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Linear Deterministic Equation

• Below is shown the linear deterministic equation considered in this 
project.

1 ൞
𝑢𝑡 − 𝛻 ∙ 𝑎 𝑥 𝛻𝑢 = 𝑓 𝑥, 𝑡 , 𝑥 ∈ 𝑋 ⊂⊂ ℝ𝑑 , 𝑡 ∈ (0, 𝑇)

𝑢 𝑥, 0 = 𝑢0 𝑥 , 𝑥 ∈ 𝑋

𝑢 𝑥, 𝑡 = 0, 𝑥 ∈ 𝜕𝑋

• Note that only one spatial dimension, x, is considered along with a 
time dimension, t.

• This problem will have a real solution and can be solved 
deterministically; that is to say a(x) and f(x,t) will be some functions 
with no randomness (stochasticity).

• Also note f(x,t) doesn’t depend on solution u(x,t).



Linear Stochastic Equation

• Randomness is introduced through a random variable, ω, into a(x).

2 ൞
𝑢𝑡 − 𝛻 ∙ 𝑎 𝑥;𝜔 𝛻𝑢 = 𝑓 𝑥, 𝑡 , 𝑥 ∈ 𝑋 ⊂⊂ ℝ𝑑 , 𝑡 ∈ (0, 𝑇)

𝑢 𝑥, 0 = 𝑢0 𝑥 , 𝑥 ∈ 𝑋

𝑢 𝑥, 𝑡 = 0, 𝑥 ∈ 𝜕𝑋

where a(x;ω) = eY(x;ω) and Y(x;ω) is a random process.

• A deterministic method may no longer be used to solve this problem due 
to the stochasticity introduced by ω.



Karhunen-Loève Expansion

• The method used in this project to solve these 
stochastic parabolic differential equations is 
called the Karhunen-Loève expansion.

• In order to better understand the Karhunen-
Loève expansion, a covariance function must 
first be defined.



Covariance Function

• A covariance function measures the strength 
of the mutual dependence of values of a 
random process at different points.

• The covariance function used in this project is 
shown below.

3 𝐶𝑌 𝑥, 𝑦 = 𝑌 𝑥 − 𝑌 𝑥 𝑌 𝑦 − 𝑌 𝑦

where Y is some random process.



Karhunen-Loève Expansion

• Now let Y(x; ω) be some random process on the 
unit interval I=[0, 1] with some expectation 
𝑌 𝑥 .

• Then according to the theorem of Karhunen and 
Loève, the following approximation formula can 
be obtained.

4 𝑌 𝑥;𝜔 = 𝑌 𝑥 +෍

𝑖=1

∞

𝜆𝑖𝑓𝑖(𝑥)𝜉𝑖(𝜔)

where {ξi} are independent standard normal 
variables



Karhunen-Loève Expansion

• {λi, f i} are eigenvalue-eigenvector pairs of the following integral 
operator

(5) I 𝑓 𝑥 = 𝐼׬ 𝐶𝑌 𝑥, 𝑦 𝑓 𝑦 𝑑𝑦

• The functions f i are chosen such that the following condition is 

satisfied.

||fi|| = 1 in the L2 norm

• Also note that the Karhunen-Loève expansion is optimal in L2, or 

every truncated finite sum in the right-hand side represents the 

best finite-dimensional approximation of Y in L2.



Description of Algorithm of Zhang and Lu

• Consider the linear stochastic 
equation presented previously, (2). 
Let 𝑌 = 0 and Var Y = σ2 where Var
is used to represent variance. 

• Since {ξi} are standard normal 
variables, the following 
approximation can be made.

6 𝑌(𝑥; 𝜔) ≈෍

𝑖=1

𝐾

𝜆𝑖𝑓𝑖(𝑥)𝜉𝑖(𝜔)

• From this point forward, 𝜆𝑖 will be 
absorbed into 𝑓𝑖(𝑥) since they always 
appear together in the eigenfunction
expansions.

• Now, due to stochasticity, there is no 
deterministic solution to be found. 
Assume that the solution u(x,t;ω) can 
be expressed in the following manner 
as a probabilistic series expansion.

• It is important to note that in the 
preceding equation we assume the 
following rate of dependence on m.

u(m) ~ σm

Ym ~ σm



Description of Algorithm of Zhang and Lu

• The solution can be expressed in the following form as a probabilistic series 
expansion.

7 𝑢 𝑥, 𝑡; 𝜔 = 𝑢 0 𝑥, 𝑡 + 𝑢 1 𝑥, 𝑡; 𝜔 + 𝑢 2 𝑥, 𝑡; 𝜔 + ⋯

• Substituting the Taylor expansion for eY into (7) and (2) and equations are 
grouped according to order with respect to σ, we obtain equations of the 
following form.

ℒu(0) = f(x,t) Order 0

ℒu(1) = 𝛻 ∙ (Y 𝛻u(0)) Order 1

ℒu(2) = 𝛻 ∙ (Y 𝛻u(1)) + 
1

2
𝛻 ∙ (Y2𝛻u(0)) Order 2

where ℒ =
𝜕𝑢

𝜕𝑥
−

𝜕2

𝜕𝑥2



Description of Algorithm of Zhang and Lu

• Notice that in this group of equations, Order 0 has no 
stochasticity and can be solved deterministically.

• However, something else will have to be done for the 
higher orders. Substituting what was obtained in (6) for 
Y and utilizing the fact that u(1) can be expanded as a 
sum with respect to {ξi}, the stochasticity can be 
eliminated and what is left is a system of deterministic 
equations

ℒui
(1)(x,t) = 𝛻 ∙ (fi 𝛻u(0)), i = 1, 2, …, K



Description of Algorithm of Zhang and Lu

• While a similar process can be used for 
subsequent orders, there will be multiple 
indices for orders higher than 1. 

• For Order 2 there will be indices i and j etc.

• If the right hand side is replaced by the 
average of every possible permutation, the 
right hand side will result in the exact same 
equation independently of the order in which 
indices are considered.



Description of the Numerical Scheme

• First, a more detailed description of how to 
solve parabolic equations is necessary. 

• The stiffness matrix Aij and load vector Fi must 
be obtained.

• To do this, we must define a set of basis 
functions.

• A basis function is a piecewise real-valued 
function which spans two adjacent elements 
and whose maximal value is one. 



Description of the Numerical Scheme

• The basis function used is of the following form.

𝜑𝑖 𝑥 =

1

𝑛 − 1
𝑥 −

1

𝑛 − 1
𝑥𝑖−1 𝑥𝑖−1 < 𝑥 < 𝑥𝑖

1

𝑛 − 1
𝑥 +

1

𝑛 − 1
𝑥𝑖+1 𝑥𝑖 < 𝑥 < 𝑥𝑖+1

where n is the number of nodes on the mesh.

• If {xi} are nodes on the unit interval, then the elements of the 
stiffness matrix are defined by the following formula.

𝐴𝑖𝑗 = න
𝑥𝑖−1

𝑥𝑖+1

𝑎 𝑥 𝜑`𝑖 𝑥 𝜑`𝑗 𝑥 𝑑𝑥

where 𝜑`𝑖 𝑥 and 𝜑`𝑗 𝑥 are the first derivatives of the basis functions



Description of the Numerical Scheme

• To obtain the value Fi, of the load vector corresponding 
to the node xi we use the following formula.

𝐹𝑖 = න
𝑥𝑖−1

𝑥𝑖+1

𝑓 𝑥 𝜑𝑖 𝑥 𝑑𝑥

• Note that the goal of discretization in these formulas is 
to obtain a discrete approximation of the solution to 
(1). This approximation is as follows.

𝑈 𝑥, 𝑡 =෍

𝑗=1

𝐹

𝛼𝑗(𝑡)𝜑𝑗(𝑥)



Description of the Numerical Scheme

• Now, substituting this expression for the solution 
into (1), multiplying both sides by 
𝜑𝑖 𝑥 , and integrating with respect to x, a vector 
ODE can be obtained for the approximation of 
𝑈 𝑥, 𝑡 .

8 𝐷ά 𝑡 + 𝐴 𝑡 𝛼 𝑡 = 𝐹(𝑡)

• D is the identity matrix, A is the stiffness matrix, 

and F is the load vector. 



Description of the Numerical Scheme

• Equation (7) is then solved using an already established 
scheme, the Crank-Nicolson method.

• The terms of the Karhunen-Loève expansion are computed 
as follows. Consider the following covariance function.

𝐶𝑌 𝑥, 𝑦 = 𝜎2𝑒
−
(𝑥−𝑦)2

𝜂2

• The integration in (5) is performed over an interval [xi,xi+1] 
yielding a matrix of values.

• Next, eigenvalue/eigenvector pairs are obtained using a 
predefined function from the Eigen library. 

• The results here were plugged into an existing framework 
from graduate advisor Kevin Lenth to obtain results.



Code Description

• Figure 1 shows the mutual 
dependence of different 
parts of the code.

• The base element for 
solving these problems is 
the class Mesh1D, which 
constructs the mesh and 
computes the stiffness 
matrix and load vector.

• The class ParabolicSolver1D 
solves linear deterministic 
parabolic equations. 

Figure 1. Code Interdependencies. 



Code Description

• Several classes are necessary in 
application of the Zhang-Lu method.

• KarhunenLoeve computes 
eigenfunctions and creates a class, 
EigenPair, to sort them conveniently.

• The final class, 
ZhangLuContextLinearParabolic1D, is 
hooked into Kevin Lenth’s preexisting 
framework. This will compute, among 
other things, variance and 
expectation so the results can be 
compared to Monte Carlo trials. 

Figure 1. Code Interdependencies. 



Varying Sigma (σ)

• Let the disparity be the difference between the 
expectations and variances for Monte Carlo and Zhang-
Lu solutions. 

• Let us examine the dependence of the disparity on the 
value of sigma. This is calculated in the following way.

| 𝑍ℎ𝑎𝑛𝑔𝐿𝑢 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 |

| 𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 |

• where ||solution|| means the L2 norm of the solution. 



Varying Sigma (σ)

Figure 2. Disparity in Expectation Figure 3. Disparity in Variance

 

Figure 2. Disparity in Expectation. 

 

Figure 3. Disparity in Variance. 



Varying Sigma (σ)

• As expected, it is shown in Figure 2 that as 
standard deviation (σ) increases, the disparity 
between the two solutions also increases.

• A higher value of σ corresponds to a higher 
level of “randomness”.

• It is also observed that disparity for Order 1 is 
lower than in Order 0 as expected. As more 
terms are included, accuracy increases.



Varying Sigma (σ)

• Similarly to Figure 2, the variance also 
increases as σ increases. 

• Note that the disparity is again lower in the 
higher order since more terms are included. 



Varying K (number of terms in 
Karhunen-Loève expansion)

Figure 4. Disparity in Expectation 
for Coarse Mesh

Figure 5. Disparity in Expectation 
for Fine Mesh



Varying K (number of terms in 
Karhunen-Loève expansion)

• As can be seen by juxtaposing Figures 4 and 5, it 
appears that the results improve and disparity 
decreases as the mesh becomes more refined. 

• Also note that Figure 5 his almost always 
decreasing, whereas Figure 4 has a sharp increase 
in disparity.

• Note expectation for Order 0 does not change as 
the number of K terms changes since it is 
deterministic and therefore not affected by 
Karhunen-Loève expansion terms



Varying K (number of terms in 
Karhunen-Loève expansion)



Varying K (number of terms in 
Karhunen-Loève expansion)

• Similarly, it can be seen that these results 
again appear to improve as the mesh gets 
finer. 

• Note that in Figure 6, variance begins to 
increase, whereas in Figure 7 it is seen that it 
remains low.

• All of this reaffirms the assertion by Zhang and 
Lu that the solution will improve as more 
terms are used in the solution.



CONCLUSION

• In the case of this project, it can be inferred 
that as standard deviation increases, the 
amount of disparity also seems to increase in 
the expectation as well as the variance.

• It can also be inferred that using a coarse 
mesh will not yield as accurate of results for 
expectation and disparity as a fine mesh using 
the same functions and covariance.
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