FORMULAE/REVISION HINTS FOR SECTION I

DIFFERENTIAL CALCULUS

Standard derivatives

y or f(x)

 $\frac{\mathrm{d} y}{\mathrm{d} x}$ or f'(x)

 ax^n

 anx^{n-1}

sin ax

 $a \cos ax$

cos ax

−a sin ax

tan ax

 $a \sec^2 ax$

sec ax

 $a \sec ax \tan ax$

cosec ax

−a cosec ax cot ax

cot ax

 $-a \csc^2 ax$

e ax

 ae^{ax}

ln ax

 $\frac{1}{x}$

sinh ax

 $a \cosh ax$

cosh ax

a sinh ax

tanh ax

 $a \operatorname{sech}^2 ax$

sech ax

-a sech ax tanh ax

cosech ax

−a cosech ax coth ax

coth ax

−a cosech² ax

$$\sin^{-1}\frac{x}{a}$$

$$\frac{1}{\sqrt{a^2-x^2}}$$

$$\sin^{-1} f(x)$$

$$\frac{f'(x)}{\sqrt{1-[f(x)]^2}}$$

$$\cos^{-1}\frac{x}{a}$$

$$\frac{-1}{\sqrt{a^2-x^2}}$$

$$\frac{-f'(x)}{\sqrt{1-[f(x)]^2}}$$

$$\tan^{-1}\frac{x}{a}$$

$$\frac{a}{a^2+x^2}$$

$$\tan^{-1}f(x)$$

$$\frac{f'(x)}{1+[f(x)]^2}$$

$$\sec^{-1}\frac{x}{a}$$

$$\frac{a}{x\sqrt{x^2-a^2}}$$

$$\frac{f'(x)}{f(x)\sqrt{[f(x)]^2-1}}$$

$$\csc^{-1}\frac{x}{a} \qquad \frac{-a}{x\sqrt{x^2 - a^2}}$$

$$\frac{-f'(x)}{f(x)\sqrt{[f(x)]^2-1}}$$

$$\cot^{-1}\frac{x}{a} \qquad \qquad \frac{-a}{a^2 + x^2}$$

$$\cot^{-1} f(x) \qquad \frac{-f'(x)}{1+[f(x)]^2}$$

$$\sinh^{-1}\frac{x}{a} \qquad \qquad \frac{1}{\sqrt{x^2 + a^2}}$$

$$\frac{f'(x)}{\sqrt{[f(x)]^2 + 1}}$$

$$\frac{1}{\sqrt{x^2 - a^2}}$$

$$\frac{f'(x)}{\sqrt{[f(x)]^2 - 1}}$$

$$\tanh^{-1}\frac{x}{a} \qquad \qquad \frac{a}{a^2 - x^2}$$

$$\frac{f'(x)}{1-\left[f(x)\right]^2}$$

$$\operatorname{sech}^{-1} \frac{x}{a} \qquad \frac{-a}{x\sqrt{a^2 - x^2}}$$

$$\frac{-f'(x)}{f(x)\sqrt{1-[f(x)]^2}}$$

$$\cosh^{-1}f(x)$$

$$\frac{-a}{x\sqrt{x^2+a^2}}$$

$$\cosh^{-1}f(x)$$

$$\frac{-f'(x)}{f(x)\sqrt{x^2+a^2}}$$

$$\coth^{-1}\frac{x}{a}$$

$$\frac{a}{a^2-x^2}$$

$$\coth^{-1}f(x)$$

$$\frac{f'(x)}{1-[f(x)]^2}$$

Product rule

When y = uv and u and v are functions of x, then:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = u \frac{\mathrm{d}v}{\mathrm{d}x} + v \frac{\mathrm{d}u}{\mathrm{d}x}$$

Quotient rule

When $\underline{y} = \frac{u}{v}$ and u and v are functions of x, then:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$$

Function of a function

If *u* is a function of *x*, then: $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

Parametric differentiation

If x and y are both functions of θ , then:

$$\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = \frac{\frac{\mathrm{d}\,y}{\mathrm{d}\,\theta}}{\frac{\mathrm{d}\,x}{\mathrm{d}\,\theta}} \qquad \text{and} \qquad \frac{\mathrm{d}^2\,y}{\mathrm{d}\,x^2} = \frac{\frac{\mathrm{d}\,\left(\frac{\mathrm{d}\,y}{\mathrm{d}\,x}\right)}{\mathrm{d}\,\theta}}{\frac{\mathrm{d}\,x}{\mathrm{d}\,\theta}}$$

Implicit function

$$\frac{\mathrm{d}}{\mathrm{d}x}[f(y)] = \frac{\mathrm{d}}{\mathrm{d}y}[f(y)] \times \frac{\mathrm{d}y}{\mathrm{d}x}$$

Maximum and minimum values

If y = f(x) then $\frac{dy}{dx} = 0$ for stationary points.

Let a solution of $\frac{dy}{dx} = 0$ be x = a; if the value of $\frac{d^2y}{dx^2}$ when x = a is:

- positive, the point is a minimum
- *negative*, the point is a *maximum*.

Points of inflexion

- (i) Given y = f(x), determine $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$
- (ii) Solve the equation $\frac{d^2 y}{dx^2} = 0$
- (iii) Test whether there is a change of sign occurring in $\frac{d^2 y}{dx^2}$. This is achieved by substituting into the expression for $\frac{d^2 y}{dx^2}$ first a value of x just less than the solution and then a value just greater than the solution.
- (iv) A point of inflexion has been found if $\frac{d^2 y}{d x^2} = 0$ and there is a change of sign.

Velocity and acceleration

If distance x = f(t), then

velocity v = f'(t) or $\frac{dx}{dt}$ and acceleration a = f''(t) or $\frac{d^2x}{dt^2}$

Tangents and normals

The equation of tangent to curve y = f(x) at the point (x_1, y_1) is:

$$y - y_1 = m(x - x_1)$$
 where $m =$ gradient of curve at (x_1, y_1)

The equation of normal to curve y = f(x) at the point (x_1, y_1) is:

$$y-y_1 = -\frac{1}{m}(x-x_1)$$

Partial differentiation

Total differential If z = f(u, v, ...), then the total differential,

$$dz = \frac{\partial z}{\partial u} du + \frac{\partial z}{\partial v} dv + \dots$$

Rate of change

If z = f(u, v, ...) and $\frac{du}{dt}$, $\frac{dv}{dt}$, ... denote the rate of change of u, v, ...

respectively, then the rate of change of z,

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial u} \cdot \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{\partial z}{\partial v} \cdot \frac{\mathrm{d}v}{\mathrm{d}t} + \dots$$

Small changes

If z = f(u, v, ...) and δx , δy , ... denote small changes in x, y, ... respectively,

then

the corresponding change,

$$\delta z \approx \frac{\partial z}{\partial x} \, \delta x + \frac{\partial z}{\partial y} \, \delta y + \dots$$

To determine maxima, minima and saddle points for functions of two variables Given z = f(x, y),

(i) determine
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$

- (ii) for stationary points, $\frac{\partial z}{\partial x} = 0$ and $\frac{\partial z}{\partial y} = 0$
- (iii) solve the simultaneous equations $\frac{\partial z}{\partial x} = 0$ and $\frac{\partial z}{\partial y} = 0$ for x and y, which gives the coordinates of the stationary points,
- (iv) determine $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$ and $\frac{\partial^2 z}{\partial x \partial y}$
- (v) for each of the coordinates of the stationary points, substitute values of x and y into

$$\frac{\partial^2 z}{\partial x^2}$$
, $\frac{\partial^2 z}{\partial y^2}$ and $\frac{\partial^2 z}{\partial x \partial y}$ and evaluate each

- (vi) evaluate $\left(\frac{\partial^2 z}{\partial x \partial y}\right)^2$ for each stationary point
- (vii) substitute the values of $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$ and $\frac{\partial^2 z}{\partial x \partial y}$ into the equation

$$\Delta = \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 - \left(\frac{\partial^2 z}{\partial x^2}\right) \left(\frac{\partial^2 z}{\partial y^2}\right) \text{ and evaluate}$$

- (viii)(a) if $\Delta > 0$ then the stationary point is a **saddle point**
 - (b) if $\Delta < \mathbf{0}$ and $\frac{\partial^2 z}{\partial x^2} < \mathbf{0}$, then the stationary point is a **maximum point**
 - (c) if $\Delta < 0$ and $\frac{\partial^2 z}{\partial x^2} > 0$, then the stationary point is a **minimum point**