WIND POWER PLANT CONTROL

Grid support and load redistribution | W.P. Engels
WIND POWER PLANT CONTROL

What is it?
- Non-default setpoints for individual turbines in the plant
 - Power
 - Yaw
 - Minimum pitch angle

Used for:
- Power optimisation of the whole plant (not today)
- Derating of wind power plant for grid support services
 - E.g. produce X MW, or produce Y% of max production
- Maximise *value* of wind energy

If RE penetration ↑
this will increase
WIND POWER PLANT CONTROL

✦ Currently:
 ✦ Uniform deregulation

✦ Opportunity:
 ✦ Redistribute loads in farm to:
 ✦ spread accumulated load evenly
 ✦ ‘plan’ failures
 ✦ reduce total load accumulation
 ✦ extend overall lifetime/reduce maintenance

19 June 2019
Wind Power Plant Control

Production

- Full energy
- Partial reservation

Value

- Full energy
- Partial reservation

Spare
Production

Value

- O&M
- Balancing & Ancillary Services
- Energy
So how do we do this?

- Not: control dynamics @ WT level
- PI control on power output
- Calculate ‘cost’
- Distribute control action based on lowest ‘cost’/kWh

Need:

- Loads
 - Accumulated load/damage estimation → online load calculation (unbinned cycle counting)
 - Load rate estimation → approximate, based on load-cycles
 - Calculated/estimated by wind turbine controller
- Production estimate (wind speed)
Wind farm control

- Setpoint
- PI
- Distribute
- Loads
- Power
WIND POWER PLANT CONTROL

Does that work?

- 3 wind turbines, waked set-up
- Simulations with FastFarm (NREL)
- Control relative plant output, using relative wind turbine setpoints
 - Change the power curve below rated

3 scenarios:
- Flat reduction rate, open loop (NoPC)
- Flat plant rate, closed loop (CPC)
- Load balanced plant control (LBPC)
 - Cost function based on weighted sum of:
 - Accumulated load and load rate
 - Blade and tower moments
Farm power

Power production [kW]

Time [sec]

NoPC
CPC
LBPC
RESULTS

Tower accumulated fatigue

Tower fatigue rate

0 100 200 300 400 500 600 700 800
Time [sec]
CONCLUSIONS

- Load redistribution wind power plant control works

- Using wind farm plant simulations + full wind turbine model + full wind turbine control simulations is essential

- ‘Correct’ overall power estimation? (Depends on time scale)
TO DO

- WPP and WT power setpoints vs relative setpoints
 - Take coupling-effects into account, e.g. (marginal):
 - Power turbine 1 ↓ → turbulence @ turbine 2 ↓ + power @ turbine 2 ↑
 - Better estimation of available power
 - Explore:
 - Different cost functions
 - Controller gain settings/strategies
 - Local vs. global optima
 - Combine with:
 - (scanning) LIDAR
 - wind farm power optimisation
THANK YOU FOR YOUR ATTENTION

TNO.NL/ECNPARTOFTNO
ONLINE FATIGUE LOAD ESTIMATION

- Problem:
 - Fatigue load calculated by rainflow counting and binning
 - Highly non-linear
 - Attribution in time problematic
 (1st high load cycle occurrence gets all cost assigned)
 - Time derivative discontinuous

- Current workaround:
 - Use quadratic norm of loading
 - Too little weight on drops in load
 - Normal cyclic loading over emphasized
ONLINE FATIGUE LOAD ESTIMATION

- Fatigue load/damage:
 \[L = m \sqrt{\sum_i n_i L_i^m} \]

- Consider no binning:
 \[L = m \sqrt{\sum_i L_i^m} \]

 - Sum over load cycles as they occur
 - Still problem with assignment in time
 - Closely resembles official fatigue damage

- Fatigue ‘rate’ signal:
 \[L' = L_i^m \]

 - Can be implemented such signal is ‘continuous’
 - Equal cycles = equal cost
 - Filter for smoother behaviour