

1

SQLSplitter v2.0.1
Date: 2017-02-18

2

Contents
Introduction.. 3

Installation guide.. 4

Create S3 bucket access policy .. 4

Create a role for your SQLSplitter EC2 machine 5

Set up your AWS Marketplace SmartAMI SQLSplitter............................ 6

Connect to SQLSplitter Application.. 8

User privileges... 9

Recommendations.. 10

Limitations.. 11

SQLSplitter API.. 12

Configuration procedure .. 12

Logging in ... 15

Subsequent calls ... 15

Selecting a region ... 16

SQLSplitter configuration calls .. 16

SQLSplitter activity, statistics and configured bucket information calls . 18

3

Introduction
SmartAMI SQLSplitter is a software that enables you to forward your write SQL

queries into the master and send read SQL queries to slaves. As shown on the

Figure 1 you need to use a standard MySQL 3306 port to access SQLSplitter as

well as master and slave servers. SQLSplitter graphical user interface (GUI)

has been created to let you control your SQL servers easily – add and remove

them from SQLSplitter configuration.

Figure 1 – SQLSplitter Logic

4

Installation guide

SQLSplitter is AWS Marketplace one-click-deployment product. An additional

requirement here is one S3 bucket to be writeable by the application. It will

store the information about users that you create.

Create S3 bucket access policy

1. Navigate to Services -> IAM -> Policies
2. Press “Get started” if you have no policies yet

Or

3. “Create Policy” if you already created other policies
4. Create your own policy and press “Select”
5. Enter Policy Name as: sqlsplitter-policy
6. Enter Description as: This is a SmartAMI SQLSplitter policy
7. In the Policy Document section enter:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "s3:ListBucket"

],

 "Resource": [

 "arn:aws:s3:::your-sqlsplitter-users-bucket"

]

 },

 {

 "Effect": "Allow",

 "Action": [

 "s3:PutObject",

 "s3:GetObject",

 "s3:DeleteObject"

],

 "Resource": [

 "arn:aws:s3:::your-sqlsplitter-users-bucket/*"

]

 },

 {

 "Effect": "Allow",

 "Action": [

 "ec2:DescribeRegions"

],

 "Resource": "*"

 }

]

}

8. Press “Create Policy”

5

Create a role for your SQLSplitter EC2 machine

1. Navigate to Services -> IAM -> Roles
2. Press “Get started” if you have no roles yet

Or

3. “Create New Role” if you already created other roles
4. Enter a Role Name: sqlsplitter-role
5. Press “Next Step”
6. Choose “Amazon EC2” and press “Select”
7. In the Attach Policy section search for sqlsplitter-policy, tick the box

and press “Next Step”

8. And press “Create Role”
9. Your sqlsplitter-role has been created

Now you can create your EC2 instance and attach the new policy to it.

6

Set up your AWS Marketplace SmartAMI SQLSplitter

1. On the SQLSplitter AWS Marketplace website click “Continue”

2. Navigate to Manual Launch section and click “Launch with EC2 Console”

7

3. Select your instance type and click “Next: Configure Instance Details”

4. Select all details required like Network and Subnet (please make sure that

you have access to your SQL instances from this network)

5. In the IAM role section choose sqlsplitter-role

6. Click “Next: Add Storage”

7. Click “Next: Tag Instance”

8. In the Value section enter sqlsplitter name

9. Click “Next: Configure Security Group”

10. Create a new security group
a. Enter sqlsplitter-sg as the Security group name
b. Put description accordingly

11. Enter IP address of the machine you are connecting from (you can choose My
IP in the Source column)

12. Click Add Rule and choose HTTP. Pick up My IP in the Source column again

13. Click “Review and Launch”

14. Click “Launch”

15. Select a Key pair

16. Click “Launch Instances”

8

Connect to SQLSplitter Application
SQLSplitter offers a GUI you can use to control the configuration. You need to

open port 80 in your AWS security group that is used by SQLSplitter instance.

Use an IP address of your SQLSplitter server and enter it to the address box of

your browser. Our wizard will guide you through a setup process.

A detailed process is described below.

1. Open your browser and navigate to the IP address of your SQLSplitter
server

2. Select a region where your S3 bucket created for SQLSplitter exists
3. Enter your S3 Bucket Name created for this purpose (you will store your

users information here)

4. Enter your User name and password for this new user
5. Click “Initialise”
6. You have entered your SQLSplitter application GUI
7. Add and remove your SQL servers from the configuration
8. Please click Apply button to restart the underlying MaxScale server to

apply changes and activate your new configuration

9

User privileges
MariaDB MaxScale running as an engine for the SQLSplitter application needs to

connect to the backend databases and run queries. There are two reasons for it.

One is to determine the current state of the database and the other to retrieve

the user information for the database cluster.

There is a user required that must be able to select data from the table

mysql.user, to create this user follow the steps below.

1. Connect to the current master server in your replication tree as the root
user

2. Create the user and password. Use a host on which MaxScale runs within
your environment. (SQLSplitter IP address)

3. Grant select privileges on the mysql.user table

4. Additionally, SELECT privileges on the mysql.db and mysql.tables_priv tables

and SHOW DATABASES privileges are required in order to load databases name

and grants suitable for database name authorization

5. The user also needs to monitor the state of the cluster. It requires
permissions to access the various sources of monitoring data. In order to

monitor a replication cluster this user must be granted the role

REPLICATION CLIENT.

NOTE: All commands that need to be executed on the master server are presented

below. Please change the ‘SQLSplitter-IP-address’ string to a real IP address

of the SQLSplitter EC2 instance.

MySQL> create user 'maxscale'@'SQLSplitter-IP-address' identified by 'maxscal3';

MySQL> grant SELECT on mysql.user to 'maxscale'@'SQLSplitter-IP-address';

MySQL> grant SELECT on mysql.db to 'maxscale'@'SQLSplitter-IP-address';

MySQL> grant SELECT on mysql.tables_priv to 'maxscale'@'SQLSplitter-IP-address';

MySQL> grant SHOW DATABASES, REPLICATION SLAVE, REPLICATION CLIENT on *.* to
'maxscale'@'SQLSplitter-IP-address';

10

Recommendations
It is recommended to run SQLSplitter with MariaDB 10 database servers. For a

high throughput applications it is recommended to run it on AWS EC2 instances

that provide a ‘High’ network speed. EC2 instances that provide ‘Low’ and

‘Medium’ network speed may be suitable for low traffic applications where

database access delay is not that big issue.

11

Limitations
SQLSplitter was tested on MySQL 5.6 and 5.7, and also MariaDB 10. It may or may

not work properly with previous versions of those database engines. It is not

recommended to use SQLSplitter with any other database servers.

12

SQLSplitter API
Calls are explained by examples as they would be invoked from command-line via

cURL. This is handy for quick testing, and at the same time should be simple to

understand for developer, in order to translate to data structures specific for

the front-end used.

The calls are either GET or POST and usually consist of one or two headers and

JSON payload in request body. The response is also a JSON array, and HTTP

response code is related to it in meaningful way. Code 200 is “OK” and everything

else is a “problem”.

Configuration procedure
After first-time installation, the back-end needs to be configured. This is

done entirely via API calls. Before this is done, only default log in credentials

is accepted – “admin” / “admin” – and nothing else can be done but following

steps:

Step 0

How to check if this needs to be done?

curl -v -X GET http://localhost:8080/isconfigured

This call can be issued at any moment, and will return information about whether

there configuration is already stored in “ini” file. The location of ini file

is usually at /etc/sqlsplitter/sqlsplitter.ini

-> HTTP/1.1 200 OK {is_configured:"true"}

-> HTTP/1.1 200 OK {is_configured:"false "}

If yes, a standard log-in prompt should be presented to the user. If not, two

prompts should be presented in the configure process – first one to get their

DefaultRegion, AccountOwnerID and BucketName, and second prompt to create

user(s). Please see the step #3 to learn why.

Step 1

Log in as default user

curl -v -X POST -d "{\"Login\": \"admin\", \"Pass\": \"admin\"}"

http://localhost:8080/login

This call returns token, which you need to store at client side and use with

subsequent calls, e.g.:

-> HTTP/1.1 200 OK {"success":"true", "result":"pass_ok", "token":"

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOiIxNDcwODk1OTE3IiwibG9nZ2VkX2lu

IjoiYWRtaW4ifQ.aAIG0xXmEkE4S9sWVHp42T8o_CHDauQ8Nx1Uh2OBF8E"}

13

Step 2

Set default region where your user and application data will be stored in S3

bucket. Set AWS Owner Account ID and S3 Bucket name for all data. These are

your private information and this bucket policy should be restricted to be

available only by specific resources as explained in the installation guide.

Using the returned token, issue this call:

curl -v -X POST -H "Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOiIxNDcwODk1OTE3IiwibG9nZ2VkX2lu

IjoiYWRtaW4ifQ.aAIG0xXmEkE4S9sWVHp42T8o_CHDauQ8Nx1Uh2OBF8E" -d

"{\"DefaultRegion\": \"eu-west-1\", \"AccountOwnerID\": \"your-account-

number\", \"BucketName\": \"your-bucket-name\"}"

http://localhost:8080/configure

NOTE: The AccountOwnerID parameter is optional. We do not always need it, or it

may not be available. It is enough to send just two parameters:

curl -v -X POST -H "Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOiIxNDcwODk1OTE3IiwibG9nZ2VkX2lu

IjoiYWRtaW4ifQ.aAIG0xXmEkE4S9sWVHp42T8o_CHDauQ8Nx1Uh2OBF8E" -d

"{\"DefaultRegion\": \"eu-west-1\", \"BucketName\": \"your-bucket-name\"}"

http://localhost:8080/configure

This call may return few errors (if the data is missing or not right, or if the

bucket does not exist, does not belong to the user, or is not writeable for

some other reason), for example:

-> HTTP/1.1 400 Bad Request {success:"false",

error:"bad_config_default_region_missing"}

-> HTTP/1.1 400 Bad Request {success:"false", error:"

bad_config_bucket_name_missing"}

-> HTTP/1.1 400 Bad Request {success:"false", error:"bucket_not_accessible"}

If the bucket is existing and is writeable, EC2 and S3 services are stared (so

the subsequent calls can use them).

-> HTTP/1.1 200 OK {success:"true", result:"configuration_accepted"}

Step 2b

Call to obtain list of all regions, in case client wants to display a list of

available options, or pre-populate the input field.

NOTE: Depending on configuration of roles, the data may not always be available.

If the regions cannot be obtained from AWS API, this call will return a snapshot

of regions known to exist. The current configuration does not include UK region

yet.

14

This call can be issued at any time by admin/admin or standard user, even before

the SQLSplitter is configured, and does not require a token.

curl -v -H -X GET http://localhost:8080/ec2regions

The response is list of all regions and their respective endpoints:

-> HTTP/1.1 200 OK [{"name": "ap-south-1", "endpoint": "ec2.ap-south-

1.amazonaws.com"}, ... { ... }]

Step 3

Commit the new configuration by creating at least one new user other than admin.

curl -v -X POST -H "Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOiIxNDcwODk1OTE3IiwibG9nZ2VkX2lu

IjoiYWRtaW4ifQ.aAIG0xXmEkE4S9sWVHp42T8o_CHDauQ8Nx1Uh2OBF8E" -d "{\"Login\":

\"user1\", \"Pass\": \"abc123\" http://localhost:8080/addlogin

NOTE: it is also possible to trigger committing of new configuration by logging

in as existing user in case you are re-using a bucket from previous installation,

or from installation that happened on another instance

This call relies on previous /configure call, it needs to know in which region

and bucket the user base will be stored. If called too early, it returns

error(s):

 {success:"false", error:"default_region_not_set"} HTTP/1.1 417

Expectation Failed

 {success:"false", error:"bucket_name_not_set"} HTTP/1.1 417 Expectation

Failed

It may also return this error if there is any problem writing the ini file to

/etc/sqlsplitter/sqlsplitter.ini (this is not likely, the binary is run with

root privileges – this response is here just in case it was run under less

privileged user account).

 {"success":"false", "error":"problem_creating_ini_file"} HTTP/1.1 500

Internal Server Error

If successful, standard message will be returned:

{success:"true", result:"created"} HTTP/1.1 200 OK

Alternatively, if user chooses to log in with their existing account (created

by previous installation), the /login call behaves the same as normal, and once

successfully logged in, it creates /etc/sqlsplitter/sqlsplitter.ini file too.

NOTE: After this action, the admin / admin default log in is deactivated. Front-

end is not required to log out and log in as another user – at the moment there

would be no difference in what they can do (however, this may change after we

have various privilege levels/groups of users).

15

Logging in

Case A. user does not exist

curl -v -X POST -d "{\"Login\": \"nonexisting\", \"Pass\": \"abc123\"}"

http://localhost:8080/login

-> HTTP/1.1 404 Not Found {success:"false", error:"user_not_found"}

Case B. user exists but password is invalid

curl -v -X POST -d "{\"Login\": \"user1\", \"Pass\": \"badpassword\"}"

http://localhost:8080/login

-> HTTP/1.1 401 Unauthorized {success:"false", error:"pass_incorrect"}

Case C. malformed JSON structure

curl -v -X POST -d "{\"Login\": \"user1\", \"Pass\": \"abc123}"

http://localhost:8080/login

-> HTTP/1.1 400 Bad Request {success:"false", error:"invalid_json"}

Case D. user exists and password is OK

curl -v -X POST -d "{\"Login\": \"user1\", \"Pass\": \"abc123\"}"

http://localhost:8080/login

-> HTTP/1.1 200 OK {success:"true", result:"pass_ok", token:" ... [token

string here] ... "}

Now, the token should be kept in client session for future use with every

subsequent call.

Subsequent calls
How to send the token with a call – use „Bearer” auth header:

Authorization: Bearer <token>

e.g. with command-line cURL:

curl -v -H "Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOiIxNDcwMjQ4NjgyIiwibG9nZ2VkX2lu

IjoidXNlcjEyYyJ9.etJsSk-t9Z1tsIQJhx6jQ24Ntb5nV_2MPWXEUmKnni8" -X GET

http://localhost:8080/getservers

http://localhost:8080/getservers

16

Selecting a region
NOTE: This is not needed for SQLSplitter project, but will be needed for our

other projects that deal with regions. If you are building a multi-functional

front-end, you might want to consider using this.

With every request – except few basic requests e.g. / (index), /login and

/ec2regions – a region needs to be sent to back-end. This can be driven for

example by a drop-down menu somewhere in front-end’s page header so user can

change it at any time.

This parameter should be sent in headers, and it is called AWSRegion:

 AWSRegion: us-east-1

or with command-line cURL:

curl -v -H "AWSRegion: us-west-1”

Example of sending both auth token and region header via cURL:

curl -v -H "Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOiIxNDcwMjQ4NjgyIiwibG9nZ2VkX2lu

IjoidXNlcjEyYyJ9.etJsSk-t9Z1tsIQJhx6jQ24Ntb5nV_2MPWXEUmKnni8" -H "AWSRegion:

us-east-1" -X GET http://localhost:8080/ec2instances

SQLSplitter configuration calls
1) /getservers: load the config + get the servers to display on the page

This call will open and parse /etc/maxscale.cnf and return list of currently configured servers

curl -v -H "Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOiIxNDcxNzMwMzY4IiwibG9nZ2VkX2luIjoiYWRt

aW4ifQ.vWwPHjMpJdJzeLR2QuvR093qY87KuhsJZe3feQ7zoks" -X GET

http://localhost:8080/getservers

Result is normally the JSON array of servers, e.g.:

[{"type": "master", "address": "192.168.1.33", "port": "2345", "status": "active", "description":

"descr1"}, {"type": "slave", "address": "127.0.1.1", "port": "3306", "status": "active",

"description": "descr2"}, {"type": "slave", "address": "testx.xxxyyy.eu-west-

1.rds.amazonaws.com", "port": "3306", "status": "active", "description": "descr3"}, {"type":

"slave", "address": "192.168.1.32", "port": "2345", "status": "active", "description": "descr4"}]

HTTP/1.1 200 OK

In case of some problem, it may return:

{"success":"false", "error":"problem_loading_conf_file"} HTTP/1.1 500 Internal Server Error

17

2) /addserver: add new server + write config

curl -v -H "Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOiIxNDcxODI1NTQ1IiwibG9nZ2VkX2luIjoiYWRta

W4ifQ.9kddAIUXIhNb_q5qUis_2VNBuUO3Eg33bCR1C-676ZI" -d "{\"Address\": \"192.168.1.1\",

\"Description\": \"my description\"}" -X POST http://localhost:8080/addserver

NOTE: The Description parameter is optional, can be omitted. In that case,

description will be in future returned as empty string. If quotes are being

sent within the Description, they need to be escaped to satisfy JSON validation,

however no further care needs to be taken about escaping. Back-end will store

the string into conf file safely and retrieve it in the same format as it was

received.

Result is normally a success message plus the resulting JSON array of servers after update, e.g.:

{"success":"true", "result":"server_added", "servers":[{"type": "master", "address":

"testx.xxxyyy.eu-west-1.rds.amazonaws.com", "port": "3306", "status": "active", "description":

""}, {"type": "slave", "address": "192.168.1.32", "port": "2345", "status": "active", "description":

""}, {"type": "slave", "address": "192.168.1.33", "port": "2345", "status": "active", "description":

""}, {"type": "slave", "address": "127.0.1.1", "port": "3306", "status": "active", "description": ""},

{"type": "slave", "address": "testx.xxxyyy.eu-west-1.rds.amazonaws.com", "port": "3306",

"status": "active", "description": ""}, {"type": "slave", "address": "192.168.1.1", "port": "3306",

"status": "active", "description": "my description"}]}

In case of server already existing, it returns:

{"success":"false", "error":"server_already_exists"} HTTP/1.1 403 Forbidden

If this call was successful, the data is immediately written back into

/etc/maxscale.conf

This may possibly give another error, e.g. if the binary was not run with root

privileges:

{"success":"false", "error":"problem_saving_conf_file"} HTTP/1.1 500 Internal

Server Error

3) /removeserver: remove existing server + write config

This call behaves similarily to /addserver. It may look like this:

curl -v -H "Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOiIxNDcxODI1NTQ1IiwibG9nZ2VkX2luIjoiYWRta

W4ifQ.9kddAIUXIhNb_q5qUis_2VNBuUO3Eg33bCR1C-676ZI" -d "{\"Address\":

\"192.168.1.1\"}" -X POST http://localhost:8080/removeserver

18

It returns similar success/error messages as /addserver, and possibly this error too, if server to be

removed does not exist in the configuration:

{"success":"false", "error":"server_not_found"} HTTP/1.1 400 Bad Request

4) /restartservice: restarting the MaxScale service

When user is done with adding or removing servers and satisfied with the configuration, it needs to be

applied by restarting the maxscaler service:

curl -v -H "Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOiIxNDcxNzMwMzY4IiwibG9nZ2VkX2luIjoiYWRt

aW4ifQ.vWwPHjMpJdJzeLR2QuvR093qY87KuhsJZe3feQ7zoks" -X POST

http://localhost:8080/restartservice

If everything went right, success message is returned:

{"success":"true", "result":"service_restarted"} HTTP/1.1 200 OK

Otherwise, an error message is passed through from the maxscaler binary without interception, which

may include formatting, e.g. new line characters:

{"success":"false", "error":"exit status 1: Failed to restart maxscale.service: Interactive

authentication required.

See system logs and 'systemctl status maxscale.service' for details.

"} HTTP/1.1 500 Internal Server Error

SQLSplitter activity, statistics and configured bucket information calls
1) /getuseractivity: get recent user activity list

This call is useful to indicate that other users may be logged in and editing the list of servers at the time,

or performing other actions that may interfere with actions of current user. Results are displayed

somewhere in mysql servers screen, in a small table.

curl -v -H "Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOiIxNDczMzI2MjEwIiwibG9nZ2VkX2lu

IjoiZjgwMDQzMGE3MjcwZTY3MDc3OGU2OGViZjE4ZGYxYWZlZWVlNDI2NSIsInB0eHRfbG9naW5fY

jY0IjoiS3lnd09ETXBNVEl6TkRVMk53PT0ifQ.UHHZ21X61KmYOeCi6umzbxh5Z3BeAJSWc289_Mx

YeAA" -X GET http://localhost:8080/getuseractivity

The response is list of users with their last active time (x seconds ago) and

last action performed. Not all possible API calls appear there, but only calls

within the list of actions that we consider interesting enough. For example,

logging in or requesting this activity list itself is not considered to be an

19

interesting action to show, as it does not interfere with actions of other

users.

{"KygwODMpMTIzNDU2Nw==":{"user":"+(0***567","last_active":"0","action":""},"M

DgzMTIzNDU2Nw==":{"user":"083***567","last_active":"3","action":"Added

server"},"dXNlci0z":{"user":"user-3","last_active":"41","action":"Requested

servers

list"},"dXNlcjE=":{"user":"user1","last_active":"121","action":"Removed

server"}} HTTP/1.1 200 OK

NOTE: Usernames which may reveal sensitive information (e.g. if they look like

email address or mobile number) are masked by asterisks, so your front-end can

safely display all that gets received from back-end on the screen.

The keys contain Base64 encoded “real” usernames (without masking by ***), they

are perhaps useless for front-end but needed for back-end structures indexing.

Front-end should be only showing masked usernames which are inside of each sub-

record.

2) /getserverstats: get server statistics information

This call returns basic statistics about how many queries were forwarded to

master or slave(s).

curl -v -H "Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOiIxNDczNDEzNzQ5IiwibG9nZ2VkX2lu

IjoidXNlci0zIiwicHR4dF9sb2dpbl9iNjQiOiJkWE5sY2kweiJ9.n3e8T-

Qko_v9YyofiyB7XybQTlYdddDcGK4mFetgdhM" -X GET

http://localhost:8080/getserverstats

The usual response contains these two values:

{"queries_forwarded_to_master":"12345","queries_forwarded_to_slave":"67890"}

HTTP/1.1 200 OK

3) /getbucketconfig: get bucket configuration information

This call is useful if we need to verify what settings are stored in

configuration “ini” file (/etc/sqlsplitter/sqlsplitter.ini)

curl -v -X GET -H "Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOiIxNDczMzYyMjI1IiwibG9nZ2VkX2lu

IjoidXNlcl81MDAiLCJwdHh0X2xvZ2luX2I2NCI6ImRYTmxjbDgxTURBPSJ9.9il7_uTsSDIeit6x

VWSgDWrbDfOnaOOPyJ-OJRrAXB8" http://localhost:8080/getbucketconfig

The usual response contains all relevant information, like configured region

and bucket, where users are stored:

{"region":"eu-west-1","bucket":"your-bucket-name"} HTTP/1.1 200 OK

