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Significance/Background
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/" Green River

Under “normal” conditions the Green
River, located in southwestern
Wyoming, runs at approximately
1,269,000 acre-feet/year (Frantz and
Williams 2001).

This contributes a substantial amount
of water to the Colorado River which
provides water for drinking, irrigation, ol el ~
and energy production for around 25 1 [t
million people (Anderson, 2002). B veal) g (o

Low-flow years reduce the amount of
water available for those needs.

Recent population increases and
warming spring temperatures are A
putting stress on water resources. \
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More people, less water

In the Southwest, drought
conditions and a population
increase of more than five
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Consequences of warming for snowmelt (a water resource)
-Faster spring run-off -Diminished late-season flow
-Earlier spring run-off -Increased evaporation

Trends in timing of spring snowmelt (1948-2000)

Courtesy Mike Dettinger, USGS
Stewart et al.(2004) Climatic Change 62, 217-232.




ODbjectives

|dentify low-flow years of the Green River headwaters.

Create composite-anomaly maps of climatic variables
related to low river flow.

Examine the relationship of low-flow years with
selected climatic variables.



Low-flow years were selected using a time series of
annual runoff in the Green River Drainage Basin (time

Data

series from the USGS).

Years of low flow:
1981, 1988,1990,
1992, 2001, 2002
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Methods

« Data from the North American Regional Reanalysis (NARR)
were used to create composite-anomaly maps of climatic
variables.

 The composite-anomaly method averages the values of a
selected variable for the selected years (or seasons) of low
flow and compares those values to the long-term mean
from 1979-present (Yarnal et al. 2001).



Climatic Variables Examined

Precipitation Rate at the Surface: surface moisture
availability.

Omega (Vertical Velocity) at 500mb: mechanisms that
enhance (through rising motions) and suppress (through
sinking motions) precipitation.

Specific Humidity at 850mb: atmospheric moisture
availability.

Air Temperature at the Surface: surface condition.



Results/Maps
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For all maps: green, yellow, orange, and red colors indicate below-average conditions; blue

and purple colors indicate above-average conditions; and white indicates average conditions.



Results

Winter (JFM) precipitation was below average for every
year—1981 being the exception with an average
precipitation rate.

| ¥ C B i AWuBI AW

7‘0

Composite-anomaly map of winter precipitation rate at the
surface for 1981, 1988, 1990, 1992, 2001, and 2002 combined.



Results (cont.)

These dry conditions persisted through spring (AMJ) and
summer/fall (JAS).
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Composite-anomaly maps of spring (left) and summer/fall (right) precipitation
rate at the surface for 1981, 1988, 1990, 1992, 2001, and 2002 combined.



Results (cont.)

Specific humidity during all seasons ranged from much
lower than average to above average.
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Composite-anomaly maps of winter (left), spring (center), and summer/fall (right)
specific humidity at 850mb for 1981, 1988, 1990, 1992, 2001, and 2002 combined.



Results (cont.)

When there was sufficient moisture (high specific humidity)
available in the atmosphere to allow for precipitation, sinking
motions were dominant and suppressed precipitation; and
when rising motions were dominant there was not enough

moisture (low specific humidity) in the atmosphere to allow for
precipitation.
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Composite-anomaly maps of winter (left), spring (center), and summer/fall (right)
Omega at 500mb for 1981, 1988, 1990, 1992, 2001, and 2002 combined.
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Results (cont.)

In addition to the climate dynamics causing persistent
dry conditions, higher-than-average temperatures in
spring likely led to earlier and faster spring snowmelt,

resulting in reduced streamflows.
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Composite-anomaly map of spring temperature at the surface
for 1981, 1988, 1990, 1992, 2001, and 2002 combined.



Discussion

Lower-than-normal streamflows for 1981, 1988, 1990,
1992, 2001, and 2002 were the result of the following:

1. Dry conditions that began in winter (JFM) and
persisted through the remainder of the year

and/or

2. Warmer-than-normal spring (AMJ) temperatures that
reduced streamflows as a result of earlier and faster
spring snowmelt.



Implications

1. Further increase In spring temperatures indicates
continuation of years with faster and earlier-than-normal spring
snowmelt leading to more low streamflows.




Implications (cont.)

2. Increased stress on a limited and possibly decreasing water
supply in conjunction with rapid population increase.

Projected Upper Colorado River Flows vs.
Population Growth in Major Lower Basin Metropolitan Areas
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Future Research

* Further examination of
regional headwaters
hydroclimatology.

« Assess upper versus lower
basin climatic drivers of
drought.

In the Southwest, drought
conditions and a population
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Thank you

Questions?



