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SUMMARY

Retina isa sensory tissulcated at the back of the eyich is often considered crucial for
diagnosis of systematic diseases and retinopathies. Therefore, quantitative retinal imaging and
developing imaging biomarkers are of great scientific and clinical interest. In cureeature,

color fundus photography baeen most commonly used feye disease screening, diagnosis and
treatment assessment, but the spatial resolution and image contrast are limited to reveal subtle
distortions in early stages of eye diseagether imagng modalities such ascanning laser
ophthalmoscopy (SLO) and adaptive optics (AO) imaging systamaunable talifferentiate
individual retinal neural layers and vascular plexudes.recent years, optical coherence
tomography (OCT) has beeextensively employed for deptinesolved examinain of
morphological abnormalitieslue to itsunprecedented capability to differentiate individual
functional layers Adding power to the OCTOCT angiography (OCTA)s a new imaging
modality thatprovideshigh resolutio blood flow infornmetion in individual retina plexuses.
However, since it is a new imaging modalityagtitative OCTA analysiand investigative studies

are requiredo standardize objective interpretation of clinical outcomes.

In this dissertation, extsivestudies have been conductedrteestigae OCTA featuresor
guantitative analysis and objective classification of different retinopaii¢isin the overarching
scope of this dissertation, new OCTA imaging biomarkers wevelopedstrategies foartery
vein (AV) classification in @TA weredemonstratedandthe OCTA featuresvere demonstrated
and validatedfor diagnostic analysis and machine learning based automated classification of

retinal diseases.

In the initial projects, technical developnefocused on developing the OCT Aferes based

on morphological changes in the retina due to abnormalities. The developed OCTA features are
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able to characterize microvascular, structural, geometric, branchpoint and complexity based
abnormalities in diffeent retinal layers. Using the OCT#features, we analyzediabetic
retinopathy (DR)sickle cell retinopathySCR), anddiabetic macular edem®WE) patient data

and observed that the OCTA feature were quite sensitive to identify subtle chadegest arly

onset of diseases, progression to later stages and even predict the effectasicamdr endothelial

growth factor (VEGF) treatment on viduwscuity.

As part of continuous effort to develop sensitive OCTA features, we focused on differential
artay-vein (AV) analysis in the retina. From clinical studies in the literature, it was observed that
the physicians have found that, the artery andsvean be affected by retinopathies in different
way. SQ we wanted to improve the sensitivity of OCTA fa&ts for disease classification.
However, there are no current AV classification techniques in OCTA. Therefore, few projects in
this dissertation foused on technological development of AV classification methods in OCTA.
Furthermore, the AV classificatiaapability in the OCTA images allowed for differential analysis
on DR and SCR OCTA data which revealed that AV ratio of blood vessel caliber arasityr

were guite sensitive compared to mean value.

Upon the OCTA feature development, we employed madbar@ing based techniques for
automated image classification of DR and SCR stages. Furthermore, dastultiassification
tool was introduced thacan utilize OCTA images and a support vector machine classifier for
hierarchical tasksuch asi) controlvs diseaselassificationii) DR vs SCRelassification and iii) DR and
SCR staging. We further presented transfer learning based DR classiiicatind a novel

convolutional neural network (CNN) for AV classification in OCTA.

Utilizing the developed OTA imaging biomarkers, AV classification techniques aid

based classification tools demonstrated in this dissertation can be beneficial in ngrovidi
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diagnostic support to ophthalmologists and efficient clinical screening of different types of

retinopathes.
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CHAPTER I. INTRODUCTION

Retina is a sensory membraoeated at the back of the eye. Color fundus photography has
provided valuable information for eye disease screening, diagnosis and treatment assessment, but
the spatial resolution and ig@ contrast are limited to reveal subtle distortions in early staige
eye diseases. Scanning laser ophthalmoscopy (BL.@)and adaptive optics (AQ3-5] imaging
systems provide enhanced image resolution, and fundus angiogBaghwllows better ontrast
of retinal vasculatures. However, these imagapgproaches lack sectioning capability to
differentiate individual retinal neural layers and vascular plexuses. It is known that different
diseases and stages can target retinal neurons and vassulatutifferent ways. Given the
unprecedented capabilityo differentiate individual functional layers, optical coherence
tomography (OCT)[8] has been extensively employed for demholved examination of
morphological abnormalities caused by eye disef@d1l]. As a new OCT modality, OCT
angiography (OCTA) provides a noninvasive method to differentiate individual plexus layers in
the reting12, 13] Since its first commercial prodtin 2014, OCTA has quickly demonstrated its
excellence in clinical magement of ageelated macular degeneration (AM[X)4], diabetic
retinopathy (DRJL5, 16} glaucoma[17, 18] sickle cell retinopathy (SCHL9] and other eye
diseases. Quantitative OCTA analysis is essential to standardize objective interpretatiazadf clin

outcomes.

In this dissertationextensive investigation of uitiple OCTA featurehave been conducted
for quantitativeanalysis and objective classification of different retinopathies. In +inidti
applications, we developetew OCTA imaging biomarkrs demonstrated strategies foreagt
vein (AV) classification in OCTA, anémployedthe OCTA feature$or diagnosticanalysisand

machine learning based automated classification of retinal diseases. This chapter provides some
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necessary background of ttogics covered and describes theawation, significance and specific

aims of this dissertation.

1.1 Background

1.1.1 Retina

Retina isa transparent tissue with an overall thickness of 150 t@®300n human eye)located

at the back obur eye (Fig.11). As light enters the eye, it passes through the optical components
(i.e. cornea, lens, pupil, aqueous humor etc.) of the eye and forms image at the retina. The image
is converted to synaptic electric signals by photoreceptors within the retina, whathe signal
downstream to retinal cells and eventually to the brain through nerve bundles and optical nerve
head (ONH). Since the retina is connected to the brain through the ONH and nerve bundles, it is
often considered a part of the brain and nerveysten. Naturally, many symptoms and
abnormalities of different systematic diseases manifest in the different retinal layers. This makes

retina a crucial tissue for diagnosis of such diseases.
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Figure 1.1Anatomy of the eye, retina, and photorecept@$Crosssectional eyeball image with
major structures. B) Retina with major cell types and layers marked. Rd and cone
photoreceptors.A) is reprinted from[20] with permission; B) is reprinted from[21] with
permission; C) is reprinted fronj22] with permission.



Retina is divided into several layers (Fig. 1.1 (Bfe inner plexiform layer (IPL), outer
plexiform layer (OPL) and choroidal capillary plexus (CCP) are layets wveiscular structures.
These layers are of particular interest to obssystematic abnormalities in vascular and capillary
structure and geometry due to diseases such as diabetes, diabetic retinopathy (DR), age related
macular degeneration (AMD) and sliekcell retinopathy (SCR). Newascular layers such as
ganglion cell Iger (GCL), retinal pigment epithelium layer (RPE), photoreceptor inner and outer
segment layers (IS/OS) are of particular interest to observe functional changes in retina due to
degenemt i ve di seases | ike AMD or Al z bhdypenofr 6 s .
photoreceptors called rods and cones (Fig. 1.1 (C)). Rods are generally sensitive to light,
responsible for lower light vision, and larger in number. Cones are responsiblEdovision,
less sensitive to light and smaller in number. Bothsradd cones show response to light or
darkness and this response is one of the most important biomarkers for visual acuity and to
diagnose abnormalities due to retinal disea8gsrt from photoreceptorsgtina also contains
different cell bodiesand dendtes from neurons like ganglion cells, bipolar cells, amacrine cells

etc. These cellular bodies have their own function and are crucial for proper vision fof@@fion
1.1.2 Retinopathies

In this dissertation, different studies have primarily focusetvordifferent retinopathies, i.e., DR
and SCR. Both these retinopathies are of significant public health interestb&skefround of

DR and SCR is provided in the following section.
Diabetic retinopathyDR)

DR is a major manifestation of diabetes ame @f the majoicauseof preventable blindness

worldwide[23]. According to the World Health Organization (WHO), nearly4386 patients with



diabetesare prone to vision impairment due@®. By the year 2040, nearly 224 million people
worldwide will be living with some form of DR (Fig. 1.2 (A)l'he early stages of DR can be
initially asymptomatic and if not treated and cause low vision and even blin@#esan trigger
retinal blood vessels to leak blood and fluids to produce pathologicalrdsasuch @
microaneurysms, exudates, venous beadings, oetiohspots etcThese symptoms are generally
seen in earlier stage, called nproliferative stage (NPDR, Fig. 1.2 (B)). NPDR has three sub

stages: mild, moderate and severe.
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Figure 1.2(A) WHO reportto predict vision impairment due to DB) Fundus image showing
symptomsf NPDR; (C) Fundus image showing symptoms of PR&orinted with permission
from [24].



As the disease progresses, more severe and vision threatening symptoms manifest in the
retina.Due to vessel dropouts, there is shortage of Oxygen in retinal tissues. These tissues release
vascular endothelial growth factor (VEGF)dimgnalthe oxygen shortage the brain With the
increase of VEGF, new and unstable blood vessels grow in thesponging tissue area. This
process is called angiogenesis and neovascularization. These neovascular structures are abnormal
and unable to handle blood pressure, causing blooddeand hemorrhages in retina tissues. This
stageof DR is called proliferatie DR (PDR). PDR is really dangerous and can cause irreversible
damage to the retina. Both early onset of DR (mild DR) and DR progression are equally important

from the viewpoinbf managing treatment of diabetes and DR patients.

Sickle cell retinopthy (SCR)

Sickle Cell Disease (SCD) is an inherited red blood cell disorder that affects 901@@0000
Americans [1], making it one of the most prevalent genetic disordeteitynited States [2].
Normally, the red blood cells with hemoglobin have disapes, which enable them to be flexible

and move through the large vessels and smaller capillary structures flexBigkle Cell Disease
(SCD), red blood cellsdeformintdas haped fisi ckl edo cell . When sic
blood vesselsthey can get stuck and occlude blood flow and thus prevent oxygen from reaching
vital tissues.Consequently, patients with SCD suffer from microvascular occlusions in various
pats of their body, including the retina. Sickle cell retinopathy (SCR) isobittee major ocular
manifestations of SCD. The underlying systemic and ocular manifestations of SCD are a result of
vasoeocclusive ischemia due to the blocking of blood vessglsidtkleshaped erythrocytd25].
Common symptoms of SCR are vessel tortyodilation seafac neovascularization in peripheral

retina and vessel dropout (Fig. 1.3).



Figure 1.3. Common symptoms of SCR shown in (A) fundus, (B) Fluorescein angiography and

(C) OCTA images(A) wasreprinted with permission, Image wasginally published in the
Retina Image Bank® website. AuthoHenry J Kaplan Title: Sea fan peripheral retinal
neovascularization in sickle cell anemia. Retina Image B26k5 18293. © the American
Society of Retia Specialist§26]. (B) was reprinted with perssion[27], Image Courtesy of
Optos

1.1.3 OCT andOCTA

OCT is a standard imaging and diagnostic tool widely us@tiriital settings.Using coherence grating,
OCT can achieve high axial resolution to observe esestional retinallayers. OCT has diffeent
modalities such as time domain (TD) and Frequengyaio (FD). FDOCT has two modalities such as
spectral domain (SD) and swegaiurce (SS) OCTrigure 1(A) illustrates aschematic diagram af sample
SD-OCT systemusedin some of the studies condudtm this dissertatianThe light source of the OCT
system is anear infared (NIR) superluminescent diode (SII¥3104HP, Superlum, Cork, Ireland), which
has a center wavelength 810 nm (bandwidth-8&0 nm. A fiber coupler with a splitting ratio of 90:1
dividesthe SLD light into sample and reference arms. In the sample arm, this lifghitvered to the eye
through relay optical lenses. One pairs of scanning miarerssed to produce twdimensional scanning
over the retina for OCT acquisition. A P00 Hz Ine.scanCCD camera with 2,048 pixeis used in the
OCT spectrometer. The axial and lateral resolutapa®gstimated at 3 pum and 12 pm, respectively. A pupil
cameraiss used to aid retinal localization, and a fixation target with glieenlight is useda minimize

voluntary eye movements. For OCT recording, the illumination power on the cornea wastfeOat € W.



A sample Bscan OCT is shown in Fig.4.(B).Figure 1.4 (C) is an enface OCT image, generated from 3D

projection of the whole OCT slab.

OCTA images are 3D projection images obtained from repeateds0&1 that show higtesolution

microvascular ssuctures in the retina. Individual layers of OCT can be segmented, and flow information

can be obtained by acquiring multiple images in eaahdraMotion contrast in these repeated scans are

utilized to generate volumetric higlksolution blood flow infanation. Although the OCTA images are

obtained using an OCT system, it generally requires higher imaging speed. There are several algorithms

that are established in the literature for OCTA reconstruction, such aplitspectrum amplitude

decorrelation agiography (SSADA)optical microangiography (OMAGXorrelation mapping and speckle

variancg[28]. In the Fig. 1.4,dur B-scan OCTs were acquired fromacular regionand speckle variance

processing was used for OCTA image construdftog. 1.4 (D)
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Figure 1.4. (A) Schematic of a representative OCT/OCTA systdm collimation lens; DM:
dichroic mirror; Lenses: L1, L2, L3, L4, L5, L6, L7, L8; NDF: neutral density filter; PC:
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polarization controller; SLD: superluminescent diode; DNthroic mirror; BS beam splitter.
Representative (B)8can OCT, (C) Enface OCT and (D) OCTA image.

1.2 Overview of the dissertation research

1.2.1Significance

As one leading cause of blindness, DR affectd3% of diabetic patien{29]. An estimated 425
million adults have diabetes worldwideorresponding to 12% ($727 billion) of global health
expendituredn United States (US) alontal annual cost of diabetes was estimated as 245 billion
dollars in 201429]. There are80.3 million Americans with diabetes anddadnal 84.1 million
Americans with prediabeteg&arly detection, prompt intervention, and reliable assessment of
treatment outcomes are essential to prevent irreverstl@Moss from DR98% of DR related
vision lossis preventable, if early detectiand adequate treatment availabl¢30]. However,

1 in 2 diabetes remains undiagnosed worldwide, while 1 in 4 diabetes remains undiaghi&ed in

Current challenge of DR detection and managemenRetinal vascular abnormalities, such as
microaneurysmshard exudates, retinal edema, venous beading, intraretinal microvascular
anomalies and retinal hemorrhages are common DR finfBagsTherefore, imaging examination

of retinal vasculature is important for DR diagnosis and treatment evaluation. Funthgs abloy

has been used for clinical assessment of retinal vasculature. However, traditional fundus
photography has limited sensity to reveal subtle abnormality correlated with early [3R-35].

FA imagingcan be used to improve imaging sensitivity etfrral vascular distortions in DR6,

37]. However, FA requires intravenous dye injections, which may prodiae effects and

requires following monitoring and management carefully.



OCTA provides a noninvasive method for better visualization of retasdulatures. OCTA
allows visualization of multiple retinal layers with high resolution, and thissritore sasitive
thanFA in detecting subtle vascular distortions correlated with early eye condi®@EA has
been commercially available for clinicate since 2014. However, current clinical OCTA relies
mainly on visual inspection of changes in retinal vedselslinicians.The clinical utility is not

yet fully determined.

Quantitative analysis and objective classification promise additional powerot clinical

OCTA: Digital quantification of angiographic characteristics will be of great benefit for clinical
uses. We have developed quantitative OCTA features to demonstrate objective classification of
DR and sickle cell retinopathy (SCIRB8]. Furtherdevelopment of quantitativ®@ CT/OCTA
featuredhave enablethachine learningVIL) basedartificial intelligence (Al) classificatio useful

for automated DR detection, prediction and assessment of treatment outEommlesrmore,

similar strategies could kEasily adapted to other diseases such as SCR or AMD/

Differential artery -vein analysis promises better DR detection andassification It is known

that different diseases and progressing stages affect arteries and veins differently. For example,
venous bops, venous beadirjd9-42] and arterial narrowin§43-45] have been reported in DR

and SCR patients. Therefore, differentf¥ analysis can provide early detection, better DR
classification and treatment assessment. However, clinical OCTA instrumsantedacapability

of AV differentiation.We havedemonstrated the feasibility of using color fundus image to guide

AV differentigion in OCTA. Differential AV analysis improved the sensitivity of OCTA
detection and staging &fR. However, clinical deploymnt of this method is difficult due to the

requirement of two clinical instruments, i.e., fundus photography and OCTA, andtmapéads



image registration needed. During this project,haeeexploral quantitative feature analysis of

OCT, which is concuently captured with OCTA, to guid&V differentiation in OCTA.

Scientific premise of this dissertation was developed in initiatages with preliminary
demonstration of quantitative OCTA analy$88], AV differentiation [46], an validation of
objective OTA classification of DR and SCR. Duringettater stage of théissertatiorwe have
refined and extendd the differential AV analysiswith OCT, establiskd correlation between
OCT/OCTA features and clinical changes in retina, and vatidatam for automatd detection,

classification, and treatment assessment ofopéthies.

Broad impacts. The success of éhprojects in this dissertation cemegratea novel capability to
obtain objective OCTA feature quantification and achieve comyaitied classiftation of
retinopathies. The proposed algorithms for quantgatinalysis of blood vasculatures can be
readily adapted for computaided classification of other retinal diseases that are known to cause

distortions of retinal blood vasculatures.

1.2.2Innovation

OCTA is a relatively new modality of OCT technology to visualize retinal and choroidal vessel
morphologies. Compared with traditional imaging technologies for retinal vessel measurements,
such as FA47], indocyaninegreen angiographj48], laser ppler flowmetry [49]), and laser
speckle imaging50], OCTA does not require dye injection, and retinal and choroidal vessel
morphology can be visualized and analyzed Hoyelayer at a hgh spatial and temporal
resolutions. OCTA allows study of micra@ular structures that cannot be easily achieved by

conventional method$1-58].
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Thispresented studies in this dissertatiane several technical and scientific innovations outlined

as follows.

a. Differential analysis and branchpoint analysishave be@ demonstrated for quantifying

OCTA images from DR and SCR. Our studies demonstrated the feasibility of branchpoint features
in OCTA and also showed that differentiV analysis improved the sensitiyiof quantitative

OCTA features.

b. Enface OCT image guided artery-vein classification and differential analysishas been

employed to establish an efficient clinical deployment of the proposed algorithms. In our
prdiminary study, we introduced a fundusage guidediV classification in OCTA. Using two
sepaate devices and integrating the clinical data form them is quite difficult and not efficient in a
clinical setting.Enface OCTimage guidedAV classification in OCTA would require a single
device to cpture image data and remove the requirement of imaggtnation and multiple post
processing protocols, making it effective in a clinical setting. This algorithm can be easily
integrated with commercial devices that can genesaface OCTand OCTA imags. This
integration will allow automatedV classificaton in OCTA and differential analysis for treatment

evaluation and assessment by the clinicians.

c. Comprehensive OCTA featuredhave been classifying and predictindpR, SCR and DME

Our studies ardne first in literature to utilize OCTA features for Nbased objective classification.

We demonstrated the combination of OCTA features and ML strategies could lead to a robust
accuracy of diagnosis of DR, SCR and thi#fifterentstagesOur OCTAstudy of diabetic macular
edema (DME) with aVEGF treatment &s also shown thatblood vessel densityn the

superficial retinal layer can serve as an objective biomarker predictive of visual improvement. We
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anticipate thasuchcomprehensive analysis identify objective biomarkers for prediction and

evaluation otreatment outcomesill be beneficial for future clinical deployment.

d. Optimal-feature-combination has beeremployed to improve the performance of computer

aided classification of retinogiaes. During this project, weéemonstrated a study thadmbines
backward elimination and multivariable regression model to identify OCTA features and
weighting factors to achieve optimi@aturecombination for robust muldlisease classification

and stging.

e. Deep learning based applicationeave been showed fobgective disease classification and

AV identification applications. We are the first in literature to propose a way to compensate for
the smaller OCTA data in deep learning by using a trarisfening based strategy. We
demonstrate that, a transfer leamibased classifier is able to provide a good classification
accuracy to distinguish control, no DR and DR subjects. Furthermore, we also demonstrate a novel

strategy for deep learning bas&W classification.

1.2.3 Specific Aims

Thisdissertation studgims to determine quantitative features in OCTA of various ocular diseases
suchas DR and SCR andialidate comprehensive OCTA features ML basedautomated
classification of retinopathies. Successful implementation of this projecstamitiardizeDCTA

features foobjectivedetection, prediction and assessment of ophthalmic treatment outcomes.

As a leading cause of preventable blindness, DR tafié@45% of diabetic patients. An
estimated 425 million adults have diabetes worldwide, corresponding ta$223 billion) of
global health expenditurg29]. Early detection, prompt intervention, and reliable assessment of

treatment outcomes are essential to prevent irreversible visual loss frofRdiiRal vascular
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abnormalities, such as microaneurysms, leardlates, retinal edema, venous beading, intraretinal
microvascular anomalies and retinal hemorrhages are common DR fifditfjgsThe use of

OCTA to provide deptiesolved imaging capability to differentiate individual capillary plexuses
has been applie DR and other retinovascular diseases. However, the clinical utility is not yet
fully determined. Quantitative OCTA analy of retinal diseases holds promise, since translating
subjective findings into objective assessmgb® will standardize OCTA malysis, which is
essential prior to its use in assessing treatment outcome. In addition, objective OCTA analysis may
provide potential telemedicine applications in rural and underserved areas where the access to

experienced ophthalmologists is limited.

Aim 1. To establish quantitative OCTA features. This aim is to quantify micreascular
abnormalities in retina using OCTA images and correlate OCTA features withpgdatbiological
changes due to retinopathies such as DR or SCR. Under this aim, wéd)hdeonstrated the
potential of quantitative OCTA analysis for objective detection of DR and SCRedted the
extent of visual improvement after ranibizumab treatment for diabetic macular edema (DME)
patients with OCTAquantitative OCTAbiomarkers[60]; 3) developed a new set of OCTA
feaures for brancipoint analysis and demonstrated their potential for DR staffitify 4)
developed multiple novel algorithms 8V classification 5) demonstrated deep learning based
AV classification technique; an@l) demonstrated differentiahV analysis improved OCTA
feature sensitivity in bbtDR[62] and SCH63]. Key success criteriorf this work is to establish
guantitative OCTA features, identify the most sensitive features to detect onset and progression of

retinopathies.

Aim 2: To validate objective OCTA classification of retinopathies.Using the quantitative

OCTA features demonsited in aim 1, this aim is to explore compta@ted classification using
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modern machine learning techniquegsder this aimyve have 1)tested a support vector machine
(SVM) based classifier to demonstrate objective OCTA classification of DR and3TR)
employed supervised machine learning to conduct mdiease classificatigje4]; 3) employed
hierarchical backward elimation for identifying the optimalleaturecombination for the muki
task, multidisease classification; ail validated transfer learning based dele@arning approach
for objective classification of DS5]. Key success criteriorof this work is to estaldh computer

aided diagnostic system for mdssel screening of retinopathies.

Anticipated impacts: The succeskl clinical implementationof theseproject will establish
guantitative OCTA featurewith subclinical sensitivity enabling early detectionf @ystematic

retinopathies, and computaided classification.

1.2.4 Structure of the dissertation

The overall structure of this dissertation covers multiple projects that fall under three primary
topics: quantitative OCTA feature analysAay, classificaton and artificial intelligence

applications. All studies are notsautely independent of each other and have correlations.

Chapter 1l explores the development of OCTA features, their rationaheelation to
morphological applications and varied apgtions. It has been divided irfige subsections. Sub
section 1 ad 2 demonstrate the quantitative characteristics of OCTA features in SCR and DR data,
respectively.Subsection 3 describes a study that analyzes OCTA features in DME for the
prediction ofvisual acuity after treatment with a’lMEGF. Overallthese three udb-sections
establish the blood vessel density (BVD), parafoveal avascular density (PAD), blood vessel

tortuosity (BVT), blood vessel caliber (BVC), vessel perimeter index (VPI), fovestcalar zone
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(FAZ) area (FAZA) and contour irregularity (FAZI) asquantitative OCTA imaging biomarkers

for SCR, DR and DME.

After initial exploration with the OCTA featuresybsections 4 and 5 @hapter Il delve into
further development of OCTA faaks that describe changes in overall geometry, branching
pattern ad complexity due to manifestation of retinopathies and their progressiorseStibn4
describes the branchpoint analysis to establish OCTA features such as vessel branching coefficient
(VBC), vessel; branching angle (VBA) and vessel width ratio (VWR)d@ntifying DR subjects.
Subsection5 develops complexity based features and window based measurement strategy that
can quantify the progression of DR from NPDR and PDR by quantifysadiz@d complexity in

capillary structures.

Chapterlll describes the projects for developiy classification techniqueand differential
analysign OCTA. The subsection 1 describes our developg@d classification strategy in fundus
image using optidadensity ratio and vessel tracking. This algorithm esras aasefor the
following study, that demonstrates a fundus image guidéctlassification strategy for OCTA
(subsection 2). This section also shows the first ever demonstration of diffe/gvitehalysis in
DR OCTAs and it is observed that the diffntialAV analysis improves the sensitivity of OCTA
features for disease classification. The-sabtion 3 replicates the study in DR in SCR data and
shows that for SCR, veins are fteminantly afécted more that arteries as disease manifests and

progresses.

Subsection 4and 5develop OCT guidedV classification techniques fa@&fficient clinical
deployment of differentiaRV analysis. Using OCT instead of fundus to guide the axteny
classification removes pre and post processing stepsrikge normalization and registration.

Furthermore, OCT and OCTA data come from single device that makes the overall process more
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efficient and less time consuming. Two OCT guided approaches i.e. @ftacetensity profile
based strategy (stdection4) ard OCT oximetry based stratedgubsection 5)have been

described in this chapter.

ChapterlV demonstrates the use of established OCTA features for ML based automated
classification. In sutsection land 2, OCTA based objective classification and stadigfo&R and
DR are described. In stdgection 3, a muktask hierarchical classification strategy is described
that utilizes backward elimination technique to identify the most optimal features s=ctor
classification task. The hierarchical tasks areoi)trol vs disease, ii) DR vs SCR and iii DR and

SCR staging.

Subsection 4 and 5 ofapterlVV extends the Al studies into delearningbased applications.
In two subsections, we descripa transfer learning based strategy to utilize convolutiopalal
networks (CNNs) for DRclassification, and ii) a UNet based CNN architecture for AV

classification using bot OCT and OCTA images.

Finally, chapter V summarizes the results of all the ingastid studies and discusses future

direction and challeges in effective clinical deployment of developed technology.
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CHAPTER II. QUANTITATIVE ANALYSIS OF OCTA FEATURES

(Part of this chapter igreviously published aMlinhaj Alam, Damber Thapajennifer I. Lim,

Dingcai Cao, and Xincheng Yao, "Quantitative characteristics of sickle cell retinopathy in optical
coherence tomography angiographigjomed. Opt. Expres8, 17411753 (2017)25] (Section

2.1); asMinhaj Alam, Yue Zhang, Jennifer I. LimR.V.P. Chan, Min Yang, Xincheng Yao,
AQuantitative OCT angiography features for 0
r et i n oketna(Philadélphia, PA), (2018) DOI: 10.1097/IAE.00000000000023161]

(Section 2.2; asYi-Ting Hsieh,Minhaj Alam, Dani el Chao, Xincheng Yac
Tomography Angiography Biomarkers for Predicting Visual Outcomes after Ranibizumab
Treatmenf or Di abet i ¢ O@hamélogy Retbh&@@18)H 10[(Section 2.3; as,

David Le,Minhaj Alam, Jem i f er . I . Li m, Xincheng Yao, AFul
analysis in optical coherence tomography angiography for objectiveficatssn of diabetic
retinopathy, 6 Bi ome d-2503(p019]61] ESeqhian 4%, andmaduBcript 5) , 2
in pressasMinhaj Alam,Davi d Le, Jenni f er |Vascllar compledgtpy d Xi n
analysis in OCT angiography of diabetic retinopatRgtina(2020)(Section 2.5).

Chapter summary: This chapter describes the quantitative OCTA features and their deployment
in analyzing image data from SCR, DR and DME patients. This chapter is divided into five sub
sections. The first subection describes several OCTA features such as BVC, BVT, B¥D,

FAZ-A, and FAZCI and analyzes them for SCR OCTAs; the secondssahm describes the
guantitative analysis for DR subjects; and the thirdsediion describes a study that analyzed the
OCTA features for DME subjects and investigated whether O@&B&ufes were able to predict

the BCVA of patients after AnWEGF injectionsThis chapter further describes two studies {sub
sections 4 and 5) that have developed vascular branchpoint based and complexity based
guantitative OCTA features. The branchpdeditures are analyzed on control, noDR and DR
subjects, while the vascularroplexity features are more sensitive towards identifying transition

from NPDR to PDR. The two studies are presented irssghbons 2.4 and 2.5.

2.1: Quantitative characteristicsof sickle cell retinopathy inOCTA

Abstract: Early detection is an essentsiep for effective intervention of sickle cell retinopathy

(SCR). Emerging optical coherence tomography angiography (OCTA) provides excellent three
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dimensional (3D) resolution to enable lafrele, noninvasive visualizatioof retinal vascular
structurespromising improved sensitivity in detecting SCR. However, quantitative analysis of
SCR characteristic in OCTA images is yet to be established. In this study, we conducted
comprehensive analysis of six OCTA parameters, imotudlood vessel tortuosity, ssel
diameter, vessel perimeter index (VPI), area of foveal avascular zone (FAZ), contour irregularity
of FAZ and parafoveal avascular density. Compared to traditional retinal thickness analysis, five
of these six OCTA pararters show improved sensitivifgr SCR detection than retinal thickness.

It is observed that the most sensitive parameters were the contour irregularity of FAZ in superficial
layer and avascular density in temporal regions; while the area of FAZ, tortaasitmean

diameter of the vestwere moderately sensitive.

2.1.1 Introduction

Sickle Cell Disease (SCD) is an inherited red blood cell disorder that affects 901@@0000
Americans[66], making it one of the pst prevalent genetic disorders in the United St&éps

Red bloodcells with normal hemoglobin have a disc shape and this round shape allowésthe ce

to be flexible so that they can move through not only large blood vessels but also small capillaries

to deliver oxygen. In SCD, however, red blood cells deform inteshaped farm tool called a

Asi ckl eo. When si ckl e c essels,gheytcanagetestuck antd ocoludg h s r
blood flow and thus prevent oxygen from reaching vital organs. Consequently, patients with SCD
suffer from microvascular occlusions ianous parts of their body, including the retina. Sickle

cell retinopathy (SCR) isne of the major ocular manifestations of SCD. The underlying systemic

and ocular manifestations of SCD are a result of \astusive ischemia due to the blocking of

bloodvessels by sicklshaped erythrocytes.
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SCR typically involves peripheral retinassels. At this time, the clinical staging system is of
limited value in predicting progression of SCR. Further, standard fumaked clinical
examination typically showsonmal to minimal findings in the macular area in sickle cell patients
[68]. Although patients are asymptomatic, many adult sickle cell patients do harbor findings of
SCR that precede the clinical detection of a foveal depressiof68irsuch as maculdhinning
measured by optical coherence tomography (JQ] or vascular abnormalities in the macular
region based on fluorescein angiography (FA). However, the existing techniques are limited
in detecting subclinical signs of SCR. For instance, Fuires dyenjection and cannot detect
abnormalities in ~50% of eyes in sickle cell patients, compared with recently emerged OCT
Angiography (OCTA)72]. New technique is desirable for detecting subclinical sign of SCR.

OCTA has been used for quantitatagsessment of retinal vascular struct(ir8s77]. OCTA
allows visualization of multiple retinal layers with high resolution and therefore is more sensitive
than traditional FA in detecting SCR2]. Thus, OCTA may be able to further the classification
of SCR by including data with prognostic value. OCTA is currently available commercially for
clinical use. However, quantitative analysis of SCR characteristics in OCTA images is yet to be
establishedln this study, we conducted comparative analysis of &iX® parameters, including
blood vessel tortuosity, vessel diameter, vessel perimeter index (VPI), area of foveal avascular
zone (FAZ), contour irregularity of FAZ and parafoveal avascular densitprifol and SCR
groups. The goal was to assess how tlrarpaters correlated with retinal thickness and how
sensitive the parameters could detect SCR, and thus to establish a metric for quantitative OCTA

assessment of SCR.

2.1.2 Materials and Methods

Data acquisition
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This study was approved by the Institatid Review Board of the University of lllinois at Chicago

and was in compliance witihe ethical standards stated in the Declaration of Helsinki. The SCD
patients were recruited from University of lllinois at Chicago (UIC) Retinal Clinic. The majority

of patients (N= 14, 78%) had Stage Il of retinopathy with the remaining as Stage=I#,(R2%).

The quantitative study was based on OCTA images of 18 SCD patients (7 males and 11 females;
18 African Americans) and 13 control subjects (12 males, 1 fem#&&jcan Americans).The

mean age was 40 years (range 24 to 64) for the patient37apears (range 25 to 71) for the
control. OCTA images of both eyes (OS and OD) were analyzed in this study, so the database
consisted of 36 SCR eyes and 26 control eyles.slibjects of the control group were chosen based

on their previous ocular historgbsence of any systemic diseases, or any visual symptoms; a

noomatappearing retina on clinical examinati on;

SD-OCT data was ayuired using an ANGIOVUE SIOCT angiography system
(OPTOVUE, Fremont, CA, USA), wita 70KHz A-scan rate. OCTA images were constructed
using splitspectrum amplitudeecorrelation angiography (SSSADA) algorithfvi8] with
integratedmotion correction algithm . The axial resolutioni®5 e m whi |l e | at er al
D1 5 .dhm scanning protocol in this system provided a field of view (FOV) of 3 mm x 3 mm, 6
mm x 6 mm or 8 mm x 8 mm. For our calculation, we used only 3 mm x 3 mm portions from the
OCTA images. OCT angiography imagesra&vexported using the software ReVue {@pe,
Fremont, CA). The ReVue was used to segment superficial and deep inner retinal vascular
plexuses. It was also used to measure the retinal thickness from the -8¢h$ the thickness
was measured from the eumost layer of fovea to the retinal pignt epithelium (RPE) layer.
Customdeveloped MATLAB (R2015b, MathWorks, Inc.) procedures with graphical user

interface (GUI) were used for further image analysis and quantitative comparison.
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Quantitative parameter®r OCTA analysis

Six OCTA parametersncluding blood vessel tortuosity, vessel diameter, VPI, area of FAZ,
contour irregularity of FAZ and parafoveal avascular density, were used to analyze and quantify
the OCTA images from SCD patients and compare #teqt data with control subjects using
Student# est s . Ef fect sizes (Cohendés d) were al s
outcome between the groups normalized by the pooled standard deviations. Pearson correlations
between retinal thicknessd the OCTA parameters were computepasately for the controls

and SCD patients. Finally, canonical discriminant analysis was conducted to assess which
measurements (retinal thickness, OCTA parameters) were most sensitive to differentiate SCD
patientsvs. controls. For the discriminant ansily, the variables with small canonical loadings
(correlations between the observed variables and the discriminant function) were sequentially
removed until all remaining variables had canonical loadings > 0.3ti@ctloading value for a

variable conglered to be important).

The rationale of each of these six OCTA parameters is briefly summarized in the following

sessions.

Blood vessel tortuosity

Retinal blood vessels in SCD patients are known to be moretsrthan those in normal subjects
[79-81], due to sickle cell anemia. Therefore, quantitative analysis of blood vessel tortuosity can
be valuable. In this study, quantitativeadysis of the tortuosity is conducted for large blood vessel
branches in the perficial layer. As the sickle cells affects the retinal vasculature, the tortuosity is
visually prominent in large vessels and they have statistically more reliable tortneagyrement

index [82].The first step is to reconstruetrface OCTA image of he superficial layer of retina

21



(Fig. 2.11a). The scond step is to segment the large blood vessels using global thresfdigiing
morphological functions (Fig2.11b) and fractal dimension classificati¢@3]. This binary
vasculature map was then skel@zed. The skeletaration process removes pixels on the
boundaries of vessels but does not allow objects to brea@$a86] The remainingixels make

up the image skeleton. After this, each branch of the blood capillaries was identified with two
erdpoints (points A and B in Fi®.11c) so that the geodesic and Euclidian distances for each
branch could be calculated. The tortuosity of glgitoranch is defined by the distance mdB&

90] which is the ratio of geodesic distance and Euclideaartis between the two endpoints. For
two points A(x1, y1) and B(x2, y2) in a two dimensional plane as shown ir2 Hifj, Euclidean

distance is calculated using the following equafj,

Euclideandistance\/( X- Xy Y. 2.11)
If we define each of the segmented branches with [x(t),y(t)] on the integyal,[the geodesic

distance between the endpoints i.e. A and B can be calculated with the following §§04tion

Geodesicdistancet’l" aé—dx(t) %‘ + dé t) 2 dc'
(16 dt § g
0

(2.12)

The tortuosity of each branch of blood vessels was calculated and the averaggstyoof the

image was measur¢@o],

1,: & Geodesic distancebetweentwoendpoints okseléranchi ¢

n Ia:l S:Euclidean distancebetweentwo endpointswedssel branchi (

Tortuosity=
(2.13)

wherei is the ith branch and n is the number of branch.

Mean diameter of blood vessel:
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As the sickle cells affect the blood flow inside the vessels and thus cause structural change in the
vasculature, the mean diameter of blood vessels is an important parameter to analyze in OCTA
images. Large blood vessels franperficialenfaceOCTA image were measured to quantify this
parameter. The large vessel area was calculated from the vessel mapl(Hiy.and length was
calculated from the skeleton map (F&yl.lc). Mean vessel diameter was then calculated as the

ratio of vessel area and lehgising the following equatigii 7],

we N o
a i=1,j 4B(I'J)
Meanvessel width n"— .

S(i, j
ISR (-9 (2.14)
where B (i,j) represents the pixels occupied by the vessels ajj)d&pfiesents thpixels occupied
by the vessel skeleton (i, j represent the row and column positions of each pixel of the image).

With this parameter, localized vascular dilation would be easily identified and it could serve as a

marker for vascular abnmalities.
Vessel grimeter index (VPI):

Large blood vessels in tretface OCTA image were used to measure this parameter. From the
binary vasculature map, a vessel perimeter map 2Fga) was obtained by detecting the edge

of vessels and deleting thpexels that were ot close to the edge of the vessels. The VPI was
calculated as the ratio of perimeter pixel area and total image area using the following equation

[77],

. . -a~ i=1,j ;P(I’J)
Vessel perlmetermde;(__n'—.
iy
CYSTRARY (2.15)
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where F(i,j) represents the pixels within the vessel perimeters (white pixels of.Eigga) and |
(i,)) represents all the pixels in the vessel perimeter. flaig parameter is a good marker of overall

change of vessel length in OCTA images.
Area of FAZ:

Since the SC disease directly affects the vessel texture with tortuosity and dilation, it is also
interesting to compare the change in foaadscular area for control subjects and SCD patients.
The FAZ contour was serautomatically demarcadeand the FAZ was segmented from the
OCTA images (Fig2.14 a, d) using an active contour mo¢#l, 92] where the seed point was
manually placed at the center of the fovea. Jikel size of the OCTA image is a known parameter
and from this informationthe area of the avascular region was calculated using the following

equation77],

FAZ = (Area of single pixe( in pﬁ) 83 Wi
=] 2 (2.16)

where A (i,j) represents the pixels occupied by the segmented avascular region.

Contour irregularity oFAZ:

A contour irregularity parameter can be used to express border irregularity and is also an excellent
descriptor of speculation, i.e, spiked nature of the con@8f We illustrate the effects of
increasing border roungpess using contours of avasuoudrea (Fig2.14 c,f). The bigger the value

of contour irregularity, the more irregular and spiked the contour of the avascular region is.

Contour irregularity parameter was calculated with the following equigijn
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. ) a i=1,j io(l’ J)
Contour |rregu|ar|ty: n’— .

. R(ij
Qa1 ) (2.17)
where O (i,j) represents the pixels occupied by the FAZ contour and R (i,j) represents the pixels

occupied by the perimetef the reference circle.

The contour of the original avascular regiwas measured; a circle of the same area as the

avascular region was used as a reference.
Density of parafoveal avascular region:

In order to quantify the density of parafoveal avasadgion, fractal dimension (FD) analysis of

both the superficial andeep layers were conducti@8]. FD has been considered as a potential
biomarker for retindbased disease detecti@4-96]. Fractal is norEuclidean structures that show
selfsimilarity at different scales. The FD of a structure provides a measure t#xitse
complexityf97]. The retinal blood vessels and capillaries are complex and rarely have an exact
Euclidean shape. Therefore, they can be precisely described by fractal analysis. Many retinal
disease such as SC disease involve vessel abnormalitiesiding drop out zones in between
vascular structures. This requires detailed analysis of the retinal vasculature to understand their
role in disease pathophysiology. In our case, local fractal dimerisleld) analysis which
identifies local variations ithe vascular network was calculated from the OCTA images by using

{2w+1)

a moving window of siz {v 3 using the following equatiof98],

q(i,j) =LFDIp(i *,j k)i w- k <. (2.1.9

where p(i.1) is the intensity OCTA imageq,(i’ i) is the fractal dimension of the intensity image
and (i,J) corresponds to the location of each pixel in the image. Local FD was calculated using

window sizes (in pixels) of 3x3, 5x5, 7x7, 9x9 and 11x11 (w=1,2,3,4.5).
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The FD varies across the image; it ighter in larger vessels compared to that in smaller
vessel or noivascular regiorfi83]. Therefore, the LFD was normalized and plotted as a contour
plot (Fig2.15 a,b). The normalized LFD with a value close to 1 indicates large vassgedsvalue
close ta0 indicates notvessel regions, so the regions were classified as follows: the blood vessels
and capillaries lie between a value of 0.7 and 1; the nonvascular regions lie between a value of 0.0
and 0.3 and the smaller gaps betweerselsslie between a tee of 0.3 and 0.7, we define this
area as grey zone. The density calculation is expressed in percentage by taking the ratio of the total
pixels with corresponding FD values (0 to 0.3 for+agcular region, 0.7 to 1 for vessel angl 0.
to 0.7 for grey zoe) to the total pixels in the analyzed windf8@]. Here, vessel densities were
calculated in three circular parafoveal regions of diameter 1 mm, 2 mm and 3 mm as shown in Fig.
2.15a and four parafoveal sectors, namely, nasal (N), superior (S), térfiporand inferior (I)

of a circular zone of diameter 3 mm as shown in Eigj5b.

2.13 Results

In the section 3.1 we report the OCTA measurements and their respective variation with SCD. In
section 3.2, we provide comparative information of retihadkhess and discriminant analysis.
Among total 36SCROCTA images1 OD and 3 OS OCTA images were excludeed to severe

image distortions

OCTA parameters

Blood vessel tortuosity:

Figure2.11 illustrates representative OCTA image (Fglla), segmentetllood vessel map
(Fig. 2.11b) and skeletonized blood vessel map (Rig.1c). The retinal vasculature in SCD

patients becomes more complex as the vessels become more tortuous and twistexvrAin
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Fig.2.11d, SCD eyes had much higher tortuosity ttre@ncontrol eyes (48.07% vs. 31.52%
0.001, dGaBY.MOd average, a tortuosity increase of 16.56% was observed in SCD

patients compared to control subjects.

Figure2.11. Measuring tortuosity of OCTA images. (a) OCTA raw image, (b) Segatelarge

blood vessel map, (c) Skeletonized blood vessels branches with identified endpoints (for a
random vessel branch, A and B endpoints are shown with red dots), (d) Comparison ofytortuosi
in control and SC patients (error bars are standard degation

Mean diameter of blood vessel

Figure2.12 illustrates the mean diameters of large blood vessels of superficial OCTA images. It
was observed that the averaged diameter of blood vessels of control subjects and SCD patients
were 23.65m and 30.6&m, respectively. The mean diameiecreased about 29.4% in SCD
patients, reflecting a significant dilation in the large blood vessels of SCD paf@t9],

C o h ed+®.48).

N w
=] o
1 1

Mean diameter of blood vessels (um)
=
o

o
I

Control subjects SC Patients

Figure2.12. Comparison of mean dizeter of blood vessels in control and SC patients
(superficial layer).
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Vessel perimeter index (VPI):

Figure2.13a illustrates the binary vessel perimeter map obtained from the superficial raw OCTA
image (Fig.2.11a). VPI provides a good estimation of ttleange in vessel length for SCD
patients. As shen in Fig.2.13b, the VPI in control subjects is 10.8% and it is 8.31% in SCD

patients, so there is a decrease of 2.49% in VPI for SCD pagean® ( 05, d€a.4leg n b s

Vessel perimeter index

Controd Subjects 5C Patients

Figure2.13. (a) Vessel perinter map, (b) Comparison of VPI in control and SCD patients
(superficial layer).

Area of FAZ

Figure2.14a and2.14d illustrates the demarcation of FAZ in raw OCTA images, in control and
SCD patients respectively with the binary FAZ segtation (Fig2.14b and2.14e) and contour

map (Fig.2.14c and2.14f). It was observed that the average area of avascular region also
increases in SCD patients (52% in deep and 53% in superficial layer). This shows that, for SCD
patients the FAZ inceses which is pogsy a result of rapid drop out of retinal vessels near foveal

areap< 0. 00 1, d=CAdlh).eTheccemparison is illustrated in gl 4g.

Contour irregularity of FAZ:

From the segmented FAZ (Fig@.14b, e) we also measured the camtof the region Kig.

2.14c,f). As there are complex vascular structure and vessel abnormalities, the contour becomes
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more irregular in SCD patients rather than a smooth shape in control subjects. The contour

irregularity index for control subjects ard.@ and 1.11 forekep and superficial layers respectively.

FAZ area (mm*"mm)
(] ]

=
-

Superficial

Deep Superficial Deep

Figure2.14. (a) OCTA image with demarcation for normal eye, (b) Segmented Avascular region
for normal eye (c) FAZ contour for normal eye, (d) OCTA image with demarcation for diseased
eye, (e) Segmented aa@ilar region for diseased eye, (f) FAZ contour for diseaged (@)
Comparison of area of FAZ in control and SCD patients for deep and superficial layers, (h)
Comparison of area of FAZ in control and SCD patients for deep and superficial layers.

Our resilts show that the contour of FAZ from control subjects ha&1P® deviation from
an ideal circular contour whereas the contour from the SCD patients has aretird 4@viation

(comparison shown in Fi@.14(h)). The irregularity and spiculation incredsealmost 36% in
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case of SCD patients for both deep and digi@rlayers. This clearly indicates the feasibility of

this parameter (contour irregularity) as a biomarker of SC dispase ( 001, Cohends d

Density of parafoveal avascular region:

Figure 2.15 Iillustrates the contour maps with normalized values of local fractal dimension
corresponding to OCTA raw images; it also shows the different regions or zones of the image
where FD analysis was conducted (Rid 5 a,b). A detailed vasculatudensity anlysis was
conducted with the OCTA database. SC disease can lead to vessel drop out zones in the vascular
structure of retina, so we measured the density ofvasoular region, vessels, intermediate gaps
(grey zones) and compared the changetkeirsity indefinite zones. The density comparison was

done in three circular parafoveal regions of diameter 1 mm, 2 mm and 3 mi.{i5g) and four
parafoveal sectors, namely, nasal (N), superior(S), temporal (T), and inferior (I) of a circular zone

of diameter 3mm (Fig. 2.15b). The avascular region increased significantly in SCD patients

(p<0. 01, Cohends d 3.24), the vessel density

the increase of nemascular regions.

Figure 2.15. Contour mapsreated withhormalized values of local fractal dimension. (a) Circular
zones of diameter 1, 2 and 3mm, (b) Nasal, Superior, Temporal and Inferior regions. FD analysis
was conducted on the different regions specified in a and b.
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Table2.11. Vasculardensity clanges in different zones

Superficial Layer Deep Layer
Avascular  Grey Vessel Avascular  Grey Vessel
region Zone density region Zone density

Circlel 18.37%5. 72%.12. 65%5.82%y 2. 64%3. 18 %Z
Circle2 12.70%4. 43%.8. 27%Z9. 66%Y 3.53%6. 12 %Z
Circle3 13.25%4,. 83%.8. 42%Z13.85%4.21%9. 64 %Z

N 12.60%4. 25%.,8. 35%Z214. 40%4. 53%9. 87 %Z
S 12.55%9298%7Z* 9.57%Z14. 45%5. 57%8. 88 %Z
T 14. 3493.45%,;10. 92%17.26%6. 8%210. 46Y
|

12.35%2.57%.9. 78%Z13. 44%4. 77%8. 67 %Z

A summary of the vasculature density analysis of FD contour map is shown in th& 1dble
and ilustrated in Fig2.16 where we can observe the increase of avascular region density for each

specific zone and the decrease of grey zone and large vessiledeRor each section in Table

2.11 the significance of thetest is marked as: * fgr< 0.06; ** p< 0.01; *** p< 0.001.
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Figure2.16. Comparison of vascular density in different sections of the OCTA image in control
and patient eyes. Control eyda) Avascular region density, (b) Vessel density, (c) Grey zone
density; Patient eye: (d) Avadar region density, (e) Vessel density, (f) Grey zone density.

We have also summarized the results for the first five parameters i@ thBldt illustraes
the effect of SCD for the parameters and their sensitivity to it. By observing the P vatnésdro

t-test results we get the indication whether the change due to SCD is significant or not.

Table2.12. Quantitative comparison of parameters

Average
Diameter
Average of Blood Ves_sel Area of FAZ FAZ Contour
Parameters | Tortuosit Perimete (mm?) Ireqularit
y Vessels | ; Index g y
(em)
Retinal Superfici | Superfici | Superfici Deep Superfici Deep Superfici
Layers al al al al al
Control 31.52 23.65 10.80 0.25 | 0.23 1.10 |1.11
Patients 48.07 30.60 8.31 0.38 | 0.35 1.46 | 1.47
1 0
Changein |16 5429 4(2.49(°"|53%y [36%36 %y
parameters y
P value <0.001 |<0.01 <0.05 <0.001 <0.001
Coheno{3.69 3.18 2.41 4.15 4.52

Retinal thickness and discriminant analysis

Retinal thickness was significantly lower in SCD patients than conft®3.61+5.31 um vs.

217.67 t6.44ump< 0. 001, Cohends d = 3.68). None of

correlated with the retinal thickness either in controls or SCD patexcept for the area of FAZ
in Circle 1 of the superficial layer inC® patients(=-0.73,p < 0.001). This correlation analysis
suggested that OCTA parameters provided additional information of retinal health than retinal

thickness.
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Canonical discrirmant analysis using retinal thickness and the OCTA parameters
indicatad most of the OCTA parameters had higher canonical loadings than retinal thickness. The
most sensitive OCTA parameters with canonical loadings > 0.3 included: 1) contour irregularity
of FAZ in superficial layer, 2) avascular area of Circle 2 in superfiajadr, 3) avascular area of
the temporal region in superficial layer, and 4) avascular area of the inferior region in deep layer.
These four variables could individually or jointlyfférentiate the SCD patients vs. controls with

100% correct rate.

2.14 Discussions

Six OCTA parameters, i.e., blood vessel tortuosity, diameter, VPI, area of FAZ, contour
irregularity of FAZ and parafoveal avascular density were developed for quaatdagessment

of OCTA images. 36 SCR and 26 normal OCTA images were fasecbmparative analysis.
Among total 36SCROCTA images1 OD and 3 OS OCTA images were excludeed to severe
image distortionsPathological change of the retina, eyetion andenface OCTAprojection
artifacts were the main reasdoehind the distortin. ReVue software utilizes SSADA algorithm

for OCTA construction with inbuilt motion correction algorithmPotential incorporation of

removal algorithm oprojectionartifacts[99, 100]may further improve the OCTA image quality.

A Pearson correlationnalysis was conducted to test the relationship between traditional
retinal thickness measurement and each of these six OCTA parameters. The analysis revealed that
most of OCTA parameters are not significantly correlated with theatatiickness except fahe
area of FAZ in Circle 1 (1 mm diameter or 0.5 mm radius from the center) of the superficial layer.
This suggests that the OCTA may provide additional information on disease associated vasculature
change than retinal thicknesslpinformation from taditional OCT. Morphological distortion of

retinal blood vessels in SCD patients occurs due to sickle cell anjé@iil]. Quantitative
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analysis of blood vessel tortuosity revealed 19.07% tortuosity inatam&8CD group, compared

to that in control groupA 29.40% increment of blood vessel diameter was observed in SCD group.

A 2.49% decrease was observed for the VPI of the SCD group, which is consistent to the observed
increment of blood vessel diameteAZwas consistently enlarged and contour irrediylavas
increased in SCD patients. The FAZ contour irregularity is closely related to tortuosity increase
which makes the retinal vessels more irregular and spiked in shape. In contrary, retinal bldod vesse
densities in both superficial and deep layersendecreased in SCD retinas, compared to normal
ones. It is known that proliferative SCD affects the peripheral retinal vasculature, and its
manifestations include capillary dropout, arteribl@nular anasmoses, development of retinal
neovascularizatioand pigmentary changes. Our quantitative analysis of retinal vasculature with

FD analysis confirms this effect of SCD on retinal vessels.

Another important aspect of this study was to test the sensiiviigch OCTA parameter for
detecting SCR. The canical discriminant analysis showed that OCTA parameters were more
sensitive than retinal thickness and the most sensitive OCTA parameter was contour irregularity
of FAZ in superficial layer, avascular dégsn circle 2 of superficial layer, avascularrddy in
temporal region in superficial layer and avascular density in the inferior region in deep layer. These
variables could correctly differentiate the SCD patients from the control subjects. Acdorttiag
mean calculation of the parameter (suppbhigtt e st and Cohends d i ndex)
observed that the most sensitive parameter was the area of FAZ (ak&&%5thange in SCD
patients) and contour irregularity (both superficial and dagers) (about 36% change) (Table
2.12). Tortuosty, mean diameter of the vessels and avascular density in temporal regions are

moderately sensitive in SCD patients (about29% change). It can be seen that the contour
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irregularity insuperficial layer and avascular density in temporal regions amade sensitive

parameters according to both discriminant analysis-&@st results obtained.

2.15 Conclusions

Six parameters have been used for quantitative assessment of OCTA images. Comparative analysis
of control and SCD groups reveals statisticadignificant differences for all of these six
parameters. It is observed that the most sensitive parametersh&ecentour irregularity in
superficial layer and avascular density in temporal regions while the area of FAZ, tortuosity and
mean diameter dhe vessel were moderately sensitive. It is confirmed that the parafoveal non
vascular region density increasestlasre are vessel dropouts due to SCD. As thevasoular

region increases, the grey zone and vessel density decreases. The study esiablishéise
parameters as bimarker for potential SCR diagnoses and provides a metric for quantifying

changes imetinal vasculature in SCD patients.

2.2: Quantitative OCTA features indiabetic retinopathy

Abstract: Diabetic retinopathy (DR) isnaocular manifestation of diabetes and causes several
retinal abnormalities. In this stgection, we adapt the OCTA features described in the previous
subsection 2.1 and conduct univariate analysis ondai. The data includes control, and three
stages ohon-proliferative (NPDR) DR patient data. Quantitative analysis revealed that the OCTA

features are able to distinguish between control and NPDR subjects with high sensitivity.
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2.2.1 Introduction

As the major ocular manifestation of diabe{&62-105], diabetic retinopathy (DR) is a leading
cause of preventable blindness worldwib@6]. DR can trigger retinal blood vessels to leak blood
and fluids to produce pathological features such as raicenirysms, exudates, venoureading,
cotton wool spots, ef@1]. Retinal nonperfusion, hemorrhages and other microvascular
abnormalities worsen as DR severity progresses. Currently, diabetes affects 1 in every 11 adults
or roughly 415 million peple worldwide[107]. As nearly 4045% patients with diabetes are prone
to vision impairment due to DR08], early detection and prompt treatment of DR are essential to
decrease the progression of vision loss associated with DR. Telemedicine approaches can help
ease dispdties of cae as it allows those in underserved areas to be screened. However, mass
screening programs still heavily depend on experienced ophthalmologists to assess retinal
photograph$109]. This process is both time consuming and experjé¥@]. A computeraided
diagnostic tool could aid in DR screening and have genuine impact on clinical workflow.

In this subsection, quantitative analysis of DR subjects are presented using OCTA
features.

2.2.2 OCTA image acquisition

This study was approved by thestitutional Review Board of the University of Illinois at Chicago

and was in compliance with the ethical standards stated in the Declaration of Helsinki. The DR
patients were recruited from University of lllinois at ChicfdéC) Retinal Clinic. We pedrmed

a retrospective study of consecutive diabetic patients (type 1) who underwent OCTA and OCT
imaging. The patients are thus representative of a university population of diabetic patients who
require imaging for managemaesftdiabetic macular edema aBiR. OCT/OCTA images of both

eyes of every patient were collected. We excluded subjects with macular edema, previous vitreous
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surgery, and history of other eye diseases. Control OCTAs were obtained from healthy volunteers
who agreed to undergo OCTA an€® imaging. All patients had undergone a complete anterior
and dilated posterior segment examination (JIL, RVPC). The patients were classified by severity
of DR (mild, moderate, severe) according to the Early Treatment iaRetinopathy Study
(ETDRS)staging system. The gradimgs done by retina specialist using a slit lamp fundus lens,
technicians did not contribute to the grading of the patients. Rdl ilustrates representative
OCTA images of superficial and detgyers for control and NPDR eg and the corresponding

OCT B-scan.

SD-OCT data were acquired using an ANGIOVUE-SIQT angiography system (Optovue,
Fremont, CA, USA), with a 78Hz A-scan rate, an axial resolutonBD6 e m and a | al
resolution o1 5 .&Alhhe OCTA images were macular scans and had field of view (FOV) of
6 mm x 6 mm. We exported the OCT angiography images from the software ReVue (Optovue,
Fremont, CA, USA) and used custataveloped MATLAB (Mathwedks, Natick, MA, USA.)
procedures with gphical user interface (GUI) for further image analysis, feature extraction and

image classification.
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Figure 2.2.1 Representative OCTA images of control (A), mild NPDR (B), moderate NPDR
(C),and severe NPDR. Thiest row (Al, B1, C1, D1) and second r¢@2, B2, C2, D2) represent
OCTAs from superficial and deep layers respectively. The third row (A3, B3, C3, D3) represents
corresponding OCT Hcans. The segmented superficial and deep layers in QE8daBs are
marked in A3 and B3 respectively. Scale baow/n in A1 corresponds to 1.5 mm and applies to

all the images.

2.2.3 Preprocessing of OCTA images

OCTA images with a 6 mm x 6 mm field of view (304x304 pixels) were used for extracting all
vascular and foveal feats. To account for light and contrastaige variation, we performed
multiple preprocessing steps for image standardization before feature extraction and classification.
We normalized all the OCTA images to a standard window level based on maximum andmini

intensity values. These preprocegssiteps aim to improve the overall reliability of the extracted

38



