Ecological Archives M078-022-A1

Nikolay Strigul, Denis Pristinski, Drew Purves, Jonathan Dushoff, and Stephen Pacala. 2008. Scaling from trees to forests: tractable macroscopic equations for forest dynamics. Ecological Monographs 78:523–545.

Appendix  A. Table of ecological process type studies performed along the nutrient gradient in Water Conservation Area 2A illustrating that they all compare oligotrophic vs. eutrophic conditions and thus do not capture the dynamics in the "boundary" of rapid ecological change.

TABLE A1. Ecological process studies performed along the nutrient gradient in the Everglades Water Conservation Area 2A. Note the lack of studies conducted within the boundary and the significant difference in parameter values between the two regimes. R and S indicates the study was conducted either in pristine Cladium ridge or slough. The Boundary was derived from this study and is defined as the region of rapid change in ecosystem state variables. Unimpacted, transitional, and impacted designations were by the cited authors.

 

R and S regime

Boundary

Typha regime

 

Study site designation

Unimpacted

 

Transitional

Impacted

 

Geometric mean TP range (μg/L)

>10

11–15

16–27

<28

References†

           

BAFL

         

Basal CO2 production (mg C·kg-1·h-1)

50

·

100

150

13

Sediment P flux (mg·m-2·d-1)

<0.01

·

0.04–5.0

0.5–6.5

5

Nitrogenase activity (nmol C2H4·g-1·h-1)

6.6

·

7.0

8.3

6

           

Microbial processes

         

Microbial biomass (mg/g)

<10

·

12-20

>20

4

Sulfate-reducing prokaryotes (oxidizer status)

Incomplete

·

·

Complete

1

Sulfate reduction (nmol·g-1·d-1)

26

·

·

119

1

Potential methanogenic rates (μmol·g-1·h-1)

0.0033

·

·

0.015

1

Acetate-utilizing methanogens (MPN·g-1)

0.110 × 105

·

0.94 × 105

0.094 × 105

2

H2-CO2 utilizing methanogens (MPN·g-1)

0.94 × 106

·

4.6 × 106

11.0 × 106

2

Propionate-oxidizing syntrophic bacteria (MPN·g-1)

0.15 × 106

·

4.63 × 106

4.63 × 106

2

Butyrate-oxidizing syntrophic bacteria (MPN·g-1)

0.29 × 105

·

4.63 × 105

4.63 × 105

2

           

Peat (010 cm)

         

Peat accretion (mm/yr)

<2.3

·

·

>5.7

3

P accumulation rate (g·m-2·yr-1)

0.08–0.13

·

0.17–0.34

0.48–0.66

3

N accumulation rate (g·m-2·yr-1)

4.9–7.5

·

6.6–13.6

13.8–14.1

3

OC accumulation rate (g·m-2·yr-1)

70–105

·

85–172

200–212

3

Ca accumulation rate (g·m-2·yr-1)

4.4–8.0

·

7.1–10.9

13.7–22.1

3

Na accumulation rate (g·m-2·yr-1)

0.2–0.3

·

0.3–0.6

1.5–0.6

3

P sorption (Q) (mg/kg)

4–28

·

33–43

44–90

12

Zero equilibrium P (EPCo)

0.04–1.9

·

1.1–1.5

2.6–7.0

12

Nitrogenase activity (nmol C2H4·g-1·h-1)

1.6

·

1.0

2.0

6

           

Periphyton

         

Biomass specific productivity (mg O2 ·g-1 AFDM·mol-1 photons·m-2)

<5

·

·

>10

9

Algal growth potential (g dry mass)

<2

·

2.5–5

>5

8

GPP (g O2·m-2·d-1)

1–20

·

·

0-3

7

Aerobic respiration (g O2·m-2·d-1)

2–14

·

·

1–3

7

GPP/R

0.5–1.0

·

·

0.1–0.5

7

Nitrogenase activity (nmol C2H4·g-1·h-1)

64.9

·

115.4

116.2

6

           

Macrophytes

         

Typha photosynthesis (Pmax) (μmol CO2·m-2·s-1)

18

·

·

45

10

Leaf phenolic concentration (mg/g)

13.5–17.7

·

13.7

9.2–10.0

11

Presence of herbivory

No

·

No

Yes

11

Presence of fungal infection

No

·

No and Yes

Yes

11

† Cited references

1) Castro, H., K. R. Reddy, and A. Ogram. 2002. Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Applied and Environmental Microbiology 68:6129–6137.

2) Chauhan, A., A. Ogram, and K. R. Reddy. 2004. Syntrophic-methanogenic associations along a nutrient gradient in the Florida Everglades. Applied and Environmental Microbiology 70:3475–3484.

3) Craft, C. B., and C. J. Richardson. 1993. Peat accretion and N, P and organic C accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecological Applications 3:446–458.

4) DeBusk, W. F., and K. R. Reddy. 1998. Turnover of detrital carbon in a nutrient-impacted Everglades marsh. Soil Science Society of America Journal 62:1460–1468.

5) Fisher, M. M., and K. R. Reddy. 2001. Phosphorus flux  from wetland soils affected by long-term nutrient loading. Journal of Environmental Quality 30:261–271.

6) Inglett, P. W., K. R. Reddy, and P. V. McCormick. 2004. Periphyton chemistry and nitrogenase activity in a northern Everglades ecosystem. Biogeochemistry 67:213–233.

7) McCormick, P. V., M. J. Chimney, and D. R. Swift. 1997. Diel oxygen profiles and water column community metabolism in the Florida Everglades, U.S.A. Archiv Fur Hydrobiologie 140:117–129.

8) McCormick, P. V., P. S. Rawlik, K. Lurding, E. P. Smith, and F. H. Sklar. 1996. Periphyton-water quality relationships along a nutrient gradient in the northern Florida Everglades. Journal of the North American Benthological Society 15:433–449.

9) McCormick, P. V., R. B. E. Shuford, III , J. B. Backus, and W. C. Kennedy. 1998. Spatial and seasonal patterns of periphyton biomass and productivity in the nothern Everglades, Florida, USA. Hydrobiologia 362:185–208.

10) Miao, S., S. Newman, and F. H. Sklar. 2000. Effects of habitat nutrients and seed sources on growth and expansion of Typha domingensis. Aquatic Botany 68:297–311.

11) Richardson, C. J., G. M. Ferrell, and P. Vaithiyanathan. 1999. Nutrient effects on stand structure, resorption efficiency, and secondary compounds in Everglades sawgrass. Ecology 80:2182–2192.

12) Richardson, C. J., and P. Vaithiyanathan. 1995. Phosphorus sorption characteristics of Everglades soils along a eutrophication gradient. Soil Science Society of America Journal 59:1782–1788.

13) Wright, A. L., and K. R. Reddy. 2001. Heterotrophic microbial activity in northern Everglades wetland soils. Soil Science Society of America Journal 65:1856–1864.


[Back to M078-022]