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SUMMARY 

Retina is a sensory tissue located at the back of the eye which is often considered crucial for 

diagnosis of systematic diseases and retinopathies. Therefore, quantitative retinal imaging and 

developing imaging biomarkers are of great scientific and clinical interest. In current literature, 

color fundus photography has been most commonly used for eye disease screening, diagnosis and 

treatment assessment, but the spatial resolution and image contrast are limited to reveal subtle 

distortions in early stages of eye diseases. Other imaging modalities such as scanning laser 

ophthalmoscopy (SLO) and adaptive optics (AO) imaging systems are unable to differentiate 

individual retinal neural layers and vascular plexuses. In recent years, optical coherence 

tomography (OCT) has been extensively employed for depth-resolved examination of 

morphological abnormalities due to its unprecedented capability to differentiate individual 

functional layers. Adding power to the OCT, OCT angiography (OCTA) is a new imaging 

modality that provides high resolution blood flow information in individual retina plexuses. 

However, since it is a new imaging modality, quantitative OCTA analysis and investigative studies 

are required to standardize objective interpretation of clinical outcomes.  

In this dissertation, extensive studies have been conducted to investigate OCTA features for 

quantitative analysis and objective classification of different retinopathies. Within the overarching 

scope of this dissertation, new OCTA imaging biomarkers were developed, strategies for artery-

vein (AV) classification in OCTA were demonstrated, and the OCTA features were demonstrated 

and validated for diagnostic analysis and machine learning based automated classification of 

retinal diseases.  

In the initial projects, technical developments focused on developing the OCTA features based 

on morphological changes in the retina due to abnormalities. The developed OCTA features are 
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able to characterize microvascular, structural, geometric, branchpoint and complexity based 

abnormalities in different retinal layers. Using the OCTA features, we analyzed diabetic 

retinopathy (DR), sickle cell retinopathy (SCR), and diabetic macular edema (DME) patient data 

and observed that the OCTA feature were quite sensitive to identify subtle changes to detect early 

onset of diseases, progression to later stages and even predict the effect of anti-vascular endothelial 

growth factor (VEGF) treatment on visual acuity.   

As part of continuous effort to develop sensitive OCTA features, we focused on differential 

artery-vein (AV) analysis in the retina. From clinical studies in the literature, it was observed that 

the physicians have found that, the artery and veins can be affected by retinopathies in different 

way. So, we wanted to improve the sensitivity of OCTA features for disease classification. 

However, there are no current AV classification techniques in OCTA. Therefore, few projects in 

this dissertation focused on technological development of AV classification methods in OCTA. 

Furthermore, the AV classification capability in the OCTA images allowed for differential analysis 

on DR and SCR OCTA data which revealed that AV ratio of blood vessel caliber and tortuosity 

were quite sensitive compared to mean value.  

Upon the OCTA feature development, we employed machine learning based techniques for 

automated image classification of DR and SCR stages. Furthermore, a multi-task classification 

tool was introduced that can utilize OCTA images and a support vector machine classifier for 

hierarchical tasks such as, i) control vs disease classification, ii) DR vs SCR classification, and iii) DR and 

SCR staging.  We further presented transfer learning based DR classification and a novel 

convolutional neural network (CNN) for AV classification in OCTA.  

Utilizing the developed OCTA imaging biomarkers, AV classification techniques and AI 

based classification tools demonstrated in this dissertation can be beneficial in providing 
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diagnostic support to ophthalmologists and efficient clinical screening of different types of 

retinopathies. 
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CHAPTER I. INTRODUCTION 

Retina is a sensory membrane located at the back of the eye. Color fundus photography has 

provided valuable information for eye disease screening, diagnosis and treatment assessment, but 

the spatial resolution and image contrast are limited to reveal subtle distortions in early stages of 

eye diseases. Scanning laser ophthalmoscopy (SLO) [1, 2] and adaptive optics (AO) [3-5] imaging 

systems provide enhanced image resolution, and fundus angiography [6, 7] allows better contrast 

of retinal vasculatures.  However, these imaging approaches lack sectioning capability to 

differentiate individual retinal neural layers and vascular plexuses. It is known that different 

diseases and stages can target retinal neurons and vasculatures in different ways. Given the 

unprecedented capability to differentiate individual functional layers, optical coherence 

tomography (OCT) [8] has been extensively employed for depth-resolved examination of 

morphological abnormalities caused by eye diseases [9-11]. As a new OCT modality, OCT 

angiography (OCTA) provides a noninvasive method to differentiate individual plexus layers in 

the retina [12, 13]. Since its first commercial product in 2014, OCTA has quickly demonstrated its 

excellence in clinical management of age-related macular degeneration (AMD) [14], diabetic 

retinopathy (DR)[15, 16], glaucoma [17, 18], sickle cell retinopathy (SCR) [19] and other eye 

diseases. Quantitative OCTA analysis is essential to standardize objective interpretation of clinical 

outcomes.  

In this dissertation, extensive investigation of multiple OCTA features have been conducted 

for quantitative analysis and objective classification of different retinopathies. In multi-fold 

applications, we developed new OCTA imaging biomarkers, demonstrated strategies for artery-

vein (AV) classification in OCTA, and employed the OCTA features for diagnostic analysis and 

machine learning based automated classification of retinal diseases. This chapter provides some 
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necessary background of the topics covered and describes the innovation, significance and specific 

aims of this dissertation.   

1.1 Background 

1.1.1 Retina 

Retina is a transparent tissue with an overall thickness of 150 to 300 ɛm (in human eye), located 

at the back of our eye (Fig.1.1). As light enters the eye, it passes through the optical components 

(i.e. cornea, lens, pupil, aqueous humor etc.) of the eye and forms image at the retina. The image 

is converted to synaptic electric signals by photoreceptors within the retina, which send the signal 

downstream to retinal cells and eventually to the brain through nerve bundles and optical nerve 

head (ONH). Since the retina is connected to the brain through the ONH and nerve bundles, it is 

often considered a part of the brain and nervous system. Naturally, many symptoms and 

abnormalities of different systematic diseases manifest in the different retinal layers. This makes 

retina a crucial tissue for diagnosis of such diseases.  

 

Figure 1.1. Anatomy of the eye, retina, and photoreceptors. (A) Cross-sectional eyeball image with 

major structures. (B) Retina with major cell types and layers marked. (c) Rod and cone 

photoreceptors. (A) is reprinted from [20] with permission; (B) is reprinted from [21] with 

permission; (C) is reprinted from [22] with permission. 
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 Retina is divided into several layers (Fig. 1.1 (B)). The inner plexiform layer (IPL), outer 

plexiform layer (OPL) and choroidal capillary plexus (CCP) are layers with vascular structures. 

These layers are of particular interest to observe systematic abnormalities in vascular and capillary 

structure and geometry due to diseases such as diabetes, diabetic retinopathy (DR), age related 

macular degeneration (AMD) and sickle cell retinopathy (SCR). Non-vascular layers such as 

ganglion cell layer (GCL), retinal pigment epithelium layer (RPE), photoreceptor inner and outer 

segment layers (IS/OS) are of particular interest to observe functional changes in retina due to 

degenerative diseases like AMD or Alzheimerôs. Photoreceptor layers contain two types of 

photoreceptors called rods and cones (Fig. 1.1 (C)). Rods are generally sensitive to light, 

responsible for lower light vision, and larger in number. Cones are responsible for color vision, 

less sensitive to light and smaller in number. Both rods and cones show response to light or 

darkness and this response is one of the most important biomarkers for visual acuity and to 

diagnose abnormalities due to retinal diseases. Apart from photoreceptors, retina also contains 

different cell bodies and dendrites from neurons like ganglion cells, bipolar cells, amacrine cells 

etc. These cellular bodies have their own function and are crucial for proper vision formation [20]. 

1.1.2 Retinopathies 

In this dissertation, different studies have primarily focused on two different retinopathies, i.e., DR 

and SCR. Both these retinopathies are of significant public health interest. Brief background of 

DR and SCR is provided in the following section. 

Diabetic retinopathy (DR) 

DR is a major manifestation of diabetes and one of the major cause of preventable blindness 

worldwide [23]. According to the World Health Organization (WHO), nearly 35-45% patients with 
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diabetes are prone to vision impairment due to DR. By the year 2040, nearly 224 million people 

worldwide will be living with some form of DR (Fig. 1.2 (A)). The early stages of DR can be 

initially asymptomatic and if not treated and cause low vision and even blindness. DR can trigger 

retinal blood vessels to leak blood and fluids to produce pathological features such as 

microaneurysms, exudates, venous beadings, cotton wool spots etc. These symptoms are generally 

seen in earlier stage, called non-proliferative stage (NPDR, Fig. 1.2 (B)). NPDR has three sub-

stages: mild, moderate and severe. 

 

Figure 1.2. (A) WHO report to predict vision impairment due to DR; (B) Fundus image showing 

symptoms of NPDR; (C) Fundus image showing symptoms of PDR. Reprinted with permission 

from [24]. 
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As the disease progresses, more severe and vision threatening symptoms manifest in the 

retina. Due to vessel dropouts, there is shortage of Oxygen in retinal tissues. These tissues release 

vascular endothelial growth factor (VEGF) to signal the oxygen shortage to the brain. With the 

increase of VEGF, new and unstable blood vessels grow in the corresponding tissue area. This 

process is called angiogenesis and neovascularization. These neovascular structures are abnormal 

and unable to handle blood pressure, causing blood leakage and hemorrhages in retina tissues. This 

stage of DR is called proliferative DR (PDR). PDR is really dangerous and can cause irreversible 

damage to the retina. Both early onset of DR (mild DR) and DR progression are equally important 

from the viewpoint of managing treatment of diabetes and DR patients.       

Sickle cell retinopathy (SCR) 

Sickle Cell Disease (SCD) is an inherited red blood cell disorder that affects 90,000 ï 100,000 

Americans [1], making it one of the most prevalent genetic disorders in the United States [2]. 

Normally, the red blood cells with hemoglobin have disc shapes, which enable them to be flexible 

and move through the large vessels and smaller capillary structures flexibly. In Sickle Cell Disease 

(SCD), red blood cells deform into a C-shaped ñsickleò cell. When sickle cells travel through small 

blood vessels, they can get stuck and occlude blood flow and thus prevent oxygen from reaching 

vital tissues. Consequently, patients with SCD suffer from microvascular occlusions in various 

parts of their body, including the retina. Sickle cell retinopathy (SCR) is one of the major ocular 

manifestations of SCD. The underlying systemic and ocular manifestations of SCD are a result of 

vaso-occlusive ischemia due to the blocking of blood vessels by sickle-shaped erythrocytes [25]. 

Common symptoms of SCR are vessel tortuosity, dilation, sea-fac neovascularization in peripheral 

retina and vessel dropout (Fig. 1.3). 
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Figure 1.3. Common symptoms of SCR shown in (A) fundus, (B) Fluorescein angiography and 

(C) OCTA images. (A) was reprinted with permission, Image was originally published in the 

Retina Image Bank® website. Author. Henry J Kaplan. Title: Sea fan peripheral retinal 

neovascularization in sickle cell anemia. Retina Image Bank. 2015; 18293. © the American 

Society of Retina Specialists [26]. (B) was reprinted with permission [27], Image Courtesy of 

Optos. 

 

1.1.3 OCT and OCTA 

OCT is a standard imaging and diagnostic tool widely used in clinical settings. Using coherence grating, 

OCT can achieve high axial resolution to observe cross-sectional retinal layers. OCT has different 

modalities such as time domain (TD) and Frequency domain (FD). FD-OCT has two modalities such as 

spectral domain (SD) and swept-source (SS) OCT. Figure 1(A) illustrates a schematic diagram of a sample 

SD-OCT system used in some of the studies conducted in this dissertation. The light source of the OCT 

system is a near infrared (NIR) superluminescent diode (SLD; DȤ810ȤHP, Superlum, Cork, Ireland), which 

has a center wavelength 810 nm (bandwidth: 760-860 nm. A fiber coupler with a splitting ratio of 90:10 

divides the SLD light into sample and reference arms. In the sample arm, the light is delivered to the eye 

through relay optical lenses. One pairs of scanning mirrors are used to produce two-dimensional scanning 

over the retina for OCT acquisition. A 70,000 Hz line-scan CCD camera with 2,048 pixels is used in the 

OCT spectrometer. The axial and lateral resolutions are estimated at 3 µm and 12 µm, respectively. A pupil 

camera iss used to aid retinal localization, and a fixation target with dim green light is used to minimize 

voluntary eye movements. For OCT recording, the illumination power on the cornea was set at ~600 ɛW. 
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A sample B-scan OCT is shown in Fig. 1.4 (B). Figure 1.4 (C) is an enface OCT image, generated from 3D 

projection of the whole OCT slab.  

OCTA images are 3D projection images obtained from repeated OCT-scans that show high-resolution 

microvascular structures in the retina. Individual layers of OCT can be segmented, and flow information 

can be obtained by acquiring multiple images in each frame. Motion contrast in these repeated scans are 

utilized to generate volumetric high-resolution blood flow information. Although the OCTA images are 

obtained using an OCT system, it generally requires higher imaging speed. There are several algorithms 

that are established in the literature for OCTA reconstruction, such as a split-spectrum amplitude 

decorrelation angiography (SSADA), optical microangiography (OMAG), correlation mapping and speckle 

variance [28].  In the Fig. 1.4, four B-scan OCTs were acquired from macular region, and speckle variance 

processing was used for OCTA image construction (Fig. 1.4 (D).  

 

Figure 1.4. (A) Schematic of a representative OCT/OCTA system. CL: collimation lens; DM: 

dichroic mirror; Lenses: L1, L2, L3, L4, L5, L6, L7, L8; NDF: neutral density filter; PC: 
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polarization controller; SLD: superluminescent diode; DM: dichroic mirror; BS: beam splitter. 

Representative (B) B-scan OCT, (C) Enface OCT and (D) OCTA image. 

 

1.2 Overview of the dissertation research 

1.2.1 Significance 

As one leading cause of blindness, DR affects 40-45% of diabetic patients [29]. An estimated 425 

million adults have diabetes worldwide, corresponding to 12% ($727 billion) of global health 

expenditures. In United States (US) alone, total annual cost of diabetes was estimated as 245 billion 

dollars in 2012 [29]. There are 30.3 million Americans with diabetes and additional 84.1 million 

Americans with prediabetes. Early detection, prompt intervention, and reliable assessment of 

treatment outcomes are essential to prevent irreversible visual loss from DR. 98% of DR related 

vision loss is preventable, if early detection and adequate treatment are available [30]. However, 

1 in 2 diabetes remains undiagnosed worldwide, while 1 in 4 diabetes remains undiagnosed in US. 

Current challenge of DR detection and management: Retinal vascular abnormalities, such as 

microaneurysms, hard exudates, retinal edema, venous beading, intraretinal microvascular 

anomalies and retinal hemorrhages are common DR findings [31]. Therefore, imaging examination 

of retinal vasculature is important for DR diagnosis and treatment evaluation. Fundus photography 

has been used for clinical assessment of retinal vasculature. However, traditional fundus 

photography has limited sensitivity to reveal subtle abnormality correlated with early DR [32-35]. 

FA imaging can be used to improve imaging sensitivity of retinal vascular distortions in DR [36, 

37]. However, FA requires intravenous dye injections, which may produce side effects and 

requires following monitoring and management carefully.  
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OCTA provides a noninvasive method for better visualization of retinal vasculatures. OCTA 

allows visualization of multiple retinal layers with high resolution, and thus it is more sensitive 

than FA in detecting subtle vascular distortions correlated with early eye conditions. OCTA has 

been commercially available for clinical use since 2014. However, current clinical OCTA relies 

mainly on visual inspection of changes in retinal vessels by clinicians. The clinical utility is not 

yet fully determined.   

Quantitative analysis and objective classification promise additional power to clinical 

OCTA : Digital quantification of angiographic characteristics will be of great benefit for clinical 

uses. We have developed quantitative OCTA features  to demonstrate objective classification of 

DR  and sickle cell retinopathy (SCR) [38]. Further development of quantitative OCT/OCTA 

features have enabled machine learning (ML) based artificial intelligence (AI) classification useful 

for automated DR detection, prediction and assessment of treatment outcomes. Furthermore, 

similar strategies could be easily adapted to other diseases such as SCR or AMD/ 

Differential artery -vein analysis promises better DR detection and classification: It is known 

that different diseases and progressing stages affect arteries and veins differently. For example, 

venous loops, venous beading [39-42] and arterial narrowing [43-45] have been reported in DR 

and SCR patients. Therefore, differential AV analysis can provide early detection, better DR 

classification and treatment assessment. However, clinical OCTA instruments lack the capability 

of AV differentiation. We have demonstrated the feasibility of using color fundus image to guide 

AV differentiation in OCTA.  Differential AV analysis improved the sensitivity of OCTA 

detection and staging of DR. However, clinical deployment of this method is difficult due to the 

requirement of two clinical instruments, i.e., fundus photography and OCTA, and sophisticated 
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image registration needed. During this project, we have explored quantitative feature analysis of 

OCT, which is concurrently captured with OCTA, to guide AV differentiation in OCTA. 

Scientific premise of this dissertation was developed in initial stages with preliminary 

demonstration of quantitative OCTA analysis [38], AV differentiation [46], an validation of 

objective OCTA classification of DR and SCR. During the later stage of the dissertation we have 

refined and extended the differential AV analysis with OCT, established correlation between 

OCT/OCTA features and clinical changes in retina, and validated them for automated detection, 

classification, and treatment assessment of retinopathies.    

Broad impacts: The success of the projects in this dissertation can integrate a novel capability to 

obtain objective OCTA feature quantification and achieve computer-aided classification of 

retinopathies. The proposed algorithms for quantitative analysis of blood vasculatures can be 

readily adapted for computer-aided classification of other retinal diseases that are known to cause 

distortions of retinal blood vasculatures. 

1.2.2 Innovation 

OCTA is a relatively new modality of OCT technology to visualize retinal and choroidal vessel 

morphologies. Compared with traditional imaging technologies for retinal vessel measurements, 

such as FA [47], indocyanine-green angiography [48], laser Doppler flowmetry ([49]), and laser 

speckle imaging [50], OCTA does not require dye injection, and retinal and choroidal vessel 

morphology can be visualized and analyzed layer-by-layer at a high spatial and temporal 

resolutions. OCTA allows study of microvascular structures that cannot be easily achieved by 

conventional methods [51-58].  
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This presented studies in this dissertation have several technical and scientific innovations outlined 

as follows. 

a. Differential analysis and branchpoint analysis have been demonstrated for quantifying 

OCTA images from DR and SCR. Our studies demonstrated the feasibility of branchpoint features 

in OCTA and also showed that differential AV analysis improved the sensitivity of quantitative 

OCTA features.  

b. Enface OCT image guided artery-vein classification and differential analysis has been 

employed to establish an efficient clinical deployment of the proposed algorithms. In our 

preliminary study, we introduced a fundus image guided AV classification in OCTA. Using two 

separate devices and integrating the clinical data form them is quite difficult and not efficient in a 

clinical setting. Enface OCT image guided AV classification in OCTA would require a single 

device to capture image data and remove the requirement of image registration and multiple post-

processing protocols, making it effective in a clinical setting. This algorithm can be easily 

integrated with commercial devices that can generate enface OCT and OCTA images. This 

integration will allow automated AV classification in OCTA and differential analysis for treatment 

evaluation and assessment by the clinicians.   

c. Comprehensive OCTA features have been classifying and predicting DR, SCR and DME. 

Our studies are the first in literature to utilize OCTA features for ML based objective classification. 

We demonstrated the combination of OCTA features and ML strategies could lead to a robust 

accuracy of diagnosis of DR, SCR and their different stages. Our OCTA study of diabetic macular 

edema (DME) with anti-VEGF treatment has also shown that blood vessel density in the 

superficial retinal layer can serve as an objective biomarker predictive of visual improvement. We 
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anticipate that such comprehensive analysis to identify objective biomarkers for prediction and 

evaluation of treatment outcomes will be beneficial for future clinical deployment.   

d. Optimal-feature-combination has been employed to improve the performance of computer 

aided classification of retinopathies. During this project, we demonstrated a study that combines 

backward elimination and multivariable regression model to identify OCTA features and 

weighting factors to achieve optimal-feature-combination for robust multi-disease classification 

and staging. 

e. Deep learning based applications have been showed for objective disease classification and 

AV identification applications. We are the first in literature to propose a way to compensate for 

the smaller OCTA data in deep learning by using a transfer learning based strategy. We 

demonstrate that, a transfer learning based classifier is able to provide a good classification 

accuracy to distinguish control, no DR and DR subjects. Furthermore, we also demonstrate a novel 

strategy for deep learning based AV classification.  

1.2.3 Specific Aims 

This dissertation study aims to determine quantitative features in OCTA of various ocular diseases 

such as DR and SCR and validate comprehensive OCTA features for ML based automated 

classification of retinopathies. Successful implementation of this project will standardize OCTA 

features for objective detection, prediction and assessment of ophthalmic treatment outcomes.   

As a leading cause of preventable blindness, DR affects 40-45% of diabetic patients. An 

estimated 425 million adults have diabetes worldwide, corresponding to 12% ($727 billion) of 

global health expenditures [29]. Early detection, prompt intervention, and reliable assessment of 

treatment outcomes are essential to prevent irreversible visual loss from DR. Retinal vascular 
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abnormalities, such as microaneurysms, hard exudates, retinal edema, venous beading, intraretinal 

microvascular anomalies and retinal hemorrhages are common DR findings [31]. The use of 

OCTA to provide depth-resolved imaging capability to differentiate individual capillary plexuses 

has been applied to DR and other retinovascular diseases. However, the clinical utility is not yet 

fully determined.  Quantitative OCTA analysis of retinal diseases holds promise, since translating 

subjective findings into objective assessments [59] will standardize OCTA analysis, which is 

essential prior to its use in assessing treatment outcome. In addition, objective OCTA analysis may 

provide potential telemedicine applications in rural and underserved areas where the access to 

experienced ophthalmologists is limited.  

Aim 1: To establish quantitative OCTA features.  This aim is to quantify micro-vascular 

abnormalities in retina using OCTA images and correlate OCTA features with patho-physiological 

changes due to retinopathies such as DR or SCR. Under this aim, we have, 1) demonstrated the 

potential of quantitative OCTA analysis for objective detection of DR  and SCR ; 2) predicted the 

extent of visual improvement after ranibizumab treatment for diabetic macular edema (DME) 

patients with OCTA quantitative OCTA biomarkers [60]; 3) developed a new set of OCTA 

features for branch-point analysis and demonstrated their potential for DR staging [61]; 4) 

developed multiple novel algorithms for AV classification; 5) demonstrated deep learning based 

AV classification technique; and 6) demonstrated differential AV analysis improved OCTA 

feature sensitivity in both DR [62] and SCR [63]. Key success criterion of this work is to establish 

quantitative OCTA features, identify the most sensitive features to detect onset and progression of 

retinopathies. 

Aim 2: To validate objective OCTA classification of retinopathies. Using the quantitative 

OCTA features demonstrated in aim 1, this aim is to explore computer-aided classification using 
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modern machine learning techniques. Under this aim, we have, 1) tested a support vector machine 

(SVM) based classifier to demonstrate objective OCTA classification of DR  and SCR [38]; 2) 

employed supervised machine learning to conduct multi-disease classification [64]; 3) employed 

hierarchical backward elimination for identifying the optimal-feature-combination for the multi-

task, multi-disease classification; and 5) validated transfer learning based deep-learning approach 

for objective classification of DR [65]. Key success criterion of this work is to establish computer 

aided diagnostic system for mass-level screening of retinopathies.  

Anticipated impacts: The successful clinical implementation of these project will establish 

quantitative OCTA features with subclinical sensitivity, enabling early detection of systematic 

retinopathies, and computer-aided classification. 

1.2.4 Structure of the dissertation 

The overall structure of this dissertation covers multiple projects that fall under three primary 

topics: quantitative OCTA feature analyses, AV classification and artificial intelligence 

applications.  All studies are not absolutely independent of each other and have correlations. 

Chapter II explores the development of OCTA features, their rationale, correlation to 

morphological applications and varied applications. It has been divided into five sub-sections. Sub-

section 1 and 2 demonstrate the quantitative characteristics of OCTA features in SCR and DR data, 

respectively. Sub-section 3 describes a study that analyzes OCTA features in DME for the 

prediction of visual acuity after treatment with anti-VEGF. Overall these three sub-sections 

establish the blood vessel density (BVD), parafoveal avascular density (PAD), blood vessel 

tortuosity (BVT), blood vessel caliber (BVC), vessel perimeter index (VPI), foveal avascular zone 
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(FAZ) area (FAZ-A) and contour irregularity (FAZ-CI) as quantitative OCTA imaging biomarkers 

for SCR, DR and DME.  

After initial exploration with the OCTA features, sub-sections 4 and 5 of chapter II delve into 

further development of OCTA features that describe changes in overall geometry, branching 

pattern and complexity due to manifestation of retinopathies and their progression. Sub-section 4 

describes the branchpoint analysis to establish OCTA features such as vessel branching coefficient 

(VBC), vessel; branching angle (VBA) and vessel width ratio (VWR) for quantifying DR subjects. 

Sub-section 5 develops complexity based features and window based measurement strategy that 

can quantify the progression of DR from NPDR and PDR by quantifying localized complexity in 

capillary structures.  

Chapter III  describes the projects for developing AV classification techniques and differential 

analysis in OCTA. The sub-section 1 describes our developed AV classification strategy in fundus 

image using optical density ratio and vessel tracking. This algorithm serves as a base for the 

following study, that demonstrates a fundus image guided AV classification strategy for OCTA 

(sub-section 2). This section also shows the first ever demonstration of differential AV analysis in 

DR OCTAs and it is observed that the differential AV analysis improves the sensitivity of OCTA 

features for disease classification. The sub-section 3 replicates the study in DR in SCR data and 

shows that for SCR, veins are pre-dominantly affected more that arteries as disease manifests and 

progresses.        

Sub-section 4 and 5 develop OCT guided AV classification techniques for efficient clinical 

deployment of differential AV analysis. Using OCT instead of fundus to guide the artery-vein 

classification removes pre and post processing steps like image normalization and registration. 

Furthermore, OCT and OCTA data come from single device that makes the overall process more 
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efficient and less time consuming. Two OCT guided approaches i.e. enface OCT intensity profile 

based strategy (sub-section 4) and OCT oximetry based strategy (sub-section 5) have been 

described in this chapter. 

Chapter IV demonstrates the use of established OCTA features for ML based automated 

classification. In sub-section 1 and 2, OCTA based objective classification and staging of SCR and 

DR are described. In sub-section 3, a multi-task hierarchical classification strategy is described 

that utilizes backward elimination technique to identify the most optimal features set for each 

classification task. The hierarchical tasks are: i) control vs disease, ii) DR vs SCR and iii DR and 

SCR staging.   

Sub-section 4 and 5 of chapter IV extends the AI studies into deep learning based applications. 

In two sub-sections, we describe i) a transfer learning based strategy to utilize convolutional neural 

networks (CNNs) for DR classification, and ii) a U-Net based CNN architecture for AV 

classification using bot OCT and OCTA images.  

Finally, chapter V summarizes the results of all the investigated studies and discusses future 

direction and challenges in effective clinical deployment of developed technology.   
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CHAPTER II. QUANTITATIVE ANALYSIS OF OCTA FEATURES 

(Part of this chapter is: previously published as Minhaj Alam, Damber Thapa, Jennifer I. Lim, 

Dingcai Cao, and Xincheng Yao, "Quantitative characteristics of sickle cell retinopathy in optical 

coherence tomography angiography," Biomed. Opt. Express 8, 1741-1753 (2017) [25] (Section 

2.1); as Minhaj Alam, Yue Zhang, Jennifer I. Lim, R.V.P. Chan, Min Yang, Xincheng Yao, 

ñQuantitative OCT angiography features for objective classification and staging of diabetic 

retinopathy,ò Retina (Philadelphia, PA), (2018) DOI: 10.1097/IAE.0000000000002373. [101] 

(Section 2.2); as Yi -Ting Hsieh, Minhaj Alam, Daniel Chao, Xincheng Yao, ñOptical Coherence 

Tomography Angiography Biomarkers for Predicting Visual Outcomes after Ranibizumab 

Treatment for Diabetic Macular Edema,ò Ophthalmology Retina (2019) [110] (Section 2.3); as, 

David Le, Minhaj Alam, Jennifer. I. Lim, Xincheng Yao, ñFully automated geometric feature 

analysis in optical coherence tomography angiography for objective classification of diabetic 

retinopathy,ò Biomed. Opt. Express, 10 (5), 2493-2503 (2019) [61] (Section 2.4); and manuscript 

in press as Minhaj Alam, David Le, Jennifer I. Lim, and Xincheng Yao, ñVascular complexity 

analysis in OCT angiography of diabetic retinopathyò Retina (2020) (Section 2.5)). 

 

Chapter summary: This chapter describes the quantitative OCTA features and their deployment 

in analyzing image data from SCR, DR and DME patients. This chapter is divided into five sub-

sections. The first sub-section describes several OCTA features such as BVC, BVT, BVD, VPI, 

FAZ-A, and FAZ-CI and analyzes them for SCR OCTAs; the second sub-section describes the 

quantitative analysis for DR subjects; and the third sub-section describes a study that analyzed the 

OCTA features for DME subjects and investigated whether OCTA features were able to predict 

the BCVA of patients after Anti-VEGF injections. This chapter further describes two studies (sub-

sections 4 and 5) that have developed vascular branchpoint based and complexity based 

quantitative OCTA features. The branchpoint features are analyzed on control, noDR and DR 

subjects, while the vascular complexity features are more sensitive towards identifying transition 

from NPDR to PDR. The two studies are presented in sub-sections 2.4 and 2.5. 

2.1: Quantitative characteristics of sickle cell retinopathy in OCTA 

 

Abstract: Early detection is an essential step for effective intervention of sickle cell retinopathy 

(SCR). Emerging optical coherence tomography angiography (OCTA) provides excellent three-
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dimensional (3D) resolution to enable label-free, noninvasive visualization of retinal vascular 

structures, promising improved sensitivity in detecting SCR. However, quantitative analysis of 

SCR characteristic in OCTA images is yet to be established. In this study, we conducted 

comprehensive analysis of six OCTA parameters, including blood vessel tortuosity, vessel 

diameter, vessel perimeter index (VPI), area of foveal avascular zone (FAZ), contour irregularity 

of FAZ and parafoveal avascular density. Compared to traditional retinal thickness analysis, five 

of these six OCTA parameters show improved sensitivity for SCR detection than retinal thickness. 

It is observed that the most sensitive parameters were the contour irregularity of FAZ in superficial 

layer and avascular density in temporal regions; while the area of FAZ, tortuosity and mean 

diameter of the vessel were moderately sensitive.   

 

2.1.1 Introduction  
 

Sickle Cell Disease (SCD) is an inherited red blood cell disorder that affects 90,000 ï 100,000 

Americans [66], making it one of the most prevalent genetic disorders in the United States [67]. 

Red blood cells with normal hemoglobin have a disc shape and this round shape allows the cells 

to be flexible so that they can move through not only large blood vessels but also small capillaries 

to deliver oxygen. In SCD, however, red blood cells deform into a C-shaped farm tool called a 

ñsickleò. When sickle cells travel through small blood vessels, they can get stuck and occlude 

blood flow and thus prevent oxygen from reaching vital organs. Consequently, patients with SCD 

suffer from microvascular occlusions in various parts of their body, including the retina. Sickle 

cell retinopathy (SCR) is one of the major ocular manifestations of SCD. The underlying systemic 

and ocular manifestations of SCD are a result of vaso-occlusive ischemia due to the blocking of 

blood vessels by sickle-shaped erythrocytes.  
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SCR typically involves peripheral retinal vessels. At this time, the clinical staging system is of 

limited value in predicting progression of SCR. Further, standard fundus-based clinical 

examination typically shows normal to minimal findings in the macular area in sickle cell patients 

[68]. Although patients are asymptomatic, many adult sickle cell patients do harbor findings of 

SCR that precede the clinical detection of a foveal depression sign [69], such as macular thinning 

measured by optical coherence tomography (OCT) [70] or vascular abnormalities in the macular 

region based on fluorescein angiography (FA) [71]. However, the existing techniques are limited 

in detecting subclinical signs of SCR. For instance, FA requires dye injection and cannot detect 

abnormalities in ~50% of eyes in sickle cell patients, compared with recently emerged OCT 

Angiography (OCTA) [72]. New technique is desirable for detecting subclinical sign of SCR. 

OCTA has been used for quantitative assessment of retinal vascular structures [73-77]. OCTA 

allows visualization of multiple retinal layers with high resolution and therefore is more sensitive 

than traditional FA in detecting SCR [72]. Thus, OCTA may be able to further the classification 

of SCR by including data with prognostic value. OCTA is currently available commercially for 

clinical use. However, quantitative analysis of SCR characteristics in OCTA images is yet to be 

established. In this study, we conducted comparative analysis of six OCTA parameters, including 

blood vessel tortuosity, vessel diameter, vessel perimeter index (VPI), area of foveal avascular 

zone (FAZ), contour irregularity of FAZ and parafoveal avascular density of control and SCR 

groups. The goal was to assess how the parameters correlated with retinal thickness and how 

sensitive the parameters could detect SCR, and thus to establish a metric for quantitative OCTA 

assessment of SCR.  

 

2.1.2  Materials and Methods 

Data acquisition  
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This study was approved by the Institutional Review Board of the University of Illinois at Chicago 

and was in compliance with the ethical standards stated in the Declaration of Helsinki. The SCD 

patients were recruited from University of Illinois at Chicago (UIC) Retinal Clinic. The majority 

of patients (N= 14, 78%) had Stage II of retinopathy with the remaining as Stage III (N = 4, 22%). 

The quantitative study was based on OCTA images of 18 SCD patients (7 males and 11 females; 

18 African Americans) and 13 control subjects (12 males, 1 female, 3 African Americans). The 

mean age was 40 years (range 24 to 64) for the patients and 37 years (range 25 to 71) for the 

control. OCTA images of both eyes (OS and OD) were analyzed in this study, so the database 

consisted of 36 SCR eyes and 26 control eyes. The subjects of the control group were chosen based 

on their previous ocular history, absence of any systemic diseases, or any visual symptoms; a 

normal- appearing retina on clinical examination; and a normal reþectance OCT of the macula.  

SD-OCT data was acquired using an ANGIOVUE SD-OCT angiography system 

(OPTOVUE, Fremont, CA, USA), with a 70-KHz A-scan rate. OCTA images were constructed 

using split-spectrum amplitude-decorrelation angiography (SSSADA) algorithm [78] with 

integrated motion correction algorithm .  The axial resolution is Ḑ5 ɛm while lateral resolution is 

Ḑ15 ɛm. The scanning protocol in this system provided a field of view (FOV) of 3 mm × 3 mm, 6 

mm × 6 mm or 8 mm × 8 mm. For our calculation, we used only 3 mm × 3 mm portions from the 

OCTA images. OCT angiography images were exported using the software ReVue (Optovue, 

Fremont, CA). The ReVue was used to segment superficial and deep inner retinal vascular 

plexuses. It was also used to measure the retinal thickness from the OCT B-scans, the thickness 

was measured from the outermost layer of fovea to the retinal pigment epithelium (RPE) layer. 

Custom-developed MATLAB (R2015b, MathWorks, Inc.) procedures with graphical user 

interface (GUI) were used for further image analysis and quantitative comparison. 
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Quantitative parameters for OCTA analysis 

Six OCTA parameters, including blood vessel tortuosity, vessel diameter, VPI, area of FAZ, 

contour irregularity of FAZ and parafoveal avascular density, were used to analyze and quantify 

the OCTA images from SCD patients and compare the patient data with control subjects using 

Student t-tests. Effect sizes (Cohenôs d) were also calculated to quantify the difference in the 

outcome between the groups normalized by the pooled standard deviations. Pearson correlations 

between retinal thickness and the OCTA parameters were computed separately for the controls 

and SCD patients. Finally, canonical discriminant analysis was conducted to assess which 

measurements (retinal thickness, OCTA parameters) were most sensitive to differentiate SCD 

patients vs. controls. For the discriminant analysis, the variables with small canonical loadings 

(correlations between the observed variables and the discriminant function) were sequentially 

removed until all remaining variables had canonical loadings > 0.3 (a critical loading value for a 

variable considered to be important).  

The rationale of each of these six OCTA parameters is briefly summarized in the following 

sessions.  

Blood vessel tortuosity:  

Retinal blood vessels in SCD patients are known to be more tortuous than those in normal subjects 

[79-81], due to sickle cell anemia. Therefore, quantitative analysis of blood vessel tortuosity can 

be valuable. In this study, quantitative analysis of the tortuosity is conducted for large blood vessel 

branches in the superficial layer. As the sickle cells affects the retinal vasculature, the tortuosity is 

visually prominent in large vessels and they have statistically more reliable tortuosity measurement 

index [82].The first step is to reconstruct en-face OCTA image of the superficial layer of retina 
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(Fig. 2.1.1a). The second step is to segment the large blood vessels using global thresholding [77], 

morphological functions (Fig. 2.1.1b) and fractal dimension classification [83]. This binary 

vasculature map was then skeletonized. The skeletonization process removes pixels on the 

boundaries of vessels but does not allow objects to break apart [84, 85]. The remaining pixels make 

up the image skeleton. After this, each branch of the blood capillaries was identified with two 

endpoints (points A and B in Fig. 2.1.1c) so that the geodesic and Euclidian distances for each 

branch could be calculated. The tortuosity of a single branch is defined by the distance metric [86-

90]  which is the ratio of geodesic distance and Euclidean distance between the two endpoints. For 

two points A(x1, y1) and B(x2, y2) in a two dimensional plane as shown in Fig. 2.1.1, Euclidean 

distance is calculated using the following equation [90],  

                                                                               (2.1.1) 

If we define each of the segmented branches with [x(t),y(t)] on the interval [t0, t1], the geodesic 

distance between the endpoints i.e. A and B can be calculated with the following equation[90], 

                                                                               (2.1.2) 

The tortuosity of each branch of blood vessels was calculated and the average tortuosity of the 

image was measured [90], 

               (2.1.3) 

where i is the ith branch and n is the number of branch.  
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As the sickle cells affect the blood flow inside the vessels and thus cause structural change in the 

vasculature, the mean diameter of blood vessels is an important parameter to analyze in OCTA 

images. Large blood vessels from superficial en-face OCTA image were measured to quantify this 

parameter. The large vessel area was calculated from the vessel map (Fig. 2.1.1b) and length was 

calculated from the skeleton map (Fig. 2.1.1c). Mean vessel diameter was then calculated as the 

ratio of vessel area and length using the following equation [77], 

                                                                                             (2.1.4) 

where B (i,j) represents the pixels occupied by the vessels and S (i,j) represents the pixels occupied 

by the vessel skeleton (i, j represent the row and column positions of each pixel of the image). 

With this parameter, localized vascular dilation would be easily identified and it could serve as a 

marker for vascular abnormalities. 

Vessel perimeter index (VPI): 

Large blood vessels in the en-face OCTA image were used to measure this parameter. From the 

binary vasculature map, a vessel perimeter map (Fig. 2.1.3a) was obtained by detecting the edge 

of vessels and deleting the pixels that were not close to the edge of the vessels. The VPI was 

calculated as the ratio of perimeter pixel area and total image area using the following equation 

[77], 

                                                                                       (2.1.5) 
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where P (i,j) represents the pixels within the vessel perimeters (white pixels on Fig. 2.1.3a) and I 

(i,j) represents all the pixels in the vessel perimeter map. This parameter is a good marker of overall 

change of vessel length in OCTA images.                  

Area of FAZ: 

Since the SC disease directly affects the vessel texture with tortuosity and dilation, it is also 

interesting to compare the change in foveal avascular area for control subjects and SCD patients. 

The FAZ contour was semi-automatically demarcated and the FAZ was segmented from the 

OCTA images (Fig. 2.1.4 a, d) using an active contour model [91, 92], where the seed point was 

manually placed at the center of the fovea. The pixel size of the OCTA image is a known parameter 

and from this information, the area of the avascular region was calculated using the following 

equation [77],  

                                                         (2.1.6) 

where A (i,j) represents the pixels occupied by the segmented avascular region.  

 

Contour irregularity of FAZ: 

A contour irregularity parameter can be used to express border irregularity and is also an excellent 

descriptor of speculation, i.e, spiked nature of the contour [93]. We illustrate the effects of 

increasing border roughness using contours of avascular area (Fig. 2.1.4 c,f). The bigger the value 

of contour irregularity, the more irregular and spiked the contour of the avascular region is.  

Contour irregularity parameter was calculated with the following equation [93],  
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                                                                                      (2.1.7) 

where O (i,j) represents the pixels occupied by the FAZ contour and R (i,j) represents the pixels 

occupied by the perimeter of the reference circle.  

The contour of the original avascular region was measured; a circle of the same area as the 

avascular region was used as a reference. 

Density of parafoveal avascular region: 

In order to quantify the density of parafoveal avascular region, fractal dimension (FD) analysis of 

both the superficial and deep layers were conducted [83]. FD has been considered as a potential 

biomarker for retina-based disease detection [94-96]. Fractal is non-Euclidean structures that show 

self-similarity at different scales. The FD of a structure provides a measure of its texture 

complexity[97]. The retinal blood vessels and capillaries are complex and rarely have an exact 

Euclidean shape. Therefore, they can be precisely described by fractal analysis. Many retinal 

diseases such as SC disease involve vessel abnormalities, including drop out zones in between 

vascular structures. This requires detailed analysis of the retinal vasculature to understand their 

role in disease pathophysiology. In our case, local fractal dimension (LFD) analysis which 

identifies local variations in the vascular network was calculated from the OCTA images by using 

a moving window of size  using the following equation [98],  

                                                                        (2.1.8)        

where  is the intensity OCTA image,  is the fractal dimension of the intensity image 

and (i,j) corresponds to the location of each pixel in the image. Local FD was calculated using 

window sizes (in pixels) of 3×3, 5×5, 7×7, 9×9 and 11×11 (w=1,2,3,4.5).  
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The FD varies across the image; it is higher in larger vessels compared to that in smaller 

vessel or non-vascular region [83]. Therefore, the LFD was normalized and plotted as a contour 

plot (Fig 2.1.5 a,b). The normalized LFD with a value close to 1 indicates large vessels and a value 

close to 0 indicates non-vessel regions, so the regions were classified as follows: the blood vessels 

and capillaries lie between a value of 0.7 and 1; the nonvascular regions lie between a value of 0.0 

and 0.3 and the smaller gaps between vessels lie between a value of 0.3 and 0.7, we define this 

area as grey zone. The density calculation is expressed in percentage by taking the ratio of the total 

pixels with corresponding FD values (0 to 0.3 for non-vascular region, 0.7 to 1 for vessel and 0.3 

to 0.7 for grey zone) to the total pixels in the analyzed window [83]. Here, vessel densities were 

calculated in three circular parafoveal regions of diameter 1 mm, 2 mm and 3 mm as shown in Fig. 

2.1.5a and four parafoveal sectors, namely, nasal (N), superior (S), temporal (T), and inferior (I) 

of a circular zone of diameter 3 mm as shown in Fig. 2.1.5b.  

2.1.3  Results 

In the section 3.1 we report the OCTA measurements and their respective variation with SCD. In 

section 3.2, we provide comparative information of retinal thickness and discriminant analysis.  

Among total 36 SCR OCTA images, 1 OD and 3 OS OCTA images were excluded due to severe 

image distortions.  

OCTA parameters 

Blood vessel tortuosity: 

Figure 2.1.1 illustrates representative OCTA image (Fig. 2.1.1a), segmented blood vessel map 

(Fig. 2.1.1b) and skeletonized blood vessel map (Fig. 2.1.1c). The retinal vasculature in SCD 

patients becomes more complex as the vessels become more tortuous and twisted. As shown in 
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Fig. 2.1.1d, SCD eyes had much higher tortuosity than the control eyes (48.07% vs. 31.52%, p < 

0.001, Cohenôs d = 3.69). On average, a tortuosity increase of 16.56% was observed in SCD 

patients compared to control subjects.  

 

Figure 2.1.1. Measuring tortuosity of OCTA images. (a) OCTA raw image, (b) Segmented large 

blood vessel map, (c) Skeletonized blood vessels branches with identified endpoints (for a 

random vessel branch, A and B endpoints are shown with red dots), (d) Comparison of tortuosity 

in control and SC patients (error bars are standard deviations). 

Mean diameter of blood vessel: 

Figure 2.1.2 illustrates the mean diameters of large blood vessels of superficial OCTA images. It 

was observed that the averaged diameter of blood vessels of control subjects and SCD patients 

were 23.65 ɛm and 30.60 ɛm, respectively. The mean diameter increased about 29.4% in SCD 

patients, reflecting a significant dilation in the large blood vessels of SCD patients (p<0.01, 

Cohenôs d = 3.18). 
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Figure 2.1.2. Comparison of mean diameter of blood vessels in control and SC patients 

(superficial layer). 
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Vessel perimeter index (VPI): 

Figure 2.1.3a illustrates the binary vessel perimeter map obtained from the superficial raw OCTA 

image (Fig. 2.1.1a). VPI provides a good estimation of the change in vessel length for SCD 

patients. As shown in Fig. 2.1.3b, the VPI in control subjects is 10.8% and it is 8.31% in SCD 

patients, so there is a decrease of 2.49% in VPI for SCD patients (p<0.05, Cohenôs d = 2.41).  

 

Figure 2.1.3. (a) Vessel perimeter map, (b) Comparison of VPI in control and SCD patients 

(superficial layer). 

Area of FAZ: 

Figure 2.1.4a and 2.1.4d illustrates the demarcation of FAZ in raw OCTA images, in control and 

SCD patients respectively with the binary FAZ segmentation (Fig. 2.1.4b and 2.1.4e) and contour 

map (Fig. 2.1.4c and 2.1.4f). It was observed that the average area of avascular region also 

increases in SCD patients (52% in deep and 53% in superficial layer). This shows that, for SCD 

patients the FAZ increases which is possibly a result of rapid drop out of retinal vessels near foveal 

area (p<0.001, Cohenôs d = 4.15). The comparison is illustrated in Fig. 2.1.4g. 

Contour irregularity of FAZ: 

From the segmented FAZ (Fig. 2.1.4b, e) we also measured the contour of the region (Fig. 

2.1.4c,f). As there are complex vascular structure and vessel abnormalities, the contour becomes 
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more irregular in SCD patients rather than a smooth shape in control subjects. The contour 

irregularity index for control subjects are 1.10 and 1.11 for deep and superficial layers respectively.  

 

Figure 2.1.4. (a) OCTA image with demarcation for normal eye, (b) Segmented Avascular region 

for normal eye (c) FAZ contour for normal eye, (d) OCTA image with demarcation for diseased 

eye, (e) Segmented avascular region for diseased eye, (f) FAZ contour for diseased eye, (g) 

Comparison of area of FAZ in control and SCD patients for deep and superficial layers, (h) 

Comparison of area of  FAZ in control and SCD patients for deep and superficial layers. 

Our results show that the contour of FAZ from control subjects has 10-11% deviation from 

an ideal circular contour whereas the contour from the SCD patients has around 46-47% deviation 

(comparison shown in Fig. 2.1.4(h)). The irregularity and spiculation increase by almost 36% in 

c 
 

 

g 
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case of SCD patients for both deep and superficial layers. This clearly indicates the feasibility of 

this parameter (contour irregularity) as a biomarker of SC disease (p<0.001, Cohenôs d = 4.52). 

 

Density of parafoveal avascular region: 

Figure 2.1.5 illustrates the contour maps with normalized values of local fractal dimension 

corresponding to OCTA raw images; it also shows the different regions or zones of the image 

where FD analysis was conducted (Fig 2.1.5 a,b). A detailed vasculature density analysis was 

conducted with the OCTA database. SC disease can lead to vessel drop out zones in the vascular 

structure of retina, so we measured the density of non-vascular region, vessels, intermediate gaps 

(grey zones) and compared the changes in density in definite zones. The density comparison was 

done in three circular parafoveal regions of diameter 1 mm, 2 mm and 3 mm (Fig. 2.1.5a) and four 

parafoveal sectors, namely, nasal (N), superior(S), temporal (T),  and inferior (I) of a circular zone 

of diameter 3 mm (Fig. 2.1.5b). The avascular region increased significantly in SCD patients 

(p<0.01, Cohenôs d = 3.24), the vessel density and grey zone density decreased to compensate for 

the increase of non-vascular regions. 

 

Figure 2.1.5. Contour maps created with normalized values of local fractal dimension. (a) Circular 

zones of diameter 1, 2 and 3mm, (b) Nasal, Superior, Temporal and Inferior regions. FD analysis 

was conducted on the different regions specified in a and b.  
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Table 2.1.1. Vascular density changes in different zones 

Superficial Layer Deep Layer 
 

Avascular 

region 

Grey  

Zone 

Vessel  

density 

Avascular 

region 

Grey  

Zone 

Vessel  

density 

Circle 1 18.37%ŷ* 5.72%Ź* 12.65%Ź* 5.82%ŷ* 2.64%Ź* 3.18%Ź* 

Circle 2 12.70%ŷ** 4.43%Ź** 8.27%Ź** 9.66%ŷ** 3.53%Ź** 6.12%Ź** 

Circle 3 13.25%ŷ** 4.83%Ź** 8.42%Ź** 13.85%ŷ** 4.21%Ź** 9.64%Ź** 

N 12.60%ŷ** 4.25%Ź** 8.35%Ź** 14.40%ŷ** 4.53%Ź** 9.87%Ź** 

S 12.55%ŷ* 2.98%Ź* 9.57%Ź* 14.45%ŷ* 5.57%Ź* 8.88%Ź* 

T 14.34%ŷ*** 3.45%Ź*** 10.92%Ź*** 17.26%ŷ*** 6.8%Ź*** 10.46%Ź*** 

I  12.35%ŷ* 2.57%Ź* 9.78%Ź* 13.44%ŷ* 4.77%Ź* 8.67%Ź* 

 

A summary of the vasculature density analysis of FD contour map is shown in the table 2.1.1 

and illustrated in Fig 2.1.6 where we can observe the increase of avascular region density for each 

specific zone and the decrease of grey zone and large vessel densities. For each section in Table 

2.1.1 the significance of the t-test is marked as: * for p < 0.05; ** p < 0.01; *** p < 0.001. 
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Figure 2.1.6. Comparison of vascular density in different sections of the OCTA image in control 

and patient eyes. Control eye:  (a) Avascular region density, (b) Vessel density, (c) Grey zone 

density; Patient eye: (d) Avascular region density, (e) Vessel density, (f) Grey zone density. 

We have also summarized the results for the first five parameters in table 2.1.2. It illustrates 

the effect of SCD for the parameters and their sensitivity to it. By observing the P values from the 

t-test results we get the indication whether the change due to SCD is significant or not. 

Table 2.1.2. Quantitative comparison of parameters 

Parameters 

Average 

Tortuosit

y 

Average 

Diameter 

of Blood 

Vessels 

(ɛm) 

Vessel 

Perimete

r Index 

Area of FAZ 

(mm2) 

FAZ Contour 

Irregularity 

Retinal 

Layers 

Superfici

al 

Superfici

al 

Superfici

al 
Deep 

Superfici

al 
Deep 

Superfici

al  

Control 31.52 23.65 10.80 0.25 0.23 1.10 1.11 

Patients 48.07 30.60 8.31 0.38 0.35 1.46 1.47 

Change in 

parameters 
16.56%ŷ 29.40%ŷ 2.49%Ź 

52%

ŷ 
53%ŷ 36%ŷ 36%ŷ 

P value <0.001 <0.01 <0.05 <0.001 <0.001 

Cohenôs d 3.69 3.18 2.41 4.15 4.52 

 

Retinal thickness and discriminant analysis 

Retinal thickness was significantly lower in SCD patients than controls (193.61±5.31 um vs. 

217.67 ±6.44 um, p < 0.001, Cohenôs d = 3.68). None of the OCTA parameters were significantly 

correlated with the retinal thickness either in controls or SCD patients except for the area of FAZ 

in Circle 1 of the superficial layer in SCD patients (r = -0.73, p < 0.001). This correlation analysis 

suggested that OCTA parameters provided additional information of retinal health than retinal 

thickness.  
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Canonical discriminant analysis using retinal thickness and the OCTA parameters 

indicated most of the OCTA parameters had higher canonical loadings than retinal thickness. The 

most sensitive OCTA parameters with canonical loadings > 0.3 included: 1) contour irregularity 

of FAZ in superficial layer, 2) avascular area of Circle 2 in superficial layer, 3) avascular area of 

the temporal region in superficial layer, and 4) avascular area of the inferior region in deep layer.  

These four variables could individually or jointly differentiate the SCD patients vs. controls with 

100% correct rate. 

2.1.4  Discussions 

Six OCTA parameters, i.e., blood vessel tortuosity, diameter, VPI, area of FAZ, contour 

irregularity of FAZ and parafoveal avascular density were developed for quantitative assessment 

of OCTA images. 36 SCR and 26 normal OCTA images were used for comparative analysis. 

Among total 36 SCR OCTA images, 1 OD and 3 OS OCTA images were excluded due to severe 

image distortions. Pathological change of the retina, eye motion and enface OCTA projection 

artifacts were the main reasons behind the distortion. ReVue software utilizes SSADA algorithm 

for OCTA construction, with inbuilt motion correction algorithm. Potential incorporation of 

removal algorithm of projection artifacts [99, 100] may further improve the OCTA image quality.  

A Pearson correlation analysis was conducted to test the relationship between traditional 

retinal thickness measurement and each of these six OCTA parameters. The analysis revealed that 

most of OCTA parameters are not significantly correlated with the retinal thickness except for the 

area of FAZ in Circle 1 (1 mm diameter or 0.5 mm radius from the center) of the superficial layer. 

This suggests that the OCTA may provide additional information on disease associated vasculature 

change than retinal thickness only information from traditional OCT. Morphological distortion of 

retinal blood vessels in SCD patients occurs due to sickle cell anemia [79-81]. Quantitative 
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analysis of blood vessel tortuosity revealed 19.07% tortuosity increment in SCD group, compared 

to that in control group. A 29.40% increment of blood vessel diameter was observed in SCD group. 

A 2.49% decrease was observed for the VPI of the SCD group, which is consistent to the observed 

increment of blood vessel diameter. FAZ was consistently enlarged and contour irregularity was 

increased in SCD patients. The FAZ contour irregularity is closely related to tortuosity increase 

which makes the retinal vessels more irregular and spiked in shape. In contrary, retinal blood vessel 

densities in both superficial and deep layers were decreased in SCD retinas, compared to normal 

ones. It is known that proliferative SCD affects the peripheral retinal vasculature, and its 

manifestations include capillary dropout, arteriolarïvenular anastomoses, development of retinal 

neovascularization and pigmentary changes. Our quantitative analysis of retinal vasculature with 

FD analysis confirms this effect of SCD on retinal vessels.  

Another important aspect of this study was to test the sensitivity of each OCTA parameter for 

detecting SCR. The canonical discriminant analysis showed that OCTA parameters were more 

sensitive than retinal thickness and the most sensitive OCTA parameter was contour irregularity 

of FAZ in superficial layer, avascular density in circle 2 of superficial layer, avascular density in 

temporal region in superficial layer and avascular density in the inferior region in deep layer. These 

variables could correctly differentiate the SCD patients from the control subjects. According to the 

mean calculation of the parameter (supported by t-test and Cohenôs d index), it was consistently 

observed that the most sensitive parameter was the area of FAZ (about 52-53% change in SCD 

patients) and contour irregularity (both superficial and deep layers) (about 36% change) (Table 

2.1.2). Tortuosity, mean diameter of the vessels and avascular density in temporal regions are 

moderately sensitive in SCD patients (about 14-29% change). It can be seen that the contour 
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irregularity in superficial layer and avascular density in temporal regions are the most sensitive 

parameters according to both discriminant analysis and t-test results obtained. 

2.1.5  Conclusions 

Six parameters have been used for quantitative assessment of OCTA images. Comparative analysis 

of control and SCD groups reveals statistically significant differences for all of these six 

parameters. It is observed that the most sensitive parameters were the contour irregularity in 

superficial layer and avascular density in temporal regions while the area of FAZ, tortuosity and 

mean diameter of the vessel were moderately sensitive. It is confirmed that the parafoveal non-

vascular region density increases as there are vessel dropouts due to SCD. As the non-vascular 

region increases, the grey zone and vessel density decreases. The study establishes use of the 

parameters as bio-marker for potential SCR diagnoses and provides a metric for quantifying 

changes in retinal vasculature in SCD patients. 

2.2: Quantitative OCTA features in diabetic retinopathy 

 

Abstract: Diabetic retinopathy (DR) is an ocular manifestation of diabetes and causes several 

retinal abnormalities. In this sub-section, we adapt the OCTA features described in the previous 

sub-section 2.1 and conduct univariate analysis on DR data. The data includes control, and three 

stages of non-proliferative (NPDR) DR patient data. Quantitative analysis revealed that the OCTA 

features are able to distinguish between control and NPDR subjects with high sensitivity.  
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2.2.1 Introduction 

As the major ocular manifestation of diabetes [102-105], diabetic retinopathy (DR) is a leading 

cause of preventable blindness worldwide [106]. DR can trigger retinal blood vessels to leak blood 

and fluids to produce pathological features such as micro-aneurysms, exudates, venous beading, 

cotton wool spots, etc.[31]. Retinal nonperfusion, hemorrhages and other microvascular 

abnormalities worsen as DR severity progresses. Currently, diabetes affects 1 in every 11 adults 

or roughly 415 million people worldwide [107]. As nearly 40-45% patients with diabetes are prone 

to vision impairment due to DR [108], early detection and prompt treatment of DR are essential to 

decrease the progression of vision loss associated with DR.  Telemedicine approaches can help 

ease disparities of care as it allows those in underserved areas to be screened.  However, mass-

screening programs still heavily depend on experienced ophthalmologists to assess retinal 

photographs [109]. This process is both time consuming and expensive [109]. A computer-aided 

diagnostic tool could aid in DR screening and have genuine impact on clinical workflow. 

 In this sub-section, quantitative analysis of DR subjects are presented using OCTA 

features.  

2.2.2 OCTA image acquisition  

This study was approved by the Institutional Review Board of the University of Illinois at Chicago 

and was in compliance with the ethical standards stated in the Declaration of Helsinki. The DR 

patients were recruited from University of Illinois at Chicago (UIC) Retinal Clinic. We performed 

a retrospective study of consecutive diabetic patients (type II) who underwent OCTA and OCT 

imaging. The patients are thus representative of a university population of diabetic patients who 

require imaging for management of diabetic macular edema and DR.  OCT/OCTA images of both 

eyes of every patient were collected.  We excluded subjects with macular edema, previous vitreous 
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surgery, and history of other eye diseases. Control OCTAs were obtained from healthy volunteers 

who agreed to undergo OCTA and OCT imaging.  All patients had undergone a complete anterior 

and dilated posterior segment examination (JIL, RVPC).  The patients were classified by severity 

of DR (mild, moderate, severe) according to the Early Treatment Diabetic Retinopathy Study 

(ETDRS) staging system. The grading was done by retina specialist using a slit lamp fundus lens, 

technicians did not contribute to the grading of the patients. Fig. 2.2.1 illustrates representative 

OCTA images of superficial and deep layers for control and NPDR eyes and the corresponding 

OCT B-scan. 

SD-OCT data were acquired using an ANGIOVUE SD-OCT angiography system (Optovue, 

Fremont, CA, USA), with a 70-KHz A-scan rate, an axial resolution of Ḑ5 ɛm and a lateral 

resolution of Ḑ15 ɛm. All the OCTA images were macular scans and had field of view (FOV) of 

6 mm × 6 mm. We exported the OCT angiography images from the software ReVue (Optovue, 

Fremont, CA, USA) and used custom-developed MATLAB (Mathworks, Natick, MA, USA.) 

procedures with graphical user interface (GUI) for further image analysis, feature extraction and 

image classification. 
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Figure 2.2.1. Representative OCTA images of control (A), mild NPDR (B), moderate NPDR 

(C),and severe NPDR. The first row (A1, B1, C1, D1) and second row (A2, B2, C2, D2) represent 

OCTAs from superficial and deep layers respectively. The third row (A3, B3, C3, D3) represents 

corresponding OCT B-Scans. The segmented superficial and deep layers in OCT B-Scans are 

marked in A3 and B3 respectively. Scale bar shown in A1 corresponds to 1.5 mm and applies to 

all the images. 

2.2.3 Pre-processing of OCTA images 

OCTA images with a 6 mm × 6 mm field of view (304×304 pixels) were used for extracting all 

vascular and foveal features. To account for light and contrast image variation, we performed 

multiple preprocessing steps for image standardization before feature extraction and classification. 

We normalized all the OCTA images to a standard window level based on maximum and minimum 

intensity values. These preprocessing steps aim to improve the overall reliability of the extracted 


