACE1 

is bilobal and pseudo 2-fold symmetric. The catalytic core of BACE1 is conserved compared to 

the other aspartic protease members, however, flexibility is pronounced in the binding regions. 

For example, the active site region contains a flexible β hairpin loop (residues 67-77) also called 

the flap region.79  It is believed that this flap region controls the access of substrate to the 

BACE1 binding pocket as well as to orient the substrate in optimal geometry for catalysis.79 In 

particular, the flap is reported to exist in open form (to allow the entry of substrate), close form 

(to lock the substrate inside the binding pocket of BACE1) and other intermediate positions 

depending upon the size of the substituents.79-81  In addition, there is another flexible loop near 
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the N terminus comprised of residues 9-14 (herein referred as 10s loop).  Compared to other 

aspartic proteases, the active site of BACE1 is large, more open, less hydrophobic and 

conformationally flexible.79   

The majorities of BACE1 inhibitors, but not all, have tight hydrogen bonding network with 

the catalytic aspartic residues (Asp32 and Asp228). For example, the substrate-based inhibitor 

OM99-1, that occupies from S4 to S4‟ binding sites, was found to involve in significant hydrogen 

bonding and hydrophobic interactions with the residues present at the pertinent pockets (figure 

3). In particular, a direct hydrogen bonding between the hydroxyl group of the hydroxyethylene 

moiety of the inhibitor with the catalytic aspartic residues Asp32 and Asp228 was observed. As 

of today, there are over a hundred publicly available BACE1 PDB structures.  

 

Figure 3. OM99-2 in BACE1 active site79  

 

2.3. Conformational flexibility of BACE1 

Superposition of multiple X-ray crystal structures revealed that BACE1 is a highly flexible 

enzyme with experimentally determined motion in the flap region, the catalytic residues, 10s 

loop, and the S2 site. The residues 67-77 present at the flap region adopt a β hairpin 
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conformation and reportedly exist in two conformations.82  The apo enzyme that lacks the 

stabilizing interactions of these flap residues adopts an „open‟ conformation, whereas the ligand-

bound enzyme adopts a „closed‟ conformation by h-bonding with Tyr71. Recently, a ligand-

bound enzyme in a flap-open conformation was also reported.83  McGaughey et al. showed that 

the loop comprising the residues 9-14 can adopt two or more different conformations depending 

on the size of the ligands and h-bonding with Thr232.84  The authors also observed that ligands 

that possess a bulky P3 moiety modulate the enzyme to exist in an “up” conformation whereas 

the ligands that have a small P3 moiety induce the ligands to exist in a „closed‟ conformation. 

Using this rationale, highly potent inhibitors has been developed.85  The flexibility of BACE1 S2 

site had not been rigorously addressed from computational perspective at the time we 

embarked on our research. In particular, the X-ray structure analysis suggests that the Arg235 

present at the S2 site is highly flexible. Thus, the highly flexible, positively charged Arg235 could 

be explored for future ligand-design efforts. 

2.4. Rational for targeting S2 site of BACE1 

Our interests in BACE1 S2 site flexibility stem from the preliminary modeling calculations 

that we performed by superimposing various crystal structures of BACE1 publicly available in 

the protein data bank.86  The major amino acid residues present in BACE1 S2 site are Asn233, 

Arg235 and Ser325 out of which the fluctuations observed in Asn233 and Ser325 are minimal.  

We believed Arg235 as a potential candidate for targeting due to the following reasons: (1) the 

side-chain guanidine group in Arg235 is positively charged in neutral pH compared to the 

neutral side-chains present in Asn233 and Ser325. Hence, targeting the guanidine side-chain 

with appropriate ligand atoms will result in strong, electrostatic interactions that are directional in 

nature; (2) the side-chain of Arg235 is highly flexible and hence adopts several conformations 

as evidenced by visualization of several BACE1 PDB structures. We reasoned that the size and 

electronic parameters of P2 substituents are the key determinants in controlling the Arg235 
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movement. The extreme displacements of Arg235 observed in the X-ray structures of 2B8L and 

1W51 is shown in figure 4. Docking of crystallographic 1W51 ligand in 2B8L binding site did not 

provide any meaningful pose suggesting that the flexibility of the BACE1 must be accounted 

during in silico inhibitor design. This increased our curiosity to explore the side-chain 

movements of Arg235 during docking calculations. It is imperative that the ligand component 

that binds to the S2 site must be flexible enough in order to interact with Arg235 as well as with 

the rest of the residues that form the S2 site. Our modeling analysis resulted in identifying the 

attributes of an ideal P2 component of the ligand: (1) ability to interact with charged Arg235; (2) 

ability to adapt its conformation in a flexible binding site; (3) containing fewer polar atoms. Any 

compound that possesses more/all attributes listed above is expected to efficiently inhibit 

BACE1 and hence will provide strong evidence to our hypothesis. In fact, our modeling analysis 

resulted in scaffolds containing an oxygen atom locked in a conformation that is amenable for h-

bonding with the Arg235 (enthalpic optimization). In addition, the fact that the fused-ring 

compounds already contain a constrained ring (5 or 6 or 7-membered), the entropic penalty 

during binding would be minimal (entropic optimization).    

  

Figure 4. Two different conformations of Arg235 in BACE1 PDB structures 

PDB code: 2B8L (left) and 1W51 (right) 
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2.5. Experimental methods 

2.5.1. Overall design strategy 

The overall strategy adopted during our pursuit of BACE1 inhibitor-design is summarized 

below (figure 5). The software RACHEL (Real-time Automated Combinatorial Heuristic 

Enhancement of Lead compounds) was used to generate the new scaffolds (fused-rings and 

biaryls). The RACHEL scoring function was amended in order to obtain cyclic structures as hits. 

FlexX software was used to dock the hits obtained using RACHEL. FlexX score and 

visualization of poses in the binding pocket of BACE1 was utilized to analyze the results. With 

inputs from medicinal chemists, two diverse series of fused-ring and biaryl compounds were 

identified as hits and proceeded forward for chemical synthesis and biological testing.  

 

Figure 5. Strategy for BACE1 inhibitor design 

 

2.5.2. De novo ligand-design using RACHEL 

De novo ligand-design using RACHEL, a software package for automated de novo 

design, was selected to generate the new scaffolds. We elected to maintain the X and Y 

substituents in ligand 1, while allowing changes in portions A, B, and C (figure 6). The bridging 

group C was designed to maintain orientation of the polar groups (if any) in positions A and B, to 

decrease the number of rotatable bonds, and to form an additional interaction with the binding 
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site. The A, B, C fragments were allowed to be either “nothing” (in case of the fragment C only), 

H, or a group selected from an in-house database of small molecule fragments. This database 

was generated by RACHEL from a set of drugs and druglike small molecules found on the 

DrugBank web-site.87  The RACHEL scoring function was amended to promote selection of 

cyclic structures. Asn233 was selected as a target site for growing substituents. The molecular 

weight of the substituents was limited to 200. The newly generated by RACHEL ligands were re-

docked to the binding site using FlexX docking software. Among all potential ligands generated 

by RACHEL bi-cycles and biaryls stood up as groups of ligands having the binding poses 

similar to those found in BACE1 X-rays, targeting S2 site, and having fewer or no hydrogen 

bond donors or acceptors. Upon visual inspection and evaluation of synthetic accessibility two 

scaffolds were selected for further synthetic elaboration: saturated bicycles with fused 6 or 7 

ring systems containing a heteroatom and biaryls with 5- and 6-membered terminal aryl (Figure. 

6). It was further decided not to use the actual FlexX docking score because (1) docking scores 

are typically less reliable compared to the accuracy of the binding poses prediction, and (2) we 

expected that the binding site residues in S2 may change their conformation to accommodate 

the new substituents. To explore if these new chemotypes are indeed compatible with the 

binding site of BACE1 two diverse series of biaryl and 5,6,7-membered bicyclic ligands shown in 

figure 6 were advanced for further medicinal chemistry efforts and biological testing. 
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Figure 6. De novo design strategy utilized to find P2 fragments 

 

2.5.3. Molecular docking using GOLD 

The subsequent molecular modeling analysis was performed in the following way. The X-

ray coordinates of BACE1 (PDB code: 2B8L) were downloaded from the Protein Databank. The 

protonation state of two catalytically active aspartic acids (Asp32 and Asp228) is the subject of 

debate. However, based on full-linear quantum chemical calculations carried out by Rajamani et 

al., and virtual screening studies of a library of BACE1 inhibitors conducted by Polgar et al.,  we 

protonated Asp32. 88-89  The active site was defined as a sphere enclosing residues within 10Å 

of the bound ligand. The 3D structures of ligands were built using Sybyl 7.3 and energy 

minimized using Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, 5000 iterations, and 

gradient of 0.005 kcal/mol/Å as the termination criterion. The resulting minimized molecules 

were docked to the binding site of BACE1 using the GOLD software.90  All poses outputted by 

the docking program were visualized; however only the pose with the best fitness score was 

used for the following SAR analysis. Wherever appropriate, docking under induced-fit mode was 
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applied to accommodate the side-chain flexibility of Arg235. Prior to the SAR analysis, the ability 

of the docking program to successfully reproduce the binding mode of co-crystallized ligand 1 

was evaluated. It was found that GOLD was able to reproduce the X-ray binding mode of 1 with 

RMSD of 0.36 Å.  

2.5.4. In silico prediction of blood-brain barrier penetration (log BB) of BACE1 

inhibitors 

We also calculated the logBB values to confirm that the new ligands exhibit improved 

blood-brain permeation properties. The log BB values of all inhibitors 1, 2a-2c, 3a-3d, 4a-4b, 

5a-5e, 6a-6c were calculated using Clark‟s equation.91  The original coefficients in the Clark 

equation were refitted using the original data in the Clark paper to account for the difference 

between the polar surface area and ClogP used by Clark and those generated by the Tripos 

software. The contact van der Waals surface area (cvdWSA) was calculated using MOLCAD 

separated surfaces between R1 and the residues Thr231, Thr232, Asn233, Ser325, Arg235, 

Gln73 and Thr72 proximal to R1. The figures were generated either with Vida 3.0 or with 

Sybyl8.0. 

2.5.5. Synthesis of BACE1 inhibitors 

The synthesis of BACE1 inhibitors were carried out by our colleague Dr. Srinivas Reddy 

Chirapu. The biaryl and fused-ring ligands were prepared using a common intermediate 12 

according to a published procedure.92  The synthesis of biaryl ligands is shown in Scheme 1. 

Commercially available substituted bromoisophthalic acid 7 was converted into 9 by 1) 

hydrolysis of 7 with 1N NaOH which afforded the monoacid 8 and 2) subsequent coupling of 8 

with (R)-α-methylbenzylamine in the presence of EDCI and HOBt resulting in the formation of 9. 

Intermediates 10 required for final products 2c and 3c were prepared by a Sonogashira 

coupling of bromide 9 with the mono TMS derivative of acetylene and phenylacetylene, 
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respectively. Suzuki coupling of 3-thiopheneboronic acid or 4-chlorophenylboronic acid with 9 

resulted in intermediates 10 required for the final products 3a and 3b. Sultam intermediates 10 

required for the final products 4a and 4b were prepared by coupling 10 with the corresponding 

ring sultams. The final compounds 2c, 3a-3d, 4a-4b were obtained by hydrolysis of 10 to form 

the acid intermediate 11 followed by subsequent coupling with the TFA salt of (2R, 3S)-N-1-2-

hydroxy-4-phenylbutane-1, 3-diamine.93-95  Compounds 2a and 2b were prepared using hydroxy 

and methoxy derivatives of diethyl esters of isophthalic acid in four steps: hydrolysis of one of 

the ester group with 1N NaOH, coupling with the left side fragment (R)-α-methylbenzylamine, 

hydrolysis of the remaining ester group using 1N NaOH, and finally coupling with the TFA salt of 

(2R, 3S)-N-1-2-hydroxy-4-phenylbutane-1, 3-diamine. 

The bis-esters 15, 17 and 19 were prepared according to the reported procedures starting 

from 14 (Scheme 2).96-97  Subsequent selective hydrolysis of 17 yielded monoester 18a as a 

major product whereas 19 resulted in monoester 20a as a major product. Further treatment of 

16a, 18a and 20b with (R)-α-methylbenzylamine led to the corresponding intermediates 21-23 

that upon hydrolysis and subsequent reaction with 12 resulted in the final products 5a, 5b and 

6c (Scheme 3). Reaction of 16b, 18b and 20a with 12 resulted in intermediates 24-26 which 

upon hydrolysis and subsequent coupling with (R)-α-methylbenzylamine led to the final ligands 

5c, 6a, and 6b (Scheme 4). 
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Scheme 1. General Synthesis of BACE1 inhibitors 

 

Reagents and conditions: (a) 1 N NaOH; THF: MeOH (50:50); (b) (R)-α-methylbenzylamine, 
EDCI/HOBt, 0°C to r.t.; (c) 8, EDCI/HOBt, 0 °C to r.t.; (c) 12, 92 BOP, DIPEA. 
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Scheme 2. Hydrolysis pattern of fused-ring esters 
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Reagents and conditions: (a) PdCl2, Cu(OAc)2, LiCl, MeOH:H2O ( 2mL : 0.1mL ); (b) 1 N NaOH; 
THF: MeOH (50:50), 0 °C to r.t.; (c) Tetravinyltin, Cu(OAc)2, O2, CH3CN, 2 days; (d) 2nd 
generation Grubbs catalyst,98  DCM, r.t.; (e) H2, Pd/C, MeOH ; (f) allyl bromide, K2CO3, acetone, 
reflux. 
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Scheme 3. Synthesis of final compounds 5a-5c 
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Reagents and conditions: (a) (R)-α-methylbenzylamine, EDCI/HOBt, 0 C-r.t; (b) 1 N NaOH; 

THF: MeOH (50:50), 0 °C to r.t.; (c) 12,92 EDCI/HOBt, 0 C to r.t. 

 

Scheme 4. Synthesis of final compounds 6a-6c 
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Reagents and conditions: (a) 12,92 EDCI/HOBt, 0 °C to r.t.; (b) 1 N NaOH; THF: MeOH (50:50), 0 
°C to r.t.; (c) (R)-α-methylbenzylamine, EDCI/HOBt, 0 °C to r.t. 
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2.5.6. IC50 measurements 

The IC50 studies were carried out by Hikmet F. Nural and Xin Cheng supervised by Dr 

Yong Shen our collaborators at the Sun Health Institute, Sun City, AZ. For IC50 measurements, 

293T cells stably transfected with pcDNA-BACE1 were maintained in 200ug zeocin/ml DMEM, 

10% FBS. Cell were lysed by lysis buffer (PBS with 1%TritonX100 and 0.1%SDS), lysate were 

adjusted to 4ug/ul. BACE1 inhibitors were diluted to desired concentration with reaction buffer 

(100mM Tris-HCl, 100mM NaCl, pH4.5). BACE1 substrate (EDANS-SEVNLDAEFR-DABCYL) 

was dissolved in DMSO as stock then diluted to 10µM working solution. 20ug of 293T/pcDNA-

BACE1 cell lysate were mixed with BACE1 inhibitor and the substrate. The final substrate 

concentration was 5µM. Fluorescence was detected in microplate reader (Bio-tek) every 5min at 

emission length 500 nm as well as excitation at about 430 nm. Maximal velocities were 

calculated by the time point within 20min.  

Similarly, 293 cells stably transfected with pcDNA-BACE2 were maintained in 200ug 

G418/ml DMEM, 10% FBS. Cell were lysed by lysis buffer (PBS with 1%TritonX100 and 

0.1%SDS), 5ug protein were used in the assay. BACE2 inhibitors were diluted to desired 

concentration with reaction buffer (100mM Tris-HCl, 100mM NaCl, pH4.5). BACE2 substrate 

(MCA-ERHADGLALALEPA(K-Dnp) was dissolved in DMSO as stock. Inhibitors were further 

diluted to desired concentration with reaction buffer (100mM Tris-HCl, 100mM NaCl, pH4.5). 

Cell lysate were mixed with BACE2 inhibitors and the substrate (final concentration 5µM). 

Fluorescence was detected every 5min at emission length 430 nm as well as excitation at about 

340 nm. Maximal velocities were calculated by the time point within 20 min. 

The activity data of both BACE1 and BACE2 are presented in Table 1. 
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2.5.7. Assay to detect and quantify Aβ40 reduction  

The biological assay to quantify the Aβ40 reduction was carried out by Samer O. Abdul-

Hay supervised by Dr. Gregory R.J. Thatcher at UIC. The following procedure was implemented 

to determine the efficacy of our best BACE1 inhibitors in reducing the Aβ40 production. Mouse 

neuroblastoma cells (N2a) stably transfected with Myc-epitope tagged Swedish mutant APP 695 

cDNA (a kind gift from Dr. Gopal Thinakaran) were cultured in 1:1 Opti-MEM/Dulbecco's 

modified Eagle's medium (high glucose) containing 5% fetal bovine serum, 1% 

penicillin/streptomycin and 0.2 mg/ml Geneticin (G418) in a humified air incubator at 37°C  (5% 

CO2 – 95% O2). Cells were plated in 24 well plates for 24h at a concentration of 15x104 cell/well. 

After 24h, the growth medium was discarded and replaced with 0.5 ml of serum reduced 

medium consisting of Dulbecco‟s modified Eagle‟s medium (high glucose) and 0.2% fetal bovine 

serum. Fifteen minutes after medium replacement, the cells were treated with drugs dissolved in 

DMSO and incubated for 24h. At the end of the incubation period, 100 µl of conditioned media 

were collected and the protease inhibitor AEBSF (4-(2-aminoethyl) benzenesulfonyl fluoride 

hydrochloride) was immediately added at a final concentration of 1mM. Aβ40 concentration was 

determined using human beta amyloid [1-40] colorimetric ELISA kit from Invitrogen. The 

procedure was followed as instructed in the supplied protocol. 

2.6. Results and Discussions 

2.6.1. NMR studies of fused-ring compounds 

The 2D-NMR studies were carried out Dr. David C. Lankin from UIC. Theoretically, two 

regioisomeric monoesters could have been produced from each diester 15, 17, and 19 by 

hydrolysis of the right-side ester or the left-side ester (Scheme 2). The structure of the 

hydrolysis products produced from 17 and 19 were deduced in a self-consistent manner from 

the interpreted results of extensive NMR studies using1-D 1H and 13C, 2-D gradient-selected 
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correlation spectroscopy (gCOSY), gradient-selected heteronuclear single quantum coherence 

(gHSQC), and gradient-selected heteronuclear multiple-bond correlation spectroscopy(gHMBC). 

The assignment strategy employed for the determination of the regioisomeric structure of the 

monohydrolysis products represents a straight forward approach involving: 1) unambiguous 

assignment the 1H and 13C NMR spectra for each of the hydrolysis products and 2) the careful 

examination of the patterns of the 3JC,H correlations present in the gHMBC 2-D spectrum of each 

of the hydrolysis products, specifically the correlations pertaining to the respective carbonyl 

carbons.  In the generalized structure (n = 1 or 2; figure 7a), the aromatic ring proton located 

between both carboxylate carbons will exhibit 3JC,H  correlations in the gHMBC to both carbonyl 

carbon signals (red and blue). The remaining aromatic ring proton (right side) will show the 

indicated 3JC,H  correlation to only the carbonyl carbon on the right side (in red). If a carbonyl 

exists as an ester moiety, i.e., with a methoxy group bonded to the carbonyl carbon, there will 

be an additional correlation cross peak in the gHMBC 2-D spectrum arising from a 3JC,H coupling 

to the protons of the methoxy group to that carbonyl carbon. In this way, unambiguous 

assignment of the structure of the hydrolysis products can be made with confidence. This 

concept is illustrated for the starting dimethyl ester 17 (n = 1, R = R‟ = Me), for which all of the 

1H and 13C resonances were assigned (figures 7b and 7c).  

In the case of the hydrolysis product 18a derived from 17, the 1-D proton NMR spectrum 

(400 MHz, DMSO-d6) confirmed the presence of three chemically distinct methylene groups with 

resonances centered at δ1.921 (m), 3.027 (triplet, J = 5.2), and 4.175 (triplet, J = 6.6), each 

integrating for two (2) protons and all associated with the 6-membered ring present in the 

monohydrolyzed product. The gCOSY spectrum confirmed that the methylene groups 

constituted an isolated mutually coupled proton spin system. A singlet (3H) appearing at δ 3.837 

was assigned to the methyl group of the monoester moiety. Two doublets were observed 

centered at δ 7.979 and δ 7.428 (J = 1.5 Hz), which were shown to be spin coupled (gCOSY) 
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and were assigned to the two aromatic protons present on the aromatic ring. The magnitude of 

the J-coupling between the two aromatic protons confirmed the indicated meta–relationship. 

The protonated carbons could be assigned from the gHSQC spectrum (1JC,H) and gHMBC 

spectrum (2JC,H and 3JC,H).  A broad resonance (1H) appeared at ~ δ 13 ppm and was assigned 

to the proton of the free acid.  

The gHMBC of hydrolysis product 18a from 17 showed correlations from the proton at δ 

7.979 to both of the carbonyl carbons at δ 166.2 and 166.3 ppm. There was a correlation 

observed from both the proton signal at δ 7.428 to the carbonyl carbon appering at δ 166.3 as 

well as a correlation cross peak to the ester methyl group at δ 3.837 indicating that the 

hydrolysis of 17 proceeded at the left-side carbonyl in the generalized structure. In contrast, the 

1-D proton NMR spectrum (400 MHz, DMSO-d6) of the hydrolysis product 20a from 19 

confirmed the presence of four chemically distinct methylene groups with slightly broadened 

resonances centered at (δ 1.673, 1.899, 2.992-3.018 m, and 4.012 t (J = 6.6 Hz) each 

integrating for two (2) protons and all associated with the 7-membered ring present in the mono-

hydrolyzed product from 19. As in the case of 20a, the gCOSY spectrum confirmed that these 

resonances also constituted an isolated mutually coupled proton spin system. A singlet (3H) at δ 

3.854 was assigned to the methyl group of the monoester moiety. Two signals were observed at 

δ 7.937 and δ 7.582, which were shown to be spin coupled (gCOSY) (J = 1.7 Hz) and which 

were assigned to the two aromatic protons present on the aromatic ring. The magnitude of the 

J-coupling between the two aromatic protons is also consistent with the indicated meta – 

relationship. Similar to the NMR of 18a, the hydrolysis product of 17, a broad resonance (1H) at 

~ δ 13 ppm was also observed and was assigned to the proton of the expected free acid 

functionality. The protonated carbons could be easily assigned from the gHSQC spectrum 

(1JC,H) . The gHMBC of hydrolysis product 20a from 19 showed correlations from the proton at δ 

7.937 to the both of the carbonyl carbons appearing at δ 166.0 and 167.2 ppm. There was a 
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correlation observed from the proton signal at δ 7.582 to the carbonyl carbon at δ 166.0. The 

carbonyl at δ 167.2 also showed a correlation in the gHMBC spectrum to a methyl singlet (δ 

3.854) indicating that the hydrolysis of 19 proceeded at the right-side carbonyl (red, in the 

generalized structure). Analysis of the 2-D gCOSY, gHSQC, and gHMBC data together with the 

1-D 1H and 13CNMR data obtained for both hydrolysis products permitted a self-consistent 

assignment of the 1H chemical shifts and of the 13C chemical shifts for both regioisomers. The 

1H and 13C NMR assignments of intermediates 17 and 19 and their hydrolysis products 18a and 

20a are shown in figures 7d and 7e. 
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Figure 7. General Structure of ligands and NMR structures 

(a) General structure of ligands 17 and 19; (b) 1H NMR assignments for 17; (c) 13C NMR 
assignments for 17; (d) 13C NMR assignments for 18a; (e) 13C NMR assignments for 20a. 
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R1

H
N

O

H
N

O

R2
OH

H
N

 

Ligands R1 BACE1 IC50 

(nM) 

BACE2 IC50 

(nM) 

log BB
a
 

1 

N
S

O O

 

281 ± 42 132 ± 17 -0.9 

2a OH 1581 ± 269 > 100000 -0.8 

2b OMe 2506 ± 576 > 100000 -0.5 

2c 

 

889 ± 108 > 100000 -0.3 

3a S

 

2233 ± 384 > 100000 -0.6 

 

3b 

 

Cl

 

 

811 ± 102 

 

> 100000 

 

-0.1 
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3c 

Ph

 

 

1119 ± 173 

 

> 100000 

 

-0.1 

 

 

3d 

 

NN

N

 

 

1256 ± 140 

 

> 100000 

 

-0.5 

 

4a 

 

N
S

O

O
 

 

1774 ± 218 

 

141 ± 16 

 

-0.9 

 

4b 

 

N
S

O

O

 

 

158 ± 19 

 

251 ± 33 

 

-0.8 
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OH

H
N

 

 

Ligands 

 

-R1- 

 

R2 

 

BACE1 IC50 

(nM) 

 

BACE2 IC50 

(nM) 

 

log BB
a
 

 

5a 

 

O

 

 

H 

 

524 ± 150 

 

> 100000 

 

-0.3 

 

 

 

 

5b 

 

O

 

 

 

H 

 

 

63 ± 8 

 

 

> 100000 

 

 

-0.3 

 

5c 

 

O

 

 

H 

 

56 ± 7 

 

> 100000 

 

-0.3 
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5d 

O

 

 

F 

 

740 ± 95 

 

2089 ± 311 

 

-0.3 

 

5e 

O

 

 

F 

 

262 ± 36 

 

1949 ± 207 

 

-0.2 

 

 

6a 

 

O

 

 

 

H 

 

 

998 ± 78 

 

 

> 100000 

 

 

-0. 

 

 

6b 

O

 

 

H 

 

112 ± 12 

 

> 100000 

 

-0.4 

 

 

6c 

 

O

 

 

 

H 

 

 

89 ± 13 

 

 

> 100000 

 

 

-0.2 

a
calculated log BB 

Table 1. BACE1 and BAC2 inhibition profile of P2 substituents 

2.6.2. Activity profile of simple substituents 

The best docking poses were visualized in the binding site (figure 8a), and the SAR of the 

synthesized compounds is discussed below. Substitution of R1 by a simple hydroxyl or a 
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methoxy group in 2a and 2b (Table 1) resulted in approximately 6- and 9-fold loss in BACE1 

activity compared to ligand 1, respectively, a relatively small trade-off in exchange of 

improvement of the druglike profile and BACE1/BACE2 selectivity. The docking shows that the 

solvent-exposed hydroxyl or methyl group in 2a and 2b do not form favorable contacts with the 

binding site. In the induced-fit mode docking, the side-chain guanidine group of Arg235 is able 

to interact with the hydroxyl or methoxy groups in 2a and 2b, respectively. Substitution of R1 in 1 

with an acetylene moiety in 2c led to an only 3–fold decrease in BACE1 activity. As well as in 

the case of ligands 2a and 2b this is a small trade-off for replacing methyl sulfonamide group of 

1 with a small acetylene group in 2c. This observation supports the notion that the loss of 

hydrogen- bonding contribution may be compensated by non-directional vdW interactions of the 

P2 substituents as a result of possible induced fit changes. Indeed, the docking shows that the 

P2 acetylene moiety forms extensive vdW contact with the alkyl side-chains of Arg235 and 

Thr231 located in S2. None of 2a-c ligands showed BACE2 inhibition below 100 M 

concentration. As expected, the relatively less polar 2a-c are predicted to have better log BB of -

0.3 compared to -0.9 for 1. 

2.6.3. Activity profile of biaryl substituents 

Encouraged by these initial findings, we synthesized and tested ligands 3a-3d to explore 

whether the S2 pocket can accommodate larger biaryl substituents. The docking poses of these 

compounds are shown in Figure 8b. The 3-thiophene moiety in 3a did not influence significantly 

the activity compared to 2b. A replacement of R1 with the bulkier p-chlorophenyl moiety in ligand 

3b led to a 3-fold increase in potency compared to 3a and an almost equal activity to 2c, a 

ligand with a smaller R1 acetylene substituent. An analysis of the docking pose of 3b shows that 

binding of its p-chlorophenyl substituent requires a displacement of the conserved water 

molecule WAT43 (in 2B8L) typically mediating hydrogen bonding between the sidechains of 

Ser325, Arg235 and Gln326 (discussed below). It is likely that an induced fit disorder caused by 
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the removal of the conserved water molecule may contribute to improved binding energy of 

3b.99 When Gold program was allowed to determine whether WAT43 should be bound or 

displaced upon binding of 3b, the resulting ligand-protein complex did not contain WAT43. 

Probing of the binding site with larger, extended substituents as in the phenylacetylene- and N-

benzyltriazole-containing ligands 3c and 3d resulted in a 1.4- and 1.6-fold loss of activity 

compared to 3b, respectively. The loss was more pronounced in 3d where the benzyl 

appendage appears to be completely solvent-exposed. Unlike 3c and 3d, ligands 3a and 3b fit 

well within the cleft of the S2 pocket. The predicted log BB values for the biaryl series range 

from modest -0.6 and -0.5 for compounds 3a and 3d, respectively, to -0.1 for both 3b and 3c.  

2.6.4. Activity profile of sultams 

To explore the impact of rigidification/cyclization of the sulfonamide group of ligand 1 on 

BACE1 and BACE2, compare the resulting ligands with biaryls without sulfonamide group, and 

to find a future pharmacophore for the hot spot Asn233 (Leu246 in BACE2), we have tested two 

ring sultams 4a and 4b. The six-membered sultam 4b is found to be about 11-fold more active 

than five-membered sultam 4 and about 1.8-fold more active than ligand 1 at BACE1. The five-

membered sultam 4a, on the other hand, was 12.6-fold more active at BACE2 than at BACE1. 

An analysis of the binding modes of ligands shows that the SO2 group in sultams point towards 

the S2 site whereas the alicyclic ring is solvent-exposed (figure 8c). This predicted mode of 

binding is very similar to the one that is observed in X-ray crystal structure of the 6-membered 

sultam published during the preparation of this manuscript (PDB code: 2VNM). In 4b, one of the 

SO2 oxygen atoms forms a hydrogen-bond with backbone NH of Asn233 (N-O distance = 3.3 Å, 

N…H…O angle = 170°), whereas the other oxygen atom forms ion-dipole interactions with 

epsilon nitrogen (NE) of Arg235 (distance = 2.8 Å). Ligand 4a, owing to its constrained 5-

membered ring, forms weak hydrogen bond with Asn233 (N-O distance = 3.7 Å, N…H…O angle 

= 142°) and weak ion-dipole interactions with NE of Arg235 (distance= 3.7 Å) and hence less 
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active compared to 4b. Further, the cvdWSA in Å2 of 4a and 4b are 278 and 292 respectively. 

The calculated logBB values of compounds 4a and 4b are similar to that of ligand 1. 

2.6.5. Activity profile of fused-ring compounds 

Next, we synthesized a series of fused-ring compounds 5a-5c, 6a-6c which were 

subsequently tested for inhibition of BACE1 (figures 8d and 8e). We synthesized and tested 

three sets of regioisomers that differ by the size and position of the ring fused to the central 

phenyl moiety. We found that the degree of lipophilicity and flexibility incorporated at P2 position 

in 5a-5c and their regioisomers 6a-6c correlates with the BACE1 inhibitory activity of the 

ligands: (less lipophilic, less active) 5a < 5b < 5c (more lipophilic, more active) and similarly 6a 

< 6b < 6c. Upon docking using Gold under induced-fit mode, it was found that ligands 5c and 

6c, containing the more flexible 7-membered ring, form better vdW contact with the enzyme as 

compared with the ligands 5b and 5b, which contain only a moderately flexible 6-membered 

ring. In contrast, ligands 5b and 6b possess more efficient vdW interactions with the binding site 

than their 5-membered ring analogs 4a and 4a (figures 8d and 8e). The cvdWSA in Å2 

calculated under the induced-fit mode for 5a-5c are 183, 258, 266, whereas for compounds 6a-

6c it is 209, 197, and 227, respectively. The cvdWSA correlates with activity of compounds 5a-

5c but not 6a-6c suggesting that this parameter alone is not sufficient to explain the trend in 

activity.  

To find a plausible explanation for the difference in activity profiles of 5a-5c and their 

regioisomers 6a-6c, we analyzed the X-ray co-crystal structures of BACE1 protein available in 

Protein Data Bank. Two interesting observations result from this analysis. First, the group at the 

P2 position appears to control the position of Arg235 through an induced-fit effect. Depending 

on the steric bulk and electronic properties of the P2 substituent, Arg235 is forced to adopt 

different conformations. The maximum change in the location of Arg235 was observed between 
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1W51 and 2B8L with a deviation of 4.4Å between the two guanidine carbon atoms in the Arg235 

sidechain. Second, in those cases where the P2 has N-methylsulfonamide moiety (PDB codes: 

1TQF, 2IRZ, 2B8L, 2IS0, 2NTR, 2OAH, 2P4J, 2P8H, and 2PH6), a conserved water molecule 

mediates hydrogen bond between the sidechains of Arg235, Ser325 and Gln326. On the other 

hand, if Arg235 changes its position as in 1W51 the water molecule is not observed in the 

crystal structures. It appears that both observations are interconnected – those ligands 

responsible for the movement of Arg235 also contribute to the displacement of the water 

molecule and loss of the hydrogen bonds between this water molecule and residues Ser325, 

Arg235 and Gln326. To account for the induced fit effect Arg235 was allowed to change 

conformation during docking with Gold. Fused-ring compounds 5a-5c has an oxygen atom 

locked in a position amenable for hydrogen bonding with side-chain NH2 of Arg235. Our docking 

experiments suggest that in order to facilitate this hydrogen bond, Arg235 must lose its contact 

with water (WAT43 in 2B8L). Similar hydrogen-bonding interaction is not possible in 

regioisomers 6a-6c because the ring precludes their contact with Arg235 and hence a near 2-

fold drop in potency compared to 5a-5c is observed. The calculated logBB is -0.3 for ligands 5a-

5c and -0.3, -0.4 and -0.2 for 6a-6c, respectively. It is improved compared to the ligand with the 

sulfonamide moiety bound to S2 pocket. As with the other ligands in the biaryl and fused ring 

series that according to the docking experiments require an induced fit, ligands 5a-c and 6a-c 

did not show inhibition of BACE2.  
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Figure 8. Gold docked poses of all fused-ring ligands in BACE1 binding site 

(a) Gold docked conformations of all ligands in BACE1 binding site. The P2 moieties are circled 
yellow; (b) Biaryl compounds 3a-3d in BACE1 binding site; (c) Cyclic ring sultam compounds 
4a-4b in BACE1 binding site rendered as ribbon and tube representation. Residues Asn233 and 
Arg235 are rendered as ball-and-stick representations; (d) Overlay of docked poses of ligands 
5a-5c when side-chain flexibility of Arg235 is considered; (e) Overlay of docked poses of ligands 
6a-6c when side-chain flexibility of Arg235 is considered; (f) Ligand 5e in BACE1 binding site. 
Different orientations of methyl group in Ala335 observed in X-ray crystal structure is rendered 
as a ball-and-stick representation and circled in red for clarity.   

 

2.6.6. Activity profile of fluorinated compounds 

Several publications have reported that fluorinated BACE1 inhibitors exhibited better 

activity than the non-fluorinated ones due to increased lipophilicity.92, 100  Unlike the compounds 

described in these publications, both fluorinated compounds 5d and 5e are found to be less 

active than non-fluorinated analogs 5b and 5c by c.a. 5- and 12-fold, respectively. Ligand 5e 

exhibits 2.8-fold better activity than 5d perhaps for the same reasons 5c is more active than 5a 
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and 5b – larger area of contact with the binding site due to flexibility of the seven-membered 

ring. To understand what could be the reason for overall lower activity of 5d and 5e compared to 

their non-fluorinated analogs we visually inspected the crystal structures of BACE1 with different 

P2 substituents and found that the induced-fit effect of P2 affects the orientation of the methyl 

group in Ala335 (Figure 8f). Of particular interest, the RMSD between CB atoms for crystal 

structures 2P8H (P3 = p-fluoro-α-methylbenzylamino, P2 = N-methylsulfonamide) and 2IQG (P3 

= N, N-dipropanoyl and P2 = Me) is 1.2 Å. Because of the proximity of the methyl group in 

Ala335 and the fluorine atom in the BACE1 inhibitors, any conformational changes in S2 may 

result in mutual steric clashing. If an induced fit caused by the fused rings in series 5 and 6 

takes place it may, indeed, affect the position of Ala 335 and explain the overall lower activity of 

the fluorinated compounds 5d and 5e compared to their non-fluorinated analogs. The predicted 

log BB values of 5d and 5e are almost the same as those of the non-fluorinated compounds. 

2.6.7. Comparison of BACE1 and BACE2 inhibition profile 

To find a possible explanation for BACE1 selectivity of the ligands we tried to compare 

qualitatively the flexibility of the BACE1 and BACE2 proteins using their b-factors. A quantitative 

comparison of the b-factors is not possible since there is large number of the same residues in 

different X-ray structures of BACE1 proteins that differ in their b-factors depending on the co-

crystallized ligand. It is clear, however, that the flexibility patterns for the residues in the S2 

pocket and adjacent to it areas of the BACE1 and BACE2 proteins are different, suggesting that 

induced fit may play a role in an improved selectivity toward BACE1. 

2.6.8. Effect of BACE1 inhibitors on APP processing 

To investigate the effect of BACE1 inhibitors on APP processing the most active ligands 

5b and 5c were tested for reduction in Aβ40 production in mouse neuroblastoma cells (N2a) 

transfected with Swedish mutant APP695 (figure. 9). Compounds 5b and 5c reduce ca. 65% 
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and 35% of Aβ production, respectively, compared to the control. At the moment it is unclear 

why almost equally active 5b and 5c exhibit 1.9-fold difference in reduction of Aβ40. It may be 

related to their metabolic stability or delivery to the site of action. This observation is currently 

actively investigated.  

 

Figure 9. Reduction of Aβ40 levels by BACE1 inhibitors detected in N2a cells stably transfected 
with Swedish human APP 

 

2.7. Conclusions 

In summary, by using computer-aided drug design methods, we have designed, 

synthesized, tested the activity of the fused-ring and biaryl compounds against BACE1, and 

analyzed the resulting SAR using docking protocols. The fused-ring compounds are in general 

more active than the biaryl-based ligands with an activity range from 56 nM to 998 nM. This is 

comparable to the activity of the ligands with polar substituents occupying the S2 binding 

pocket, which lends support for our initial hypothesis that the S2 site may be targeted with less 

polar substituents. Most of the ligands displayed more favorable calculated logBB. The side-

chain flexibility of Arg235 and, perhaps, adjacent residues, and possibly the presence of a water 

molecule mediating hydrogen bond interactions between Arg235, Ser325 and Gln326 in S2 

appears to play an important role in accommodating the fused-ring and biaryl-based ligands in 
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the binding site. The fused-ring ligands 5b and 5c combine the best attributes of acceptable 

logBB, BACE1 inhibitory activity, BACE2 selectivity, and ability to reduce the Aβ production. In 

addition, the enthalpic optimization achieved by positioning oxygen atom amenable for h-

bonding with Arg235, and entropic optimization achieved by incorporating a constrained ring 

that would undergo minimum conformation entropy loss during binding, makes compounds 5b 

and 5c a successful example. The current work that describes computer-assisted design, 

synthesis and screening of BACE1 inhibitors has been published.101  Finally, a similar structure-

guided molecular modeling approach may be used to explore other binding pockets of BACE1 

to create new chemotypes for further development of therapeutics to treat AD and to serve as 

general probes for drug discovery. 
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3. LIGAND-BASED MODELING OF BETA-SECRETASE1 INHIBITORS 

3.1. Introduction 

3.1.1. Importance of 3D-QSAR in Drug Design 

Despite the fact that the X-ray based SBDD has contributed to the discovery of a number 

of drugs and late-stage clinical candidates, there exists some serious limitations: ambiguities in 

identifying nitrogen and oxygenatoms, flexibility of ligand/proteins, induced-fit effects, scoring 

accuracy, position of water molecules, effect of crystallization conditions on protein 

conformation, etc.102-103  In such cases, 3D-QSAR methods have proven to be a powerful 

supplement to predict the binding affinity of an unknown compound. It is based on the simple 

premise that medicinal chemists have known for several decades: compounds with similar 

physical and chemical properties also have similar biological properties. The easy-to-use 3D-

QSAR method has resulted in several thousands of publications during the last decade itself (for 

the most recent review, see references).104-106  During the early stages, 3D-QSAR was 

employed to predict the binding properties of focused structural analogs, however later 

advancements such as pharmacophore modeling expanded the horizons to predict the binding 

properties of diverse molecules.107-108 

One of the hot topics of debate in the field of CADD is whether 3D-QSAR is necessary if 

one has the 3D-structure of the protein.109  Ambiguities in X-ray structures, time-intensive free-

energy perturbation calculations, approximations in force fields and electrostatic calculations, 

inefficient parameterization of scoring functions have made 3D-QSAR an excellent, surrogate 

method for the prediction of binding affinity of molecules. For a series of molecules and their 

corresponding binding affinities (IC50 or Ki), a 3D-QSAR equation may be derived in order to 

forecast the binding affinity of unknown molecule(s) within the structural class. Like any
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other methods, the 3D-QSAR methods do have limitations:106  (i) sensitivity of external dataset 

prediction depends upon the nature of the bioactive conformation and alignment; (ii) influence of 

basis set selection on predictive power; (iii) nature of molecular descriptors used in the study; 

(iv) inability to extrapolate the model. Nevertheless, the role of 3D-QSAR methods in 

combinatorial chemistry and high-throughput screening is continuously growing.105  In this 

chapter, one of the powerful 3D-QSAR techniques, CoMFA, will be discussed in detail followed 

by its applications in understanding the binding requirements of a series of BACE1 inhibitors. 

3.1.2. CoMFA – an introduction and overview 

The inception of Comparative Molecular Field Analysis (CoMFA) is traced back to the 

days when Cramer and Milne made a first attempt to compare the molecules by aligning them in 

space and mapping their molecular fields in a 3D grid.110  The technique has taken a full form 

when the first CoMFA application was published in predicting the binding affinity of steroids to 

human corticosteroid and testosterone binding globulins. 111  Since then over 1000 publications 

have been reported worldwide that highlighted the improvement in methodology, scope and 

applications of this technique (for review, see the references).106, 112-113  

The underlying idea of CoMFA is that differences in target property are often related to 

differences in the shape of the non-covalent fields surrounding the tested molecules. The 

following steps are required to derive a valid CoMFA model:114  (i) selection of molecules for 

training and test set. The major prerequisite in this step is that all the molecules included in the 

dataset must interact with the same receptor in the same manner. Also, the biological activities 

of the molecules must have been tested in identical conditions and the activity may span about 

three or more log units of Ki or IC50; (ii) generation of multiple low-energy conformations of the 

molecules in the dataset. The X-ray structure of the bioactive conformation of a ligand is a good 

starting point. Some of the computational programs for the efficient, fast-generation of 
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conformations are Omega, Tripos and MOE; (iii) Calculation of partial atomic charges of 

molecules. The widely used charges are Gasteiger-Marsili, Gasteiger-Huckel, MMFF94, 

AM1BCC; (iv) Alignment of molecules using a template ligand or a set of alignment rules. A 

good alignment is the single most important requirement for doing a traditional CoMFA analysis. 

The common substructure usually has the same conformation in all molecules, and other 

remaining parts of the molecule are  superimposed by adjusting the internal torsional angles. 

Some of the widely employed alignment methods include FlexS, docking-based alignment, 

database alignment, rapid overlay of chemical structures (ROCS),115 etc.; (v) Placement of the 

training set molecules in a three-dimensional grid to calculate the interaction energy using probe 

molecules such as sp3 carbon with a +1 charge. In this step, the interaction between the training 

set molecules and the probe atoms at each grid point is calculated by calculating the magnitude 

of the steric (Lennard-Jones) and electrostatic (Coloumbic) fields throughout the defined region. 

(vi) Partial least-square (PLS) analysis of the calculated energy values and the descriptor values 

to calculate the conventional r2, q2 (cross-validated r2), standard error of prediction (SEP) in 

order to identify the optimum number of components. (vi) Validation of CoMFA model by 

predicting the activity of the unknowns. A good CoMFA model should show satisfactory 

statistical significance, explanatory capability of the variance in the activity of the training set 

and the predictive power of the potency of the new compounds.114  Once an acceptable CoMFA 

model is generated, then it can be manipulated using various graphic techniques such as 

coefficient contour maps to understand the binding characteristics of the protein and the ligand. 

3.1.3. Points to consider before CoMFA analysis 

The application of any statistical method depends on a proper experimental design – in 

this case, an appropriate selection of training set from which a QSAR model is derived and a 

test set whose binding properties are to be predicted. When this is neglected in scenarios such 

as biased dataset or including molecules containing diverse functionalities, severe problems can 
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arise.116 Enough care must be taken such that the training set compounds should span at least 

3 to 4 log units to obtain a meaningful model. The structures of training and test set compounds 

should not be drastically different – usually congeneric series of ligands are preferred in order to 

derive meaningful models.  

3.1.4. Important concepts and their definitions used in QSAR analysis 

The following are the some of the important concepts and definitions used in 3D-QSAR 

analysis.  

Correlation Coefficient (R2): A parameter which measures how closely the observed 

data fits with the regression line. The value of R2 falls between 0 and 1. An R2 of 0 means there 

is no correlation between observed biological activity and the parameters selected for the study. 

Cross-validated  R2 (q2): A measure of ”goodness of internal prediction”. If q2 > 0.6, the 

model is considered fairly good. If q2 = 0.4 – 0.6, the model is questionable. If q2 < 0.4, the 

model is poor.   

Predictive correlation coefficient (R2
pred): For test set,  

 

where SSD = sum of squared deviations = Σ [(target data value) – (target data mean)]2 

PRESS = predictive sum of squares =  Σ [(target data value) – (corresponding predicted 

value)]2.  

Leave One Out (LOO) method: A method to determine how accurately a model will be 

able to predict data that it was not trained on. This is carried by training the model multiple times 

using all but one of the training set data points. This method is commonly used for cross-



47 
 

 

validation analysis. Sometimes, leave-N-out method is also used where more than one data 

points. 

Bootstrapping: A validation method used in QSAR analysis to calculate the confidence 

intervals (mean and standard deviation) for the parameters to be estimated.  

Root mean square error (s): A measure of the target property uncertainty that is still 

unexplained after deriving the QSAR equation. The magnitude of s is by the measurement scale 

of a target property. 

 

where n = number or rows and c = number of components 

QSAR equation: An equation that describes prediction of a target property based on an 

explanatory property, a set of coefficients and an intercept. For example, 

Prediction = intercept + (explanatory1 * coeff1) + (explanatory2 * coeff2) + … 

Fisher Statistics (F-ratio or F-value): A weighted ratio of explain/unexplained target 

property (R2/1-R2). A higher F-ratio in QSAR analysis is desired as this is an indication of 

significantly greater ability of the QSAR model to predicting the targeting property. 

Residual: The difference between actual and predicted value of a target property. A large 

residual value means that that particular compound is not appropriately modeled. 

Partial Least Square Analysis (PLS):  A powerful tool for deriving multi-linear 

relationships among columns of data. For a given data, PLS will look for linear expression 

relating column variance in target properties (Y-block) to variations in explanatory properties (X-

block) so as to minimize the sum of squares of deviations from the model thus produced.  
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Principal Component Analysis (PCA): A redundancy reduction mathematical procedure 

that transforms a number of possible correlated variables into a smaller number of uncorrelated 

variables called principal components. 

3.1.5. Scope of our study 

The aim of the present study is to understand the SAR of BACE1 inhibitors for which the 

IC50 values were measured in the same conditions. This analysis will help us not only to 

elucidate the binding characteristics of the enzyme, but also to predict binding affinity of future 

ligands.  

3.2. Experimental Methods 

3.2.1. Overall scheme for CoMFA analysis  

The overall scheme for our CoMFA modeling analysis is shown in figure 10.  Our strategy 

to perform CoMFA analysis consists of the following steps: (i) filter ligands whose activity is 

tested under identical conditions and sort them out in the training or test dataset; (ii) minimize 

the ligands and align them using ROCS; (iii) assign Gasteiger-Huckel charges; (iv) calculate 

CoMFA field values; (v) PLS analysis and deriving statistical parameters; and (vii) generate 

contour maps and explain the trend in activity. 
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Figure 10. Overall scheme of CoMFA modeling of BACE1 inhibitors 

 

3.2.2. Dataset for CoMFA analysis 

In the present work, a total of 51 BACE1 inhibitors were selected for CoMFA analysis.84-85, 

117-122  The general template for these compounds is illustrated in Figure 11. The reported 

compounds albeit belong to a congeneric series showed variations in the nature of the 

substituents and a broad inhibitory activity profile ranging from 2nM to 17 μM (4 logarithmic 

units) thereby making this dataset ideal for performing 3D-QSAR analysis. Because the 



50 
 

 

parameter q2 appears to be a necessary but not a sufficient condition for a model to have high 

predictive power, an emphasis has been given in the current study for validation of the 

developed models using an external test. Of the 51 compounds in the dataset, 44 of them were 

randomly chosen as training set and the remaining 7 as test set (bold entries in Table 2).  

 

Figure 11. Template of compounds and their corresponding BACE1 interaction sites 
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3.2.3. Preparation of ligands 

All our calculations were performed on a Linux workstation running Sybyl 9.0. The three-

dimensional structures of inhibitors were built starting from the X-ray structure of 2B8L, one of 

the most active BACE1 inhibitors. The X-ray structure of 2B8L ligand is used as a reference 

ligand for future alignment purposes. Initial optimization of the structures was carried out using 

the following settings: Tripos force field, BFGS method, gradient 0.0001 kcal/mol/Å, Gasteiger-

Huckel charges and 5000 iterations. Conformational energies were computed with electrostatic 

terms; the lowest energy structures finally minimized were used in alignment.  

3.2.4. Alignment methods for training and test dataset  

The most crucial point in 3D-QSAR analysis is the alignment of molecules in the test 

dataset because the CoMFA field values differ depending on the nature of the ligand pose. In 

our study, we used a relatively new alignment methods called Rapid Overlay of Chemical 

Structures (ROCS).115  In brief, ROCS performs fast, shape-based comparison based on the 

premise that molecules have similar shapes if their volumes overlay well and any mismatch in 

volume is a measure of dissimilarity. Prior to ROCS analysis, Gasteiger-Huckel charges were 

assigned. In this method, a smooth Gaussian function is used to represent the molecular 

volume in order to routinely minimize to the best global match. ROCS uses both shape and 

chemistry (donor, acceptor, cation, hydrophobicity, etc.) to identify the conformations that 

matches with the reference ligand. The best 3D overlay of each molecule in the data set, 

obtained using ROCS, was used as an input for CoMFA calculations. 

3.2.5. Biological Activity (IC50) and pIC50 calculations 

The biological activity of BACE1 inhibitors used in our calculations was tested in identical 

conditions.84-85, 117-122 The IC50 values were converted into pIC50 using: pIC50 = -log IC50. 
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3.2.6. Parameters for CoMFA analysis 

The CoMFA calculations were carried out by applying the default settings in the Sybyl 

program. To derive the CoMFA descriptor fields, a 3D cubic lattice with grid spacing of 2Å in x, y 

and z were created to encompass the aligned molecules. CoMFA descriptors were calculated 

using an sp3 carbon as a probe atom with a van der Waals radius of 1.52 Å  and a charge of 

+1.0 to steric (Lennard-Jones 6-12 potential) field energies and electrostatic (Coulombic 

potential) fields with a distance-dependent dielectric energy values at each lattice point were 

truncated at a default value of 30 kcal/mol.  

3.2.7. Partial least-square (PLS) calculations and validations 

To derive the 3D-QSAR, a partial least-square analysis (PLS) approach was used. The 

calculated CoMFA molecular fields were used as independent variables and pIC50 as dependent 

variable. The optimal number of components was determined using cross-validation and leave-

one-out method. To speed up the calculations, columns with values below 2.0 kcal mol-1 were 

filtered off, i.e., those columns (lattice points) whose energy variance is less than 2.0 kcal/mol is 

omitted from the analysis. The cross-validated R2 (q2) that resulted in optimum number of 

components and lowest standard error of prediction were taken for final analysis to 

calculateR2
pred, F-value and standard error of estimate (SEE). To further assess the robustness 

and the statistical confidence of the derived model, boot strapping analysis was performed.   

3.2.8. CoMFA contour maps 

The CoMFA contour maps were generated as a scalar product of coefficients and 

standard deviation associated with each column. The favored and disfavored levels are fixed at 

80% and 20%. Various colored fields are produced during visualization of CoMFA analysis. In 

CoMFA contour maps, the steric fields are shown in green (more bulk favored) and blue (less 
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bulk favored), whereas the electrostatic field contours are displayed in red (electronegative 

substituents favored) and blue (electropositive substituents favored).  

3.3. Results and Discussions 

The purpose of 3D-QSAR studies using CoMFA is to build statistical and graphical models 

in order to relate the properties of molecules (for example, IC50) to their chemical structures.123 

The statistical tools in 3D-QSAR include principal component analysis (PCA or factor analysis) 

for uncovering relationships between descriptors, partial least squares (PLS) regression in order 

to analyze continuous regression data (IC50, Ki, etc.). Bootstrapping and cross-validation 

techniques are used at the later stages of the analysis in order to test the predictive power of 

the 3D-QSAR model, to diagnose chance correlation and to ensure the robustness of a model. 

In 3D-QSAR analysis using CoMFA, the data and the results of the statistical analyses can be 

displayed as scatter plots, distributions or histograms for improved understanding.  Several 

publications have been reported that highlights the success of CoMFA. A 3D-QSAR model built 

using CoMFA can be used not only to predict the binding affinity of the unknowns but also as an 

aid during lead optimization/design process.104, 112-113, 123-126 A typical CoMFA analysis requires 

about 20 to 60 chemical compounds that meet the following requirements: (i) all the ligands bind 

to the same receptor in the same binding pocket in the same binding mode; (ii) the biological 

activity of these compounds must have been tested under identical conditions; (iii) ligands 

should be a part of a congeneric series and thus must be efficiently aligned; (iv) the compounds 

used in the dataset should have diverse functionalities and must display a broad activity range 

(at least 3 or more logarithmic units). In a typical 3D-QSAR analysis, a potent ligand is used as 

a template for aligning the remaining ligands in the database.  

In the current study, 51 hydroxyethylamine-, amine-, hydroxyl-derived BACE1 inhibitors 

has been used. All these inhibitors not only bind to the catalytic site of the enzyme BACE1, but 
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also display similar binding modes (based on X-ray data of the representative candidate 

ligands). The IC50 values of these inhibitors are measured using identical conditions. For 

simplification purposes, these 51 BACE1 inhibitors were divided into three series: Series – I 

comprises hydroxyethylamine derivatives, Series – II comprises of primary amine or hydroxyl 

derivatives and Series III comprises of 2° amine derivatives. Overall, all these inhibitors display 

diverse functionalities including polar, hydrophilic, hydrophobic, bulk groups. Further, the pIC50 

of these inhibitors range from 4.76 to 8.7 (about four logarithmic units) thereby making these 

inhibitors an ideal dataset for 3D-QSAR analysis. Table 2 lists the compounds chosen for our 

study. Once the 3D structures of these inhibitors have been built, they have been randomly 

divided into training and test set (entries in bold in Table 2) and proceeded for alignment.  In the 

present study, we used a relatively new alignment tool called ROCS that takes into account both 

shape and chemistry during superposition of molecules. For alignment purposes, the X-ray 

crystal structure of compound 38 has been used as a reference. The output conformations of 

ROCS were ranked according to their similarity with the template molecule using Tanimoto 

Coefficients. Every conformation of the inhibitors is then visually analyzed to identify the best 

conformer for CoMFA analysis. Figure 12 shows the alignment of minimized conformations of 

compounds in the CoMFA dataset generated using ROCS. 
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Figure 12. ROCS alignment of compounds used in training and test dataset 

 

3.3.1. CoMFA statistical analysis 

The correlation between experimental and predicted IC50 values of both training and test 

dataset used for CoMFA analysis is shown as a scattered plot (Figure 13) and tabulated in 

Table 2. The best CoMFA model yielded R2
NV = 0.97, R2

CV = 0.64, R2
LOO = 0.67, SEE = 0.154, F 

= 287.219 and NOC = 7. The fact that the residual values of the training set compounds is 

within ± 0.4 pIC50 represents the goodness fit of the QSAR model. The ultimate test for the 

predictability of a CoMFA model in the drug design process is to predict the biological activity of 

compounds in the test dataset. In our study, the predictive power of the CoMFA model for the 
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external dataset, calculated using Microsoft Excel based on the statistical parameters generated 

using CoMFA analyis (R2
pred) was found to be 0.74. Thus, our CoMFA model displays higher 

predictivity both in regular cross-validation as well as in the prediction of test set compounds 

indicating the robustness of the model. Furthermore, the statistical validity and the stability of 

the CoMFA model was assessed by performing bootstrap analysis for 10 runs. An R2
bs value of 

0.99 is a strong indication of the predictive power of our 3D-QSAR model. Finally, the ratio of 

steric to electrostatic field contributions was found to be 65.8: 34.2 indicating the dominance of 

steric contribution.  

Table 2 lists the experimental, predicted and the residual IC50 values of both the training 

and test dataset used for our CoMFA analysis. The histogram of residual values for the test 

molecules for CoMFA is shown in Figure 14. Compound 34 is predicted to have a maximum 

residual value. Inspection of aligned poses revealed that the 34 has a cyclopentanoyl group, a 

small size group compared to the bulky P3 group in the template compound 38. As mentioned 

in Chapter 2.3, the S3 site of BACE1 can adopt different conformations depending upon the 

nature of the P3 substituents. Both small and bulky P3 groups can be successfully 

accommodated and was shown to possess nM activity. For example, compound 36 has a 

smaller P3 group, yet better activity (IC50 = 35 nM). 
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Figure 13. Graph of actual vs. predicted activities of our best CoMFA model 
obtained for: (top) training dataset; (bottom) test dataset 
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Figure 14. Histogram of the residual values of test set compounds obtained for our 
CoMFA model 

 

3.3.2. CoMFA steric contour maps 

The 3D-QSAR contour maps from CoMFA analysis of BACE1 inhibitors in the training 

dataset illustrate clearly the steric and electrostatic requirements for ligand binding. It also tells 

how the variation in the physiochemical interactions (steric and electrostatic) of the training set 

compounds with the enzyme improves or decreases the activity.  

In the CoMFA steric contour maps, the favorable areas that can accommodate more bulk 

are indicated by green contours and the unfavorable steric areas in yellow. In figure 15, 

prominent green contours present at the vicinity of the P3 and P1‟ and P2‟ positions and a 

smaller green contour present at the P1 position indicate that steric bulk is favored at these 

positions. This is consistent with the experimental results: for example, in series-I, the smaller 

size of P3 in compound 24 (IC50 = 980 nM) is responsible for 10-fold less potency compared to 

the bulky P3 position in compound 39 (IC50 = 10 nM). Interestingly, the most active members, 

compounds 51 and 64 (IC50 = 2 nM) have less bulky steric substituents and are about five-fold 
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more active than 39. This is because the residues 9-14 forming the S3 site (10s loop) of BACE1 

is believed to exist in two or more conformations depending upon the size of the P3 

substitutents and h-bonding with Thr232.84 Ligands with a bulky P3 moiety modulate the 

enzyme and binds to it in an “up” conformation, whereas the ligand that has a smaller P3 moiety 

binds and binds to a “down” conformation. Compound 38 makes tight vdW contact with the „up‟ 

conformation of the BACE1 whereas compounds 51 and 64 binds to the “down” conformation of 

the enzyme but still maintains tight vdW contacts. The two green contours present at the P3 

positions is a reflection of two different classes of P3 substituents.  

The prominent green contours present at the P1‟ position parallels the trend observed in 

experimental activities as a result of altered steric bulk. For example, in series I, compound 41 

(R4 = H, IC50 = 23 nM) is about 1.5-fold less active than compound 39 (R4 = cyclopropyl, IC50 = 

10 nM). Similarly, for series III, as the size decreases from compounds 65 to 68, the activity 

increases: 65 (H, 117 nM), 66 (Me, 8 nM), 67 (Et, 7 nM) and 68 (n-Pr, 4 nM). Improved steric 

bulk at the P1‟ position favors inhibitory activity.  

In series III, compound 66 with the bulky isobutyl substituent at the P2‟ position has a 

better activity (IC50 = 8 nM) compared to the ethyl (71, 52 nM) or cyclopropyl (72, 24 nM). This is 

consistent with the green contour present at the S2‟ site.  

There is also a large yellow polyhedron at the P2‟ site which means steric bulk is 

unfavorable at this region. Inspection of compounds 73 and 74 revealed that the P2‟ groups of 

these compounds, N-benzyl and carboxy group of the prolyl moiety, respectively, are embedded 

in this unfavorable yellow contour region. Thus, the prediction from our CoMFA model that an 

increase in steric bulk in this yellow region leads to decreased activity is consistent with the low 

activity of 73 (139 nM) and 74 (17200 nM) compared to 72 (24 nM). 
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Figure 15. CoMFA steric contour map with the most active compound 51. Green and 
yellow polyhedra indicate regions where more steric bulk or less steric bulk, 

respectively, will enhance the activity 

 

3.3.3. CoMFA electrostatic contour maps 

In the CoMFA electrostatic maps, blue contours indicate the regions where electropositive 

groups increase activity, whereas the red areas indicate the regions where electronegative 

regions increase activity. The electrostatic contour map of our CoMFA model with the most 

active compound 51 is shown in figure 16.  

Majority of the compounds in our dataset, including the most active compounds 51 and 

64, has a 1° or 2° nitrogen at the P1‟ that perfectly entrenched into the positive charge favored 

blue contour region. It has been shown in X-ray analysis that these positively charged 1° or 2° 

nitrogen bind to the catalytic aspartic acid present in the binding site.  
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Interestingly, the negatively carboxylic acid moiety (P2‟ position) of compound 74 lies on 

the blue contour where positively charged moiety is preferred. This mismatch in electrostatic 

complementarity is one of the contributing factors for the poor activity of compound 50 in 

addition to the steric hindrance. 

The red contour in the vicinity of the P2 and P3 positions signifies the preference for 

electronegative groups at this region. Consistent with this, compounds 38 to 45 that contains 

electronegative oxygen (from keto group at R1) display better activity. From the X-ray crystal 

structure analysis, it was found that these keto oxygen atoms indeed hydrogen bond with Thr-

232 in the BACE1 binding site.  

Similarly, the red contour present the vicinity of P2 and P1 position is consistent with the 

presence of oxygen atom, which indeed was reported to bind to the backbone NH of Gln73.85 All 

the compounds in the dataset have oxygen at this position which is believed to be responsible 

for activity.  

The presence of oxygen at the vicinity of the P2‟ position in compounds 65 to 74 is 

reflected in the red contour map. Indeed, this oxygen is believed to engage in hydrogen bonding 

with the NH backbone group of Thr72.85 
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Figure 16. CoMFA steric contour map with the most active compound 51. Green and 
yellow polyhedra indicate regions where more steric bulk or less steric bulk, 

respectively, will enhance the activity 

 

3.3.4. CoMFA electrostatic contour maps 

In the CoMFA electrostatic maps, blue contours indicate the regions where electropositive 

groups increase activity, whereas the red areas indicate the regions where electronegative 

regions increase activity. The electrostatic contour map of our CoMFA model with the most 

active compound 51 is shown in figure 16.  

Majority of the compounds in our dataset, including the most active compounds 51 and 

64, has a 1° or 2° nitrogen at the P1‟ that perfectly entrenched into the positive charge favored 

blue contour region. It has been shown in X-ray analysis that these positively charged 1° or 2° 

nitrogen bind to the catalytic aspartic acid present in the binding site.  
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Interestingly, the negatively carboxylic acid moiety (P2‟ position) of compound 74 lies on 

the blue contour where positively charged moiety is preferred. This mismatch in electrostatic 

complementarity is one of the contributing factors for the poor activity of compound 50 in 

addition to the steric hindrance. 

The red contour at the vicinity of the P2 and P3 positions signifies the preference for 

electronegative groups at this region. Consistent with this, compounds 38 to 45 that contains 

electronegative oxygen display better activity. From the X-ray crystal structure analysis, it was 

found that these oxygen atoms indeed hydrogen bond with Thr-232 present at the BACE1 

binding site.  

Similarly, the red contour present the vicinity of P2 and P1 position is consistent with the 

presence of electronegative oxygen atom, which indeed was reported to bind to the backbone 

NH of Gln73.85 All the compounds in the dataset have electronegative oxygen at this position 

which is believed to be responsible for activity.  

The presence of electronegative oxygen at the vicinity of the P2‟ position in compounds 

65 to 74 is reflected in the red contour map. Indeed, this oxygen is believed to hydrogen bond 

with the NH backbone of Thr72.85  
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Figure 17. CoMFA electrostatic contour map with the most active compound 51. 
Blue contours indicate regions where electropositive groups increase activity, whereas 

red contours indicate regions where electronegative groups increase activity 
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Series-I 

 

S.No R1 R2 R3 R4 IC50 

(nM) 

IC50 Residuals 

Actual CoMFA 

24 

 

Me Me 
 

980 6.01 6.28 -0.27 

25 

 

Me Me 
 

1500 5.82 5.88 -0.06 

26 

 

Me Me 
 

1400 5.85 5.96 -0.11 

27 

 

Me Me 
 

5500 5.26(R) 5.44 ( R) -0.18 (R) 
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5.26 (S) 5.35 (S) -0.09 (S) 

28 

 

Me Me 
 

98 7.01 6.60 0.41 

29 

 

Me Me 
 

5900 5.23 ( R) 

5.23 (S) 

5.14 ( R) 

5.02 ( S) 

0.09 ( R) 

0.21 (S) 

30 

 

Me Me 
 

1300 5.89 5.87 0.02 

31 
 

Me Me 
 

4630 5.33 5.35 -0.02 

32 

 

Me Me 
 

450 6.35 6.59 -0.24 

33 

 

Me Me 
 

240 6.62 6.64 -0.02 

34 

 

Me Me 
 

180 6.74 5.65 1.09 
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35 

 

Me Me 
 

730 6.14 6.07 0.07 

36 

 

Me Me 
 

35 7.46 6.74 0.72 

37 

 

Me Me 
 

420 6.38 6.26 0.22 

38 

 

Me Me 
 

15 7.82 7.60 0.22 

39 

 

Me Me 
 

10 8.00 7.62 0.38 

40 

 

Me H 
 

63 7.2 7.42 -0.22 

41 Me Me H 23 7.64 7.65 -0.01 
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42 

 

Me Me Et 15 7.82 7.82 0 

43 

 

Me Me t-Bu 15 7.82 7.96 -0.14 

44 

 

i-Pr Me 

 

41 7.39 7.64 -0.25 

45 

 

NMe2 Me 

 

14 7.85 7.67 0.18 
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Series-II 

 

S.No R1 R2 R4 R5 R6 X IC50 

(nM) 

IC50 (nM) Residual 

Actual CoMFA 

46 Me H H Me 

 

OH 74 7.13 7.29 -0.16 

47 Me H n-Bu Me 

 

OH 13 7.89 7.63 0.26 



70 
 

 

48 Me H n-Bu Me 

 

NH2 9 8.05 8.25 -0.20 

49 Me H H Me Ph NH2 34 7.47 7.29 0.18 

50 Me H n-Bu Me Ph NH2 20 7.7 7.17 0.54 

51 Me H -(CH2)2CF3 Me Ph NH2 2 8.7 8.67 0.03 

52 Me H n-Bu Me 3-Thiophenyl- NH2 11 7.96 8.09 -0.13 

53 Me H Me Me 3-Thiophenyl- NH2 32 7.49 7.57 -0.08 

54 Me Me n-Bu Me Ph NH2 31 7.51 7.39 0.13 

55 Me Me n-Bu n-Pr Ph NH2 39 7.41 7.39 0.02 

56 Me Me (R)-CH2OMe Me Ph NH2 24 7.62 7.55 0.07 

57 Me Me (R)-CH2OEt Me Ph NH2 24 7.62 7.65 -0.03 

58 Me (CH2)3

OMe 

(R)-CH2OMe Me Ph NH2 6 8.22 8.27 -0.05 
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59 Me H H Me Ph OH 1100 5.96 5.80 0.16 

60 Me H H i-Pr Ph OH 14 7.85 7.669 0.18 

61 Me H H Me Ph NH2 34 7.47 7.53 -0.06 

62 Me Me MeOCH2 Me Ph NH2 12 7.92 7.91 0.01 

63 Me Me CH2F i-Pr Ph NH2 18 7.74 7.84 -0.10 

64 Me H CH2F i-Pr Ph NH2 2 8.7 8.52 0.18 
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Series III 

 

S.No R1 R2 IC50 (nM) IC50 Residual 

Actual CoMFA 

65 H 

 

117 6.93 7.29 0.36 

66 Me 

 

8 8.1 8.01 0.09 

67 Et 

 

7 8.15 7.96 0.19 

68 n-Pr 

 

4 8.4 8.15 0.25 
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69 -CH2CH2OH 

 

13 7.89 8.05 -0.16 

70 -CH2CH2SO2Me 

 

13 7.89 7.90 -0.01 

71 Me NHEt 52 7.28 7.35 -0.07 

72 Me NHc-Pr 24 7.62 7.3 0.32 

73 Me NHBn 139 6.86 6.79 0.07 

74 Me Proline 17200 4.76 4.83 -0.07 

 

Table 2. Structures and activities of BACE1 inhibitors used in CoMFA modeling. Test set compounds are highlighted 
in bold. 
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3.4. Conclusions 

The application of 3D-QSAR models for the prediction of binding affinity, hit-to-lead 

optimization, and evaluation of toxicity is continuously emerging. In the current study, a 3D-

QSAR CoMFA model was developed using a diverse set of BACE1 inhibitors that displayed a 

broad range of potency. This study further enhances our current understanding of BACE1 

inhibitors implicated in the treatment of Alzheimer‟s disease. The main conclusions emerged 

from this study are:  

The reported 3D-QSAR models are statistically significant thereby demonstrating a sound 

SAR for inhibitors that bind to the catalytic site of BACE1. For CoMFA analysis, the statistical 

parameters are: R2
NV = 0.98, R2

CV = 0.64, R2
LOO = 0.67, SEE = 0.154 and F = 287.219.  This 

high statistical significance illustrates that these diverse inhibitors share structural 

commonalities important for binding to BACE1. This model should be useful for the 

identification, design and development of potential BACE1 inhibitors. 

The BACE1 binding site regions derived from the CoMFA analysis are consistent with the 

physical structure of the BACE1 ligand binding site as explained in the discussion section. The 

CoMFA contour map correctly identifies the impact of more/less bulk group or 

electropositive/electronegative groups on the IC50 values. 

We demonstrated that the CoMFA model generated in this study has good predictive 

capability with low residuals to estimate the BACE1 binding affinity of an external test set. We 

would like to point out that the best CoMFA model generated for the current training and test 

dataset can be further refined by scrambling the compounds to increase the activity range of the 

test dataset.  
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