
 1 

Regression vs. AOV: Which to Choose? 

 
By: Josh Sheinberg 

 

 

 

 

 

 

 

 

 

Abstract: 

 In this study, we explore the differences between two common statistical methods 

(Regression and Analysis of Variance) on predicting the average household adjusted income 

across the 50 states in 2015.  These two methods will be compared in two different settings, each 

using two predictor variables; one with a significant interaction present between the two 

predictors and one without a significant interaction. These methods are compared from the 

context of the research question being considered, the statistical results, the graphical results, and 

the resultant answer (interpretation of the statistical and graphical results).  In the end, we find 

that neither model is objectively better than the other.  We do find, however, that the added 

complexity of Regression models does not always result in an answer that differs from the 

simpler AOV model when there is no interaction present.  With an interaction, we find that AOV 

does not always tell the whole story.   

Introduction: 

 All sciences use some sort of statistical analysis. However, it is not always clear what 

model is best for the situation.  With this, there is a strong importance of educating researchers 

on the pros and cons of the models they have the option of using.  Details of these analyses are 
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often overlooked, and can be critical to an understanding of the results produced.  In this paper, 

some of the details of both Regression and AOV will be presented.   

When explaining the economic wellbeing of a state, there are many distinct ways to 

measure it. In this paper we will use income adjusted for cost of living. Although this does not 

fully explain the economic wellbeing of a particular state, it allows for an even comparison 

across the US. The question of interest is “Can we predict adjusted income across the states?”.  

To predict adjusted income among the states, there are many different variables to choose from.  

For the purposes of this study, I gathered macroeconomic and educational data from 2015 in 

each of the states, and chose four, as presented in Table 1. 

 

Table 1 

Variable definitions and descriptive statistics 
 

Variable Definition Mean Min Median Max 

Income ($) Household income adjusted  for cost of living (US 

Bureau of Economic Analysis) 

57,568 47,092 56,897 69,456 

Federal Funding ($) Federal funding per capita for public schools (National 

Center for Education Statistics) 

116.04 78.89 106.35 360.39 

Taxes ($) Average tax rate: 
𝐻𝑖𝑔ℎ 𝑇𝑎𝑥 𝐵𝑟𝑎𝑐𝑘𝑒𝑡+𝐿𝑜𝑤 𝑇𝑎𝑥 𝐵𝑟𝑎𝑐𝑘𝑒𝑡

2
 

(Federation of Tax Administration) 

3.58 0.00 3.75 7.60 

Unemployment (%) Unemployment Rate (Bureau of Labor Statistics) 5.27 2.70 5.4 7.50 

Teacher Quality Proportion of core academic classes taught by teachers 

who are considered highly qualified: bachelor’s degree, 

state certification, and competency in the subject taught. 

(National Center for Education Statistics) 

0.96 0.73 0.97 1 

Notes. All data are from 2015 and measures for all 50 states, with Washington D.C. added.  Parenthesis in the definition mark the 

source the data were gathered from. “<1” indicates a fraction censored to one. 

 

 

Methods: 

 

 Conceptually, any univariate prediction model uses one or more variables to predict a 

single response variable. In a model with a single predictor, the generic question of interest is:  
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“Can the information contained in the predictor variable be used in some systematic 

fashion (model) to explain the variation we see in the response variable?”  

 

If the answer is yes, then we can predict values of the response based on our knowledge of the 

values of the predictor. For instance, if we have knowledge that there is an inverse relationship 

(model) between state level unemployment and adjusted income, then we would know that we 

could increase adjusted income per capita within our state (response) if we could lower 

unemployment (predictor). Such single predictor models are simple and easy to explain, but 

unfortunately are not realistic. Most models today are more complicated. More complicated can 

be defined in a variety of ways, but in this paper it will be limited to an expansion of our model 

to include multiple predictor variables. Fortunately, this is also the definition used by most 

researchers. 

 

     In a model with two predictors, the generic question of interest becomes; 

 

“Can the information contained in the first predictor variable, the information contained 

in the second predictor variable, and the information contained in the combined influence 

of the first and second predictor variables be used in some systematic fashion (model) to 

explain the variation we see in the response variable?” 

 

It can be seen that this generic question contains three sub-questions; (1) is the generic single 

predictor question associated with the first predictor, (2) is the generic single predictor question 

associated with the second predictor, and (3) is a new question involving the simultaneous 
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influence of both predictors. In the language of statistics, the single predictor question would be 

called a main effect and this new question would be called the joint or interactive influence. The 

addition of more predictors to the model would add greater complexity, more variables, to the 

question; however, it would not add greater analytic complexity. The model would still be 

composed of main effects (associated with a single predictor) and interaction effects (associated 

with any combination of predictors). Since the primary emphasis of this paper is the comparison 

of analytic methods, I have limited the models to their most simplistic level, two predictor 

variables (two main effects terms and a single interactive term).  

 

In statistics there are several methods that can be used to answer the two predictor 

variable generic question. The two most popular of these are multiple Regression and two-way 

Analysis of Variance (AOV). Given the ratio nature of the data presented in Table 1, the 

statistical method best suited to answer the generic question is Multiple Regression. However, 

the definition of the interactive influence of the two predictor variables within the Regression 

context is highly problematic, not universally accepted, analytically complex, and 

interpretationally difficult. This creates such a problem in Regression that most professional 

researchers resolve the associated interaction problems by simply excluding the interactive sub-

question from inclusion in the generic question. In essence, they have resolved to assume that the 

two predictors do not have an interactive influence on the response variable. This particular 

decision results in the analytic problem known as multicollinearity, which I will not address in 

this paper. 
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Table 2 

Binary variable definitions  

Variable Definition Low (below 

median) 

High (above 

median) 
Income ($) Household income adjusted  for cost of living (US 

Bureau of Economic Analysis) 
0 1 

Federal Funding 

($) 
Federal funding per capita for public schools 

(National Center for Education Statistics) 
0 1 

Taxes ($) Average tax rate: 
𝐻𝑖𝑔ℎ 𝑇𝑎𝑥 𝐵𝑟𝑎𝑐𝑘𝑒𝑡+𝐿𝑜𝑤 𝑇𝑎𝑥 𝐵𝑟𝑎𝑐𝑘𝑒𝑡

2
 

(Federation of Tax Administration) 

0 1 

Unemployment 

(%) 
Unemployment Rate (Bureau of Labor Statistics) 0 1 

Teacher Quality Ratio of core academic classes taught by teachers who 

are considered highly qualified: bachelor’s degree, 
state certification, and competency in the subject 

taught. (National Center for Education Statistics) 

0 1 

Notes. All data are from 2015 and measures for all 50 states, with Washington D.C. added.  Parenthesis in the definition mark the 

source the data were gathered from. “<1” indicates a fraction censored to one. 

 

 

In contrast, many researchers are unwilling to make this rather bold assumption of no 

interactive influence which results in a severe limitation in the answer to the generic question. As 

a consequence, they have sought out alternative methods which can be easily expanded to 

incorporate the interactive term in the model. The most common model in which the interaction 

term is included is Analysis of Variance. Unfortunately, while this model includes all of 3 of the 

sub-questions in the two predictor situation, it cannot accommodate the predictors as defined in 

Table 1. Within the context of Analysis of Variance, the predictors must be defined in a 

categorical manner. For instance, it would be possible to take the information for the predictors 

presented in Table 1 to redefine them as presented in Table 2 based on a median adjustment. In 

Table 2, each variable is now defined as being below (score = 0) or above (score = 1) the 

median. Hence, a state with an unemployment rate below 5.4 (the median unemployment rate as 

presented in Table 1) would receive a score of 0 using the variable definition in Table 2. Such 

scoring for all the variables in Table 2 produces categorical predictor variables suitable for 
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considering Analysis of Variance models. Even though the full two predictor generic question 

can now be addressed, it comes with a potentially serious caveat, which is “How much 

information contained in the variables as defined in Table 1 have been lost through their 

redefinition in Table 2?” This is not an easy question to answer, except in specific problem 

contexts, which is one of the goals of this paper. 

 

In summary, in research we are commonly and realistically interested in complex 

questions involving two or more predictors. However, we are confronted with no ideal statistical 

method of answering the full question. Although Multiple Regression is fully capable of using 

the information at its highest level (Table 1), it does so at the expense of sacrificing the sub-

answer arising from the interactive term. In contrast, although Analysis of Variance is fully 

capable of addressing all of the sub-questions, it does so at the expense of sacrificing some of the 

information contained in the original variables. Which of the two approaches is best is a highly 

debated question among professional researchers and even statisticians. It is not the goal of this 

paper to answer this question, but rather consider solutions from both perspectives and to provide 

guidance on their comparison which might be able to lead to a specific answer in a specific 

situation. 

 

In general, Regression models are more analytically complex and lend themselves to 

more complicated interpretations (answers to our questions) by accessing the higher level 

information contained in the predictors. In contrast, Analysis of Variance models are more 

analytically simple and easily lend themselves to simpler interpretations, which can be easily 

communicated to others in presentations and papers. This leads us to the logical question, “Does 
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greater complexity and more complicated interpretations actually result in answers that differ 

from the simpler ones?” Unlike the question in the paragraph above, this question is not often 

considered by anyone. It is a goal of this paper to attempt to answer this question in the context 

of the two specific analyses that will be conducted. 

 

     The first specific situation considered the impact on the analysis methods and on the 

interpretational results when the interactive component of the model does not exist. [In essence, 

the situation in which the major assumption of Regression is satisfied.] The second situation 

considered the impact on the analysis methods and on the interpretation results when the 

interactive component of the model does exist. 

 

 

 

 

Results Part 1: 

Question 1: How do unemployment rate and teacher quality effect the adjusted income of the 

states in 2015? 

 

In this situation the predictor variables will be unemployment rate (ur) and teacher 

quality (tq), and the response variable will be adjusted income (ai). 

 

 

 

Multiple Regression  

     The interaction term used in the multiple regression was the simple multiplicative 

influence, where 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 ∗  𝑡𝑒𝑎𝑐ℎ𝑒𝑟 𝑞𝑢𝑎𝑙𝑖𝑡𝑦. Hence, the 

regression model associated with the full question of interest is;  
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 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑎𝑖) =  𝑏0 + 𝑏1 ∗ 𝑢𝑟 + 𝑏2 ∗ 𝑡𝑞 + 𝑏3 ∗ (𝑢𝑟 ∗ 𝑡𝑞)   (1) 

where 𝑏0, 𝑏1, 𝑏2, and 𝑏3 are the associated regression coefficients. 

The t-test result associated with the interaction effect (ur*tq) in (1) above was not significant 

(t(47) = 0.04, p = 0.97). As a consequence, the interaction term was pooled into the error term 

and produced the classic multiple regression model with only main effect terms, as seen in (2). 

     𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑎𝑖) =  𝑏0 + 𝑏1 ∗ 𝑢𝑟 + 𝑏2 ∗ 𝑡𝑞     (2) 

The statistical tests and regression coefficients associated with (2) appear in Table 5 of the 

Appendix, and result in; 

 

      𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑎𝑖) =  105,610 − 2,348 ∗ 𝑢𝑟 − 37,163 ∗ 𝑡𝑞    (3) 

 

 

The classic graphic depiction of a simple Regression result portrays the single predictor 

variable in the horizontal axis and the single response variable in the vertical axis. It would be 

possible to extend this classic graph into three dimensions (two for the two predictors and one for 

the response). Unfortunately, such a graph is difficult to appropriately convey in a two-

dimensional medium such as in this report. However, it is possible to employ an alternative 

method which can be displayed in two dimensions. It capitalizes on the simplicity of the 

Regression graph by presenting the first predictor in the horizontal axis and providing separate 

regression lines for a select value of the second predictor. The selected values that I used for the 

second predictor are five values depicting the full range of responses at discrete points. These are 

at two standard deviations below the mean, one standard deviation below the mean, the mean, 

one standard deviation above the mean, and two standard deviations above the mean.  

Using this method, the regression associated with (3) is calculated for the five values of 

Teacher Quality in Table 3 which are graphically presented in Figure 1 (the first predictor is 

unemployment rate and the second predictor is teacher quality). As can be seen in Table 3 each 



 9 

of the five regression equations produced are identical in their slopes and only differ in the 

constants with each equation being separated by the influence of Teach Quality (b2*tq). To those 

familiar with regression, it is not surprising that the graphical results presented in Figure 1 reflect 

parallel regression lines.  

 

 

 

Table 3: Regression Equations Associated with Specific Values of Teacher Quality (s = .047, m=.96) 
Teacher Quality Equation 

−2𝑠 = (−2) ∗ (. 047) = −.094 

𝑚 − 2𝑠 = .96 − .094 = .866 

𝑏0 + 𝑏1 ∗ 𝑢𝑟 +  𝑏2 ∗ 𝑡𝑞 = 105610 − 2348 ∗ 𝑢𝑟 + ( −37163) ∗ (.866)  = 

73426.8 − 2348 ∗ 𝑢𝑟 

−1𝑠 = (−1) ∗ (. 047) =  −.047 

𝑚 − 1𝑠 = .96 − .047 = .913 

𝑏0 + 𝑏1 ∗ 𝑢𝑟 +  𝑏2 ∗ 𝑡𝑞 = 105610 − 2348 ∗ 𝑢𝑟 + ( −37163) ∗ (.913)  = 

71680.1 − 2348 ∗ 𝑢𝑟 

0 = (0) ∗ (. 047) =  0 

𝑚 − 0 = .96 − 0 = .96 

𝑏0 + 𝑏1 ∗ 𝑢𝑟 +  𝑏2 ∗ 𝑡𝑞 = 105610 − 2348 ∗ 𝑢𝑟 + (−37163 ) ∗ (.96)  = 

69933.5 − 2348 ∗ 𝑢𝑟 

1𝑠 = (1) ∗ (. 047) =  .047 

𝑚 + 1𝑠 = .96 + .047 = 1.01 

𝑏0 + 𝑏1 ∗ 𝑢𝑟 +  𝑏2 ∗ 𝑡𝑞 = 105610 − 2348 ∗ 𝑢𝑟 + (−37163 ) ∗ (1.01)  = 

68075.4 − 2348 ∗ 𝑢𝑟 

2𝑠 = (2) ∗ (. 047) =  .094 

𝑚 + 2𝑠 = .96 + .094 = 1.05 

𝑏0 + 𝑏1 ∗ 𝑢𝑟 +  𝑏2 ∗ 𝑡𝑞 = 105610 − 2348 ∗ 𝑢𝑟 + (−37163 ) ∗ (1.05)  = 

66588.9 − 2348 ∗ 𝑢𝑟 
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Figure 1 

Regression model with no interaction 

 In Figure 1, the relationship between unemployment rate and income is shown by each of 

the regression lines of Table 3.  Each differently colored line represents a different level of 

teacher quality. It is clear from this figure that the basic regression relationship between 

Unemployment Rate and Adjust Income is negative; as unemployment rate increases adjusted 

income correspondingly decreases. Specifically, I found that for each 1 percent increase in the 

unemployment rate adjusted income decreases by $2,348. This relationship is the same 

regardless of the level of Teacher Quality since each regression based on the different levels of 

Teach Quality has the same regression slope (Table 3). Hence, the overall interpretation of 

Figure 1 is that, for the lowest level of teacher quality (blue line) adjusted income declines as the 

unemployment rate increases. This interpretation is identical for each of the lines. The difference 

between the lines reflects the differences between levels of teacher quality. I found that as 

teacher quality increases, the lines appear progressively lower in the figure. Thus, the impact of 
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an increase in teacher quality on the regression is to reduce the starting point of the regression 

(left side of the graph), but does not influence the relationship between unemployment rate and 

adjusted income. This is the direct result of the insignificant interaction term.   

 In economics terms, this negative relationship between unemployment and income can be 

explained by a rising unemployment slowing the economy. If there is a downturn in the 

economy, it is common for unemployment to rise.  With this downturn, adjusted average 

household income would decrease.  

 

AOV 

 The full Two-Way Analysis of Variance model associated with our 2 predictor question 

is  

 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑎𝑖) =  𝑎�̅� + 𝑎𝑖 +  𝑏𝑗 + 𝑐𝑖𝑗       (4) 

where  𝑎�̅� = mean of adjusted income, 

 𝑎𝑖 = main effects associated with unemployment rate 
  𝑏𝑗 = main effects associated with teacher quality 

 𝑐𝑖𝑗 = interaction effects associated with unemployment rate and teach quality 

 For  i = 0 for low unemployment (below median) and 1 for high unemployment  

   (above the median) and 

  j = 0 for low teacher quality and 1 for high teacher quality 

 

In essence, converting teacher quality to a binary variable (two values; 0 and 1) is the 

ultimate reduction of teacher quality. In Table 3 and Figure 1, teacher quality was reduced from 

its original level of measurement in proportion to five distinct points (-2s, -1s, 0, +1s, +2s). 

Rather than having five distinct values of teacher quality, I reduced the variable to only two 

values (low and high). The resulting F-test associated with the interaction effects was not 

significant (f(1,47) = 0.95, p = 0.33). Due to the insignificance of this term, the interaction was 

pooled into the error term. As a consequence, (4) reduces to  
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 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑎𝑖) =  𝑎�̅� + 𝑎𝑖 +  𝑏𝑗 .      (5) 

This produced an AOV model with only the main effects and no interaction. The test statistics 

associated with (5) appear in Table 6 of the Appendix.   

  The summary of the Analysis of Variance results appear in Table 4 and can be used to 

produce Figure 2.  

 

Table 4: Adjusted Income Means Associated with the Analysis of Variance Model 

Unemployment Rate Teacher Quality Adjusted Income 

Low Low $60,411 

Low High $59,299 

High Low $56,264 

High High $55,152 

 

 

 

Figure 2 

AOV model with no interaction 
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 Figure 2 shows the relationship between unemployment (low versus high) and income 

taking into account teacher quality; low teacher quality (blue line) and high teacher quality 

(brown line). Each of the means in Table 4 are represented by the end points of each line.  

As with the regression, the lack of an interaction term has resulted in a graph in which the 

lines are parallel. In fact, there are many similarities between Figures 1 and 2. In each the lines 

slope from the upper left hand corner of the graph to the lower right hand corner. Although it 

would be inappropriate to interpret the lines in Figure 2 as slopes, they do in fact have extremely 

similar interpretations. In Figure 2, the interpretation of both lines is that as unemployment rate 

increases (goes from low to high) adjusted income decreases (has a low mean value). This 

appears to be exactly the same interpretation as was expressed for Figure 1 using regression. The 

only difference between Figures 1 and 2 is that unemployment rate is measured on a continuum 

in Figure 1 and only at the end of this continuum in Figure 2. In addition, it is seen that the same 

relationship exists between unemployment rate and adjusted income for all values of teacher 

quality (parallel lines). It is once again the case that lower teacher quality is universally 

associated with higher adjusted income (the blue line is above the brown line). The only 

difference between Figures 1 and 2 is that in Figure 1, teacher quality has five progressively 

larger values of quality and in Figure 2 there are only two.  

 

Comparison 

      For these data in Part 1, the statistical results (non-significant interaction), the figures, 

and the answers to the original question of multiple regression and Analysis of Variance appear 

quite similar. One could easily ask the question, “With so many similarities are these two 

methods as different as many statisticians would lead us to believe?”. 
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 In part it may appear as if I stacked the deck in favor of the two methods being seen as 

similar, through the selection of the variables that I used in the prediction, since the functional 

relationship between each of the predictor variables and the response variable was linear. As a 

consequence, any two values lying on the continuum between low and high on one of the 

predictors had to be in a straight line (linear) relationship as seen in Figure 1. With were only 

two selected values from the predictor (low and high), they would have to express exactly the 

same relationship, which is what I have shown in Figure 2, since two points is the definition of a 

straight line. Hence, the linear nature of the data forced the two figures to look the same and 

should not come as a surprise. Although this could be perceived as a serious negative in this 

paper, it is by far the assumed nature of variable relationships throughout many disciplines. 

However, many disciplines, the biological sciences and in economics in particular, the 

relationships between the variables are in fact non-linear. Even though these data were linear, the 

possibility of non-linear data reveals the major difference between these two methods.  

        Regression is not simply the expression of the relationship between predictor variables and 

a response variable, but it is the functional expression of this relationship. This regression has 

several benefits over Analysis of Variance. First, since the predictor is measured on a continuum, 

it is possible to anticipate (predictor) what might happen in the response variable between 

sampled values of the predictor. This is impossible within the classic Analysis of Variance 

context in which the variables are seen to exist only at and the results can only be interpreted at 

the sampled points. This is a major limitation of Analysis of Variance. However, as I showed 

above, if the data are linear, then this limitation is so minor as to simply vanish. This is decidedly 

not the case when the data are non-linear. Regression can make use of the pattern expressed 

across the variety of sampled points to establish a functional relationship and allow intermediate 
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prediction. This could only be done in Analysis of Variance if the researcher had the 

clairvoyance to be able to sample the exact values of functional change prior to collection of the 

data. Even in well researched areas this is a near impossibility. As a result, in a situation in which 

it is not known what functional relationship might exist between the predictors and response 

variables, Regression is always the superior choice. However, in a situation such as the one 

presented here in Part 1, Analysis of Variance is not only an easier to apply alternative, it is also 

a much easier to interpret with literally no loss of meaningful information due to the 

categorization of the predictor variables. Most people will find the two lines of Figure 2 to be 

easier to understand than the five lines of Figure 1.  

   

   

 

 

 

Results Part 2: 

 

Question 2: How do average tax rates and federal funding to public schools jointly affect the 

adjusted income of the states 2015? 

In this situation, the predictor variables will be tax rate (tr) and federal funding to public 

schools (ps), and the response variable will be adjusted income (ai). 

  

Multiple Regression 

     Once again, the interaction term used in the multiple regression was the simple multiplicative 

influence. In this situation interaction = tax rate * federal funding to public schools. Hence, the 

regression model associated with the full question of interest is 
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𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑎𝑖) =  𝑏0 + 𝑏1 ∗ 𝑡𝑟 + 𝑏2 ∗ 𝑝𝑠 + 𝑏3 ∗ (𝑡𝑟 ∗ 𝑝𝑠)  (4) 

where 𝑏0, 𝑏1, 𝑏2, and 𝑏3 are the associated regression coefficients. 

The t-test result associated with the interaction effect (tr*ps) in (4) above is statically significant 

(t(47) = -3.72, p-value = 0.0005).  The statistical tests and regression coefficients associated with 

(4) appear in Table 9, and result in 

 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑎𝑖) =  51,793 + 4169 ∗ 𝑡𝑟 + 47.7 ∗ 𝑝𝑠 − 37.7 ∗ (𝑡𝑟 ∗ 𝑝𝑠)  (5)  

Similar to the procedure in Part 1, the regression associated with (5) is calculated for the five 

values of Federal Funding in Table 7 which are graphically presented in Figure 3 (the first 

predictor is average tax rate and the second predictor is federal funding). As seen in Table 7, 

each of the 5 regression equations produced have unique slopes.  The regression results 

presented in Table 7 generate Figure 3. 

 

 

 

Table 7: Regression Equations Associated with Specific Values of Federal Funding (s = 43, m=116) 
Teacher Quality Equation 

−2𝑠 = (−2) ∗ (43) = −86 

𝑚 − 2𝑠 = 116 − 86 = 30 

𝑏0 + 𝑏1 ∗ 𝑡𝑟 + 𝑏2 ∗ 𝑝𝑠 + 𝑏3 ∗ 𝑡𝑟 ∗ 𝑝𝑠 = 51793 + 4169 ∗ 𝑡𝑟 + ( 47.7) ∗ (30) − (37.7) ∗ 𝑡𝑟 ∗ (30)  = 

53224 + 3038 ∗ 𝑡𝑟 

−1𝑠 = (−1) ∗ (43) =  −43 

𝑚 − 1𝑠 = 116 − 43 = 73 

𝑏0 + 𝑏1 ∗ 𝑡𝑟 + 𝑏2 ∗ 𝑝𝑠 + 𝑏3 ∗ 𝑡𝑟 ∗ 𝑝𝑠 = 51793 + 4169 ∗ 𝑡𝑟 + ( 47.7) ∗ (73) − (37.7) ∗ 𝑡𝑟 ∗ (73)  = 

55275 + 1417 ∗ 𝑡𝑟 

0 = (0) ∗ (43) =  0 

𝑚 − 0 = 116 − 0 = 116 

𝑏0 + 𝑏1 ∗ 𝑡𝑟 +  𝑏2 ∗ 𝑝𝑠 + 𝑏3 ∗ 𝑡𝑟 ∗ 𝑝𝑠 = 51793 + 4169 ∗ 𝑡𝑟 + ( 47.7) ∗ (116) − (37.7) ∗ 𝑡𝑟 ∗ (116)  = 

57326 − 204 ∗ 𝑡𝑟 

1𝑠 = (1) ∗ (43) =  43 

𝑚 + 1𝑠 = 116 + 43 = 159 

𝑏0 + 𝑏1 ∗ 𝑡𝑟 +  𝑏2 ∗ 𝑝𝑠 + 𝑏3 ∗ 𝑡𝑟 ∗ 𝑝𝑠 = 51793 + 4169 ∗ 𝑡𝑟 + ( 47.7) ∗ (159) − (37.7) ∗ 𝑡𝑟 ∗ (159)  = 

59377 − 1825 ∗ 𝑡𝑟 

2𝑠 = (2) ∗ (43) =  86 

𝑚 + 2𝑠 = 116 + 86 = 202 

𝑏0 + 𝑏1 ∗ 𝑡𝑟 +  𝑏2 ∗ 𝑝𝑠 + 𝑏3 ∗ 𝑡𝑟 ∗ 𝑝𝑠 = 51793 + 4169 ∗ 𝑡𝑟 + ( 47.7) ∗ (202) − (37.7) ∗ 𝑡𝑟 ∗ (202)  = 

61428 − 3446 ∗ 𝑡𝑟 
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Figure 3 

Regression model with an interaction 

  

 In Figure 3, the relationship between average tax rate and income is shown by each of the 

regression lines of Table 7.  Each differently colored line represents a different level of federal 

funding.  This figure shows that the relationship between taxes and income relies on the level at 

which federal funding is at.  Because of this, the relationship is sometimes positive, and other 

times negative.  Table 7 shows this by having both positive and negative coefficients for tax rate 

at different levels of federal funding.  Specifically, when is federal funding is low (blue line), I 

found that for each 1 percent increase in the tax rate, income increases by $3,038.  Looking at the 

other extreme would be when federal funding is at a high level (brown line), a 1 percent increase 

in tax level results in a $3,446 decrease in income.  The other levels of federal funding have their 

own unique slopes, illustrated by the other lines in Figure 3.  The relationship between federal 
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funding and income is similarly dependent on the tax rate.  According to Figure 3, if the tax rate 

is below about 1.5%, then there is positive correlation between funding and income.  This is 

shown by going from the blue line to lines which represent higher levels of taxes.  However, 

once taxes are above this 1.5% mark, the relationship turns to a negative correlation.  On the 

right side of the graph, going from the blue line to the other higher levels of federal funding, 

income decreases.  This is a direct result of the significant interaction term. 

 Because of this significant interaction, there is a need for both of the predictor variables.  

With just one or another, the relationship with the dependent variable would not be accurate.  For 

example, if this regression only had tax rate without federal funding, then the relationship could 

be positive or negative.  This would result in only a partial understanding between the 

relationship of income and taxes.  When federal funding is added, though, the relationship starts 

to be more complete.  By having the second predictor variable, it becomes possible to better 

understand the relationship with income.  The significant interaction demonstrates the need for 

both predictor variables.  

 

 

 

AOV 

 Moving onto an AOV, the predictor variables of tax rate and federal funding have again 

been reduced to two values, below the median (0) and above the median (1).  The F-test 

associated with the interaction was significant (F(1,47) = 6.74, p = .013).  Due to this, the general 

equation is  

 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (𝑎𝑖) =  𝑎�̅� + 𝑎𝑖 +  𝑏𝑗 + 𝑐𝑖𝑗   (6) 
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This produced an AOV with the interaction term, as well as the main effects.  The test statistics 

associated with (4) appear in Table 10 of the Appendix. 

The summary of the Analysis of Variance results appear in Table 8 and can be used to 

generate Figure 4. 

 
Table 8: Adjusted Income Means Associated with the Interaction Analysis of Variance Model 

Average Tax Rate Federal Funding Adjusted Income 

Low Low $57,266 

Low High $58,198 

High Low $60,681 

High High $53,476 

 

 

 

Figure 4 

AOV model with an interaction 

 Figure 4 shows the relationship between taxes (low versus high) and income, taking into 

account federal funding; low federal funding (blue line) and high teacher quality (brown line).  

Each of the means in Table 8 are represented by the end points of each line. 
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 As with the regression in Figure 3, the lines cross on the left side of the graph.  Along 

with this, Figure 3 has other similarities with Figure 4.   Specifically, I found two basic 

relationships; one in a positive context (blue line), and one in the negative context (brown line).  

The blue line in each figure starts in the middle of the graph on the left side, then slopes up to the 

upper right-hand corner.  Similarly, the brown line starts close to the same place, and slopes 

down to the bottom left.  Although it is inappropriate to interpret slopes on an AOV model, the 

interpretations of these two lines are very close to the regression model.  In Figure 4, the 

interpretation of the of the blue line (low federal funding) is that as tax rates increase (goes from 

low to high), income also increases (has a high mean value).  In contrast, the brown line (high 

federal funding) shows that as taxes increase, income decreases.  This appears to have a very 

similar interpretation to Figure  3.   

Comparison 

 For the data in Part 2, the statistical results (significant interaction), the figures, and the 

answers to the original question of multiple regression and Analysis of Variance appear 

considerable similar.   

 Regression has a few distinct benefits over Analysis of Variance through this example.  

The main benefit of this method is the specificity of an interaction term.  Unlike AOV, it is 

possible to see what happens at each level of a predictor variable as the other predictor changes.  

In AOV, only the low and high of each situation is expressed.  This can be observed by the green 

line in Figure 3, which shows almost no change, since it is nearly flat.  This relationship is 

entirely missing from the AOV, since we only see the extremes and loses the medial points.   

The problem with Regression in this context, though, is that the interaction term is not 

unique.  This makes it exceptionally difficult to explain why the interaction selected is the 



 21 

correct one.  The simplest possible interaction between variables is to multiply the variables with 

each other.  With having ratio predictor variables, there are an infinite amount of ways to 

manipulate them, such as creating ratios by dividing one variable by another or even using higher 

order forms of the variables, such as squaring, inverting, square-rooting, etc.…  Having so many 

ways to shape each of the predictor variables, there becomes an infinite possibility of 

interactions.  In contrast, AOV only has one unique interaction.  Having categorical predictor 

variables generates only the base interaction of 𝑥1 ∗ 𝑥2 as an option.  This is because it is not 

possible to manipulate categorical variables in the same way as ratio variables (exponents, 

trigonometric functions, etc…).  Because Regression does not have a unique interaction, 

justifying why the interaction that is in the model is the correct one can be difficult.  In all, the 

AOV is simpler, but not complete because of the missing medial values.     

  

 

Conclusion: 

 Although there is no objectively better model to use, there are pros and cons with both 

Regression and AOV.  When comparing the respective models, the statistical results, figures, and 

the answers to the original questions all appear to be quite similar.  The regression, though, has 

many benefits over the AOV. With Regression having a predictor variable that is on a continuum 

(ratio), it allows for predictions in-between sampled values.  This is a limitation of AOV, since it 

can be desirable to anticipate what happens between the sampled values of the predictors.  

However, since the data is linear, this limitation becomes very minor.  When there is no 

significant interaction in the model, the added complexity of regression is not worth it over an 

AOV. 
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In comparison to Part 2 of the results, though, an interaction can change the way the 

models function.  With these models, there was a distinct difference: the green line in Figure 3.  

This relationship, when the containment variable is at a medial point, is not shown at all in the 

AOV.  When there is a significant interaction in the model, the added complexity of Regression 

is necessary to explain the relationships in full over an AOV.  

In all, as shown in these two cases, the added complexity of regression models does not 

always result in an answer that differs from the simpler ANOVA model.  As shown in this paper, 

with no interaction, AOV can tell the same story with less complexity.  With a significant 

interaction, though, the added complexity of a Regression can be justified through the medial 

values that are lost in an AOV.  This conclusion is counterintuitive from what these models are 

built to have accomplished.  Regression is not contracted for interactions, while AOV is 

assembled specifically to allow for interactions.  What we found, though, is the opposite.  

Although AOV is made for interaction terms, it doesn’t always convey the full relationship 

between the predictors and dependent variables.  On the other side, regression (assuming 

linearity) does not have any distinct advantages over AOV, which is much simpler.   With this, I 

encourage researchers to more often compare these models before going with one or another.  
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Appendix  

 

Table 5 

Regression results predicting Income with Unemployment and Teacher Quality 

Variable t(48) p-value Coefficient 

Unemployment -3.36 0.002 -2,348 

Teacher Quality -2.15 0.037 -37,163 

Overall F(2,48)= 6.26      p-value = 0.0038           R2 = 0.21  

 

 

 

Table 6 

AOV results predicting Income with Unemployment and Teacher Quality 

Variable F(1,48) p-value 

Unemployment 5.95 0.018 

Teacher Quality 0.46 0.500 

Overall F(2,48)= 3.21      p-value = 0.049           R2 = 0.12 

 

 

 

Table 9 

Regression results predicting Income with Tax Rate and Federal Funding 

Variable t(47) p-value Coefficient 

Tax Rate 3.51 0.001 4169.1 

Federal Funding 2.33 0.024 47.74 

Tax Rate* Federal Funding 10.15 0.0005 -37.37 

Overall F(3,47)= 4.88  p-value = 0.005           R2 = 0.24  

 

 

 

 

Table 10 

AOV results predicting Income with Tax Rate and Federal Funding 

Variable F(1,47) p-value 

Tax Rate 0.08 0.783 

Federal Funding 4.26 0.045 

Tax Rate* Federal Funding 6.74 0.013 

Overall F(3,47)= 3.69      p-value = 0.018           R2 = 0.19 
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