DIMER MONOMER

Zac Hall

Dr. Bryan Shader

Partially supported by Wyoming EPSCoR

- Planar monomer-dimer tilings
- Monomer 1 by 1 tile
- Dimer 2 by 1 tile or 1 by 2

Monomer-Dimer Tilings

Monomer-Dimer Tilings

- What properties does a "random" monomer-dimer tiling of a region have?
 - Expected number of Dimers?
 - Is a given cell more likely to be a monomer?
- How can we generate a uniform, random monomer-dimer tiling of a region?

Fundamental Questions:

- Methods
 - Computer-based simulations
 - Kastelyn's Theorem
 - Probabilistic Models (matrices)
 - Analytical Models
- Sage Math (Python) was used throughout the year to aid us

Monomer-Dimer Tilings

N by N grids w/ 2 monomers, rest dimers

• 4 by 4

552 possible tilings

 Monomer's probable locations: corners, sides, center

• 6 by 6

363,536 possible tilings

• Probable Locations:

8 by 8

1,760,337,760 tilings

Beginning Work

1	6	2	2	6	1
6	5	4	4	5	6
2	4	3	3	4	2
2	4	3	3	4	2
6	5	4	4	5	6
1	6	2	2	6	1

 Explored various regions: N by N, 2 by N, 1 by N

 Began as all monomers, "paired" to become dimers.

Pair until "frozen"

Generating tilings

- Computer simulations
- Thousands of Iterations
- 4 by 4, 6 by 6, 8 by 8:
 - Average # of Steps: ≈ 3.5, 4.3, 4.8, respectively
 - SD(# of Steps): 0.85, regardless of N
 - Average # of Dimers/Area: ≈ 0.4578

Simulations

Using Probabilities

- Use theory of Markov chains and one-step probabilities
- 2 by 3
 - Expected # of dimers= 371/130 ≈ 2.853846
 - Expected # of steps = 2.39230760230769
- 1 by N

• Recursive Formulas:

•
$$F_N = 1 + E_N + F_{N-3} + (F_0 + E_{N-2}) + (F_k + E_{N-k-2})$$

$$\bullet E_N = (F_{N-k-2} + E_k) + (F_0 + E_{N-2})$$

- $E_N = E(Dimers)$
- $\bullet E_{20000} / 20000 = 0.43344653343386$
- Bounded ... Must Converge
- 1 by N: Mathematical Discoveries

N	E _N	F _N	E _N /N
1	0.0000000000000000000000000000000000000	1.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
2	1.0000000000000000000000000000000000000	2.0000000000000000000	0.500000000000000000000
3	1.0000000000000000000000000000000000000	2.0000000000000000000	0.3333333333333300000
4	1.750000000000000000	2.718750000000000000	0.43750000000000000000
5	2.0000000000000000000	3.0000000000000000000	0.400000000000000000000
6	2.531250000000000000	3.500976562500000000	0.42187500000000000000
7	2.921875000000000000	3.908935546875000000	0.41741071428571400000
8	3.372070312500000000	4.350563049316400000	0.42150878906250000000
9	3.800048828125000000	4.781750679016110000	0.42222764756944400000
10	4.235084533691400000	5.215733960270880000	0.42350845336914100000
11	4.668152809143060000	5.649077356792980000	0.42437752810391500000
12	5.101685479283330000	6.082547590580360000	0.42514045660694400000
13	5.535122551955280000	6.515996303797010000	0.42577865784271400000
14	5.968576318562550000	6.949448180993270000	0.42632687989732500000
15	6.402027546804900000	7.382899662521050000	0.42680183645366000000
16	6.835479100543120000	7.816351186864410000	0.42721744378394500000
17	7.268930618098660000	8.249802707266080000	0.42758415400580300000
9999			0.43344154517468000000
10999			0.43344245212263000000
15000			0.43344487101332800000
20000			0.43344653343386000000

Table of Values

- Still hoping to find a uniform way to generate a random tiling
- Finding a closed formula for E(dimers)
 - What is 0.0433447?
- Applications in diatomic nuclear bonding and ice-formations

Future Potential Research