SMARTAMI

SQLSplitter v2.0.1

Date: 2017-02-18

C/—/—yf MariaDB

<7

SMARTAMI

Contents

00w T 5 0w 3 o 3
Installation GUIde. ...ttt ittt ittt ettt ettt eeeeeeeeeneeeeeeeeeeeeenens 4
Create S3 bUCKElL aCCeSS POLadCY it ittt ittt ittt ettt teeeeeeeneeeeeaneeneeas 4
Create a role for your SQLSplitter EC2 machine......... ... 5
Set up your AWS Marketplace SmartAMI SQOLSplitter.........ciiiiiiiineeeennnnns 6
Connect to SQOLSplitter ApPPlicCation......e i it ie ittt eeeeeeeneeeeenneenenns 8
USer Privilege S . @i ittt ittt ittt et teeeeeeeeeeeeeeneeeeeeneeeeeeneeenennenn 9
ST 1111113 oL 1 i e o = 10
BT 1 = e o 11
LS I w2 = 12
Configuration ProCedUTL e . . ittt ittt ittt e et e e e e e e e e e e e e e e e 12
e Y o I 0L e I o 15
SUDSEqUENET CAll s it it ittt ittt it et ettt ettt et e et aestassossossoneoneoneenesas 15
SeleCting @ eI 0OM ittt ittt ittt ettt eeeee e eeeee et 16
SQLSplitter configuration Callsttt ettt et e e e et et ettt et e e 16

SQLSplitter activity, statistics and configured bucket information calls. 18

<7

SMARTAMI

Introduction

SmartAMI SQLSplitter is a software that enables you to forward your write SQL
queries into the master and send read SQL queries to slaves. As shown on the
Figure 1 you need to use a standard MySQL 3306 port to access SQLSplitter as
well as master and slave servers. SQLSplitter graphical user interface (GUI)
has been created to let you control your SQL servers easily - add and remove
them from SQLSplitter configuration.

Application Server

(arm

-

writes reads

3306

Writes
reads
3306 3306 3306

Slave Slave
1 2

replication

Master

Figure 1 - SQLSplitter Logic

SMARTAMI

Installation guide

SQLSplitter is AWS Marketplace one-click-deployment product.

An additional

requirement here is one S3 bucket to be writeable by the application. It will

store the information about users that you create.

Create S3 bucket access policy

1. Navigate to Services -> IAM -> Policies

2. Press “Get started” if you have no policies yet
Or
3. “Create Policy” if you already created other policies
4. Create your own policy and press “Select”
5. Enter Policy Name as: sqglsplitter-policy
6. Enter Description as: This is a SmartAMI SQLSplitter policy
7. In the Policy Document section enter:
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:ListBucket"
1,
"Resource": [
"arn:aws:s3:::your-sqlsplitter-users—-bucket"
)
¥,
{
"Effect": "Allow",
"Action": [
"s3:PutObject"”,
"s3:GetObject",
"s3:DeleteObject"”
1,
"Resource": [
"arn:aws:s3:::your-sqlsplitter-users—-bucket/*"
)
¥,
{
"Effect": "Allow",
"Action": [
"ec2:DescribeRegions"
1,
"Resource": "*"
}
]
}

8. Press “Create Policy”

<7

SMARTAMI

Create a role for your SQLSplitter EC2 machine

1. Navigate to Services -> IAM -> Roles

2. Press “Get started” if you have no roles yet
Or

3. “Create New Role” if you already created other roles

4. Enter a Role Name: sqglsplitter-role

5. Press "“Next Step”

6. Choose “Amazon EC2” and press “Select”

7. In the Attach Policy section search for sqglsplitter-policy, tick the box
and press “Next Step”

8. And press “Create Role”

9. Your sglsplitter-role has been created

Now you can create your EC2 instance and attach the new policy to it.

<7

SMARTAMI

Set up your AWS Marketplace SmartAMI SQLSplitter

1. On the SQLSplitter AWS Marketplace website click “Continue”

SMARTAMI

SmartAMI SQLSplitter powered by MariaDB MaxScale

Sold by: AT-NET

SmartAMI SQLSplitter powered by MaxScale is a MySQL / MariaDB proxy server that forwards all write operations to master
instances and all read queries to slave instances. SmartAMI SQLSplitter GUI helps to easily manage configured database servers.
A simple web interface enables users to menitor the amount of queries sent to master and slaves. An effectively unlimited number
of servers can be added or deleted easily from the interface. It is a tool that allows application developers to use a single IP
address to access and monitor a cluster of database servers transparently.

Customer Rating Be the first to review this product _ *fou will have an opportunity to
Continue review your order before
launc hing or being charged.

Latest Version SQLSplitter 20160919

2. Navigate to Manual Launch section and click “Launch with EC2 Console”

Launch on EC2:
SmartAMI SQLSplitter powered by MariaDB MaxScale

Manual Launch
With EC2 Consale, APls or CLI

1-Click Launch

Review, modify, and launch

Pricing Details

For region

| US East (M. Virginia)

Launching Options

= You can click the "Launch with EC2 Conscle” buttens below and following the
instructions to launch an instance of this software

= You can also find and launch these AlMIs by searching for the AMI [Ds (shown below)

Hourly Fees
Total hourly fees will

EC2 Instance Type

in the "Community AMIs" tab of the EC2 Console ™ Launch Wizard t2.micre
. L . . - 12 small
= You can view this information at a later time by visiting the Your Software page. For 5 mediom
help, see step-by-step instructions ™ for launc hing Marketplace Products from the E'Iﬂrg&
AWS Console. :
md.large
md xlarge
- 4.2x]
Usage Instructions me.2xlarge
md.4xlarge
Select a Version m4. 10xlarge
m3.medium
| SOLSplitter 20160919, released 0O/Z22/2016 « | m3.large
m2.xlarge
Region ID ma3.2xlarge
US East (N. Virginia) ami-5b2b524c c4large
US West (Oregon) ami$271act2
. . . c4.2xlarge
US West (N. California) ami-cdd19ead
¢4 dxlarge

o

SMARTAMI

ISy

= O 0 1oy U

11.

12.
13.
14.
15.
16.

<7

Select your instance type and click “Next: Configure Instance Details”

Select all details required like Network and Subnet (please make sure that
you have access to your SQL instances from this network)

In the IAM role section choose sqglsplitter-role

Click “Next: Add Storage”

Click “Next: Tag Instance”

In the Value section enter sglsplitter name

Click “Next: Configure Security Group”

. Create a new security group

a. Enter sqglsplitter-sg as the Security group name
b. Put description accordingly
Enter IP address of the machine you are connecting from (you can choose My
IP in the Source column)
Click Add Rule and choose HTTP. Pick up My IP in the Source column again
Click “Review and Launch”
Click “Launch”
Select a Key pair
Click “Launch Instances”

SMARTAMI

Connect to SQLSplitter Application

SQLSplitter offers a GUI you can use to control the configuration. You need to
open port 80 in your AWS security group that is used by SQLSplitter instance.
Use an IP address of your SQLSplitter server and enter it to the address box of
your browser. Our wizard will guide you through a setup process.

A detailed process is described below.

1.

w

O 1 oy U b

<7

Open your browser and navigate to the IP address of your SQLSplitter
server

Select a region where your S3 bucket created for SQLSplitter exists
Enter your S3 Bucket Name created for this purpose (you will store your
users information here)

Enter your User name and password for this new user

Click “Initialise”

You have entered your SQLSplitter application GUI

Add and remove your SQL servers from the configuration

Please click Apply button to restart the underlying MaxScale server to
apply changes and activate your new configuration

SMARTAMI

User privileges

MariaDB MaxScale running as an engine for the SQLSplitter application needs to
connect to the backend databases and run queries. There are two reasons for it.
One is to determine the current state of the database and the other to retrieve
the user information for the database cluster.

There 1s a user required that must be able to select data from the table
mysqgl.user, to create this user follow the steps below.

1. Connect to the current master server in your replication tree as the root
user

2. Create the user and password. Use a host on which MaxScale runs within
your environment. (SQLSplitter IP address)

3. Grant select privileges on the mysqgl.user table

4., Additionally, SELECT privileges on the mysql.db and mysql.tables_priv tables
and SHOW DATABASES privileges are required in order to load databases name
and grants suitable for database name authorization

5. The user also needs to monitor the state of the cluster. It requires
permissions to access the various sources of monitoring data. In order to
monitor a replication cluster this wuser must be granted the role
REPLICATION CLIENT.

NOTE: All commands that need to be executed on the master server are presented
below. Please change the ‘SQLSplitter-IP-address’ string to a real IP address
of the SQLSplitter EC2 instance.

MySQL> create user 'maxscale'@'SQLSplitter-IP-address' identified by 'maxscal3’;
MySQL> grant SELECT on mysqgl.user to 'maxscale'@'SQLSplitter-IP-address';

MySQL> grant SELECT on mysql.db to 'maxscale'@'SQLSplitter-IP-address’;

MySQL> grant SELECT on mysql.tables_priv to 'maxscale'@'SQLSplitter-IP-address’;

MySQL> grant SHOW DATABASES, REPLICATION SLAVE, REPLICATION CLIENT on *.* to
'maxscale'@'SQLSplitter-IP-address’;

<7

SMARTAMI

Recommendations

It is recommended to run SQLSplitter with MariaDB 10 database servers. For a
high throughput applications it is recommended to run it on AWS EC2 instances
that provide a ‘High’ network speed. EC2 instances that provide ‘Low’ and
‘Medium’ network speed may be suitable for low traffic applications where
database access delay is not that big issue.

10

<7

SMARTAMI

Limitations

SQLSplitter was tested on MySQL 5.6 and 5.7, and also MariaDB 10. It may or may
not work properly with previous versions of those database engines. It is not
recommended to use SQLSplitter with any other database servers.

11

<7

SMARTAMI

SQLSplitter API

Calls are explained by examples as they would be invoked from command-line via
cURL. This is handy for quick testing, and at the same time should be simple to
understand for developer, in order to translate to data structures specific for
the front-end used.

The calls are either GET or POST and usually consist of one or two headers and
JSON payload in request body. The response is also a JSON array, and HTTP
response code is related to it in meaningful way. Code 200 is “OK” and everything
else is a “problem”.

Configuration procedure

After first-time installation, the back-end needs to be configured. This is
done entirely via API calls. Before this is done, only default log in credentials
is accepted - “admin” / “admin” - and nothing else can be done but following
steps:

Step O
How to check if this needs to be done?
curl -v -X GET http://localhost:8080/isconfigured

This call can be issued at any moment, and will return information about whether
there configuration is already stored in “ini” file. The location of ini file
is usually at /etc/sqglsplitter/sqglsplitter.ini

-> HTTP/1.1 200 OK {is_configured:"true"}
-> HTTP/1.1 200 OK {is configured:"false "}

If yes, a standard log-in prompt should be presented to the user. If not, two

prompts should be presented in the configure process - first one to get their
DefaultRegion, AccountOwnerID and BucketName, and second prompt to create
user (s). Please see the step #3 to learn why.

Step 1

Log in as default user

curl -v. -X POST -d "{\"Login\": \"admin\", \"Pass\": \"admin\"}"
http://localhost:8080/1login

This call returns token, which you need to store at client side and use with
subsequent calls, e.g.:

-> HTTP/1.1 200 OK {"success":"true", "result":"pass_ ok", "token":"
eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eydpYXQiOiIxNDcwODk1OTE3TIiwibGOnZz2VkX21u
IjoiYWRtaW4ifQ.aAIGOXXmEkE4S9SWVHp42T80_CHDauQ8NXthZOBF8E"}

SMARTAMI

Step 2

Set default region where your user and application data will be stored in S3
bucket. Set AWS Owner Account ID and S3 Bucket name for all data. These are
your private information and this bucket policy should be restricted to be
available only by specific resources as explained in the installation guide.

Using the returned token, issue this call:

curl -v -X POST -H "Authorization: Bearer
eyJhbGciOiJIUzI1INiIsInR5cCI6IkpXVCI9.eyIpYXQiOiIxNDcwODk1OTE3TiwibGOnz2VkX21u

IjoiYWRtaW4ifQ.aAIGOXXmEkE4S9SWVHp42T80_CHDauQ8NX1Uh20BF8E" -d
"{\"DefaultRegion\": \"eu-west-1\", \"AccountOwnerID\": \"your—-account-
number\", \"BucketName\": \"your-bucket-name\"}"
http://localhost:8080/configure

NOTE: The AccountOwnerID parameter is optional. We do not always need it, or it
may not be available. It is enough to send just two parameters:

curl -v -X POST -H "Authorization: Bearer
eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCIY.eyIpY¥XQi01iIxNDcwODk1OTE3IiwibGI9nZ2VkX21u

IjoiYWRtaW4ifQ.aAIGOXXmEkE4S9SWVHp42T80_CHDauQ8NXthZOBF8E" -d
"{\"DefaultRegion\": \"eu-west-1\", \"BucketName\": \"your-bucket-name\"}"
http://localhost:8080/configure

This call may return few errors (if the data is missing or not right, or if the
bucket does not exist, does not belong to the user, or is not writeable for
some other reason), for example:

-> HTTP/1.1 400 Bad Request {success:"false",
error:"bad config default region missing"}

-> HTTP/1.1 400 Bad Request {success:"false", error:"
bad config bucket name missing"}

-> HTTP/1.1 400 Bad Request {success:"false", error:"bucket not accessible"}

If the bucket is existing and is writeable, EC2 and S3 services are stared (so
the subsequent calls can use them).

-> HTTP/1.1 200 OK {success:"true", result:"configuration accepted"}

Step 2b

Call to obtain list of all regions, in case client wants to display a list of
available options, or pre-populate the input field.

NOTE: Depending on configuration of roles, the data may not always be available.
If the regions cannot be obtained from AWS API, this call will return a snapshot
of regions known to exist. The current configuration does not include UK region
yet.

SMARTAMI

This call can be issued at any time by admin/admin or standard user, even before
the SQLSplitter is configured, and does not require a token.

curl -v -H -X GET http://localhost:8080/ec2regions

The response is list of all regions and their respective endpoints:

-> HTTP/1.1 200 OK [{"name": "ap-south-1", "endpoint": "ec2.ap-south-
l.amazonaws.com"}, ... { ... }]
Step 3

Commit the new configuration by creating at least one new user other than admin.

curl -V -X POST -H "Authorization: Bearer
eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCIY.eyIJpY¥XQi01iIxNDcwODk1IOTE3IiwibGI9nZ2VkX21u
IjoiYWRtaW4ifQ.aAIGOmeEkE4S9sWVHp42T80_CHDauQ8leUh20BF8E" -d "{\"Login\":

\"userl\", \"Pass\": \"abcl23\" http://localhost:8080/addlogin

NOTE: it is also possible to trigger committing of new configuration by logging
in as existing user in case you are re-using a bucket from previous installation,
or from installation that happened on another instance

This call relies on previous /configure call, it needs to know in which region
and bucket the user base will be stored. If called too early, 1t returns
error(s) :

{success:"false", error:"default region not set"} HTTP/1.1 417
Expectation Failed

{success:"false", error:"bucket name not set"} HTTP/1.1 417 Expectation
Failed

It may also return this error if there is any problem writing the ini file to
/etc/sqglsplitter/sglsplitter.ini (this is not likely, the binary 1s run with
root privileges - this response is here Jjust in case it was run under less
privileged user account).

{"success":"false", "error":"problem creating ini file"} HTTP/1.1 500
Internal Server Error

If successful, standard message will be returned:

{success:"true", result:"created"} HTTP/1.1 200 OK

Alternatively, if user chooses to log in with their existing account (created
by previous installation), the /login call behaves the same as normal, and once
successfully logged in, it creates /etc/sqglsplitter/sqglsplitter.ini file too.

NOTE: After this action, the admin / admin default log in is deactivated. Front-
end is not required to log out and log in as another user - at the moment there
would be no difference in what they can do (however, this may change after we
have various privilege levels/groups of users).

SMARTAMI

Logging in
Case A. user does not exist

curl -v =X POST -d "{\"Login\": \"nonexisting\", \"Pass\": \"abcl23\"}"
http://localhost:8080/1ogin

-> HTTP/1.1 404 Not Found {success:"false", error:"user not found"}
Case B. user exists but password is invalid

curl -v -X POST -d "{\"Login\": \"userl\", \"Pass\": \"badpassword\"}"
http://localhost:8080/1ogin

-> HTTP/1.1 401 Unauthorized {success:"false", error:"pass_incorrect"}
Case C. malformed JSON structure

curl -v -X POST -d "{\"Login\": \"userl\", \"Pass\": \"abcl23}"
http://localhost:8080/1ogin

-> HTTP/1.1 400 Bad Request {success:"false", error:"invalid json"}
Case D. user exists and password is OK

curl -v =X POST -d "{\"Login\": \"userl\", \"Pass\": \"abcl23\"}"
http://localhost:8080/1ogin

-> HTTP/1.1 200 OK {success:"true", result:"pass ok", token:" ... [token
string here] ... "}

Now, the token should be kept in client session for future use with every
subsequent call.

Subsequent calls
How to send the token with a call - use ,Bearer” auth header:

Authorization: Bearer <token>

e.g. with command-line cURL:

curl -v -H "Authorization: Bearer
eyJhbGciO0iJIUzIINiIsInR5cCI6IkpXVCI9.eyIpYXQiO0iIxNDcwMjQ4NjgyIiwibGOnz2VkX21lu
IjoidXN1lcjEyYyJ9.etJsSk-t921tsIQThx637Q24Ntb5nV 2MPWXEUmMKnnig" -X GET

http://localhost:8080/getservers

SMARTAMI

http://localhost:8080/getservers

Selecting a region

NOTE: This is not needed for SQLSplitter project, but will be needed for our
other projects that deal with regions. If you are building a multi-functional
front-end, you might want to consider using this.

With every request - except few basic requests e.g. / (index), /login and
/ec2regions - a region needs to be sent to back-end. This can be driven for
example by a drop-down menu somewhere in front-end’s page header so user can
change it at any time.

This parameter should be sent in headers, and it is called AWSRegion:
AWSRegion: us-east-1
or with command-line cURL:

curl -v -H "AWSRegion: us-west-17

Example of sending both auth token and region header via cURL:

curl -v -H "Authorization: Bearer
eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCJI9.eydpYXQi01iIXNDcwMjQ4NjgyIiwibGOnZ2VkX21lu
IjoidXNIcjEyYyJ9.etJsSk-t921tsIQJhx6j024Ntb5nV _2MPWXEUmKnni8" -H "AWSRegion:

us-east-1" -X GET http://localhost:8080/ec2instances

SQLSplitter configuration calls
1) /getservers: load the config + get the servers to display on the page

This call will open and parse /etc/maxscale.cnf and return list of currently configured servers

curl -v -H "Authorization: Bearer
eyJhbGciOiJIUzIINilsInR5cCl61kpXVCI9.ey)pYXQiOilxNDcxNzMwMzY4liwibG9nZ2VkX2luljoiYWRt
aW4ifQ.vWwPHjMpJdJzeLR2QuvR093qY87KuhsJZe3feQ7zoks" -X GET
http://localhost:8080/getservers

Result is normally the JSON array of servers, e.g.:

[{"type": "master", "address": "192.168.1.33", "port": "2345", "status": "active", "description":
"descr1"}, {"type": "slave", "address": "127.0.1.1", "port": "3306", "status": "active”,

", n non ", n

"description": "descr2"}, {"type": "slave", "address": "testx.xxxyyy.eu-west-
1.rds.amazonaws.com”, "port": "3306", "status": "active", "description": "descr3"}, {"type":
"slave", "address": "192.168.1.32", "port": "2345", "status": "active"”, "description": "descr4"}]

HTTP/1.1 200 OK

In case of some problem, it may return:

"o

{"success":"false", "error":"problem_loading_conf file"} HTTP/1.1 500 Internal Server Error

SMARTAMI

2) /addserver: add new server + write config

curl -v -H "Authorization: Bearer
eyJhbGciOiJlUzI1NilsInR5cCl61kpXVCJ9.ey)pYXQiOilxNDcxODIINTQ1liwibG9nZ2VkX2luljoiYWRta
W4ifQ.9kddAIUXIhNb_g5qUis_2VNBuUO3Eg33bCR1C-676ZI" -d "{\"Address\": \"192.168.1.1\",
\"Description\": \"my description\"}" -X POST http://localhost:8080/addserver

NOTE: The Description parameter is optional, can be omitted. In that case,
description will be in future returned as empty string. If quotes are being
sent within the Description, they need to be escaped to satisfy JSON validation,
however no further care needs to be taken about escaping. Back-end will store
the string into conf file safely and retrieve it in the same format as it was
received.

Result is normally a success message plus the resulting JSON array of servers after update, e.g.:

m,nm. non ", n non

{"success":"true", "result":"server_added", "servers":[{"type": "master", "address":

"testx.xxxyyy.eu-west-1.rds.amazonaws.com", "port": "3306", "status": "active", "description":
" {"type": "slave", "address": "192.168.1.32", "port": "2345", "status": "active", "description":
" {"type": "slave", "address": "192.168.1.33", "port": "2345", "status": "active", "description":
" {"type": "slave", "address": "127.0.1.1", "port": "3306", "status": "active", "description": ""},
{"type": "slave", "address": "testx.xxxyyy.eu-west-1.rds.amazonaws.com", "port": "3306",
"status": "active"”, "description": ""}, {"type": "slave", "address": "192.168.1.1", "port": "3306",

"n,on ", on

"status": "active", "description": "my description"}]}

In case of server already existing, it returns:

"o non "

{"success":"false", "error":"server_already_exists"} HTTP/1.1 403 Forbidden

If this call was successful, the data is immediately written back into
/etc/maxscale.conf

This may possibly give another error, e.g. if the binary was not run with root
privileges:

{"success":"false", "error":"problem saving conf file"} HTTP/1.1 500 Internal
Server Error

3) /removeserver: remove existing server + write config
This call behaves similarily to /addserver. It may look like this:

curl -v -H "Authorization: Bearer
eyJhbGciOiJlUzIINilsInR5cCl61kpXVCI9.ey)pYXQiOilxNDcxODIINTQ1liwibG9nZ2VkX2luljoiYWRta
W4ifQ.9kddAIUXIhNb_qg5qUis_2VNBuUO3Eg33bCR1C-676ZI" -d "{\"Address\":
\"192.168.1.1\"}" -X POST http://localhost:8080/removeserver

SMARTAMI

It returns similar success/error messages as /addserver, and possibly this error too, if server to be
removed does not exist in the configuration:

"o

{"success":"false", "error":"server_not_found"} HTTP/1.1 400 Bad Request

4) /restartservice: restarting the MaxScale service

When user is done with adding or removing servers and satisfied with the configuration, it needs to be
applied by restarting the maxscaler service:

curl -v -H "Authorization: Bearer
eyJhbGciOiJIUzI1NilsInR5cCl61kpXVCJ9.ey)pYXQiOilxNDcxNzMwMzY4liwibGInZ2VkX2luljoiYWRt
aW4ifQ.vWwPHjMpJdJzeLR2QuvR093qY87KuhsJZe3feQ7zoks" -X POST
http://localhost:8080/restartservice

If everything went right, success message is returned:
{"success":"true", "result":"service_restarted"} HTTP/1.1 200 OK

Otherwise, an error message is passed through from the maxscaler binary without interception, which
may include formatting, e.g. new line characters:

", non mon

{"success":"false", "error":"exit status 1: Failed to restart maxscale.service: Interactive

authentication required.
See system logs and 'systemctl status maxscale.service' for details.

"VHTTP/1.1 500 Internal Server Error

SQLSplitter activity, statistics and configured bucket information calls
1) /getuseractivity: get recent user activity list

This call is useful to indicate that other users may be logged in and editing the list of servers at the time,
or performing other actions that may interfere with actions of current user. Results are displayed
somewhere in mysql servers screen, in a small table.

curl -V -H "Authorization: Bearer
eyJhbGci01iJIUzIINiIsInR5cCI6IkpXVCI.eyIJpY¥XQi01iIxNDczMzI2MjEWIiwibGInZ2VkX21lu

I701Z2jgwMDQzMGE3MjcwZTY3MDc30GU20GViZIE4ZGYXYWZ1ZWVINDI2NSIsInBOeHREbGO9naWs£fyY

JY0IjoiS31nd09ETXBNVE16TkRVMKS53PTO01fQ.UHHZ21X61KmYOeCio6umzbxh5Z23BeAJSWc28 9_MX

YeAA" -X GET http://localhost:8080/getuseractivity

The response is list of users with their last active time (x seconds ago) and
last action performed. Not all possible API calls appear there, but only calls
within the list of actions that we consider interesting enough. For example,
logging in or requesting this activity list itself is not considered to be an

<7

SMARTAMI

18

interesting action to show, as it does not interfere with actions of other
users.

{"KygwODMpMTIzNDU2Nw==""":{"user":"+ (0***567", "last active":"0","action":""}, "M
DgzMTIzNDUZ2Nw==":{"user":"083***567", "last active":"3","action":"Added
server"},"dXNlciOz":{"user":"user-3","last active":"41","action":"Requested
servers

list"}, "dXN1lcjE=":{"user":"userl", "last active":"121","action":"Removed

server"}} HTTP/1.1 200 OK

NOTE: Usernames which may reveal sensitive information (e.g. if they look like
email address or mobile number) are masked by asterisks, so your front-end can
safely display all that gets received from back-end on the screen.

The keys contain Base64 encoded “real” usernames (without masking by ***), they
are perhaps useless for front-end but needed for back-end structures indexing.
Front-end should be only showing masked usernames which are inside of each sub-
record.

2) /getserverstats: get server statistics information

This call returns basic statistics about how many queries were forwarded to
master or slave(s).

curl -V -H "Authorization: Bearer
eyJhbGciO0iJIUzIINiIsInR5cCI6IkpXVCI9.eydpYXQiOiIxNDczNDEzNzQ5TiwibGOnZz2VkX21u
IjoidXN1lciOzIiwicHR4dF9sb2dpbl9iNjQiOiJkWES5sY2kweiJ9.n3e8T-

Qko v9YyofiyB7XybQT1lYdddDcGK4mFetgdhM" -X GET
http://localhost:8080/getserverstats

The usual response contains these two values:

{"queries forwarded to master":"12345","queries forwarded to slave':"67890"}
HTTP/1.1 200 OK

3) /getbucketconfig: get bucket configuration information

This call is wuseful if we need to verify what settings are stored in

AN

configuration “ini” file (/etc/sqglsplitter/sqglsplitter.ini)

curl -V -X GET -H "Authorization: Bearer
eyJhbGci01iJIUzIINiIsInR5cCI6IkpXVCI.eyIJpY¥XQi01iIxNDczMzYyMjI1lIiwibG9nZ2VkX21lu
IjoidXN1cl81IMDAIiLCIwdHhOX2xvZ21uX2I2NCI6ImRYTmxjbDgxTURBPSJ9.9117 uTsSDIeit6x
VWSgDWrbDfOnaOOPyJ-OJRrAXB8" http://localhost:8080/getbucketconfig

The usual response contains all relevant information, like configured region
and bucket, where users are stored:

{"region":"eu-west-1","bucket":"your-bucket-name"} HTTP/1.1 200 OK

SMARTAMI

