FORMULAE/REVISION HINTS FOR SECTION J

INTEGRAL CALCULUS

Standard integrals

у	$\int y \mathrm{d} x$
ax^n	$a\frac{x^{n+1}}{n+1} + c$ (except where $n = -1$)
cos ax	$\frac{1}{a}\sin ax + c$
sin ax	$-\frac{1}{a}\cos ax + c$
$\sec^2 ax$	$\frac{1}{a}\tan ax + c$
$\csc^2 ax$	$-\frac{1}{a}\cot ax + c$
cosec ax cot ax	$-\frac{1}{a}\operatorname{cosec} ax + c$
sec ax tan ax	$\frac{1}{a}\sec ax + c$
e ^{ax}	$\frac{1}{a}e^{ax} + c$
$\frac{1}{x}$	$\ln x + c$
tan <i>ax</i>	$\frac{1}{a}\ln(\sec ax) + c$
$\cos^2 x$	$\frac{1}{2}\left(x + \frac{\sin 2x}{2}\right) + c$
$\sin^2 x$	$\frac{1}{2}\left(x - \frac{\sin 2x}{2}\right) + c$
$\tan^2 x$	$\tan x - x + c$
$\cot^2 x$	$-\cot x - x + c$
$\frac{1}{\sqrt{(a^2 - x^2)}}$ $\sqrt{(a^2 - x^2)}$	$\sin^{-1}\frac{x}{a} + c$
$\sqrt{(a^2-x^2)}$	$\frac{a^2}{2}\sin^{-1}\frac{x}{a} + \frac{x}{2}\sqrt{a^2 - x^2} + c$

$$\frac{1}{a^2 + x^2} \qquad \qquad \frac{1}{a} \tan^{-1} \frac{x}{a} + c$$

$$\frac{1}{\sqrt{x^2 + a^2}} \qquad \qquad \sinh^{-1} \frac{x}{a} + c \text{ or } \ln\left[\frac{x + \sqrt{x^2 + a^2}}{a}\right] + c$$

$$\sqrt{x^2 + a^2} \qquad \qquad \frac{a^2}{2} \sinh^{-1} \frac{x}{a} + \frac{x}{2} \sqrt{x^2 + a^2} + c$$

$$\frac{1}{\sqrt{x^2 - a^2}} \qquad \qquad \cosh^{-1} \frac{x}{a} + c \text{ or } \ln\left[\frac{x + \sqrt{x^2 - a^2}}{a}\right] + c$$

$$\sqrt{x^2 - a^2} \qquad \qquad \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \cosh^{-1} \frac{x}{a} + c$$

 $t = \tan \frac{\theta}{2}$ substitution

To determine $\int \frac{1}{a\cos\theta + b\sin\theta + c} d\theta$,

let
$$\sin \theta = \frac{2t}{(1+t^2)}$$
, $\cos \theta = \frac{1-t^2}{1+t^2}$ and $d\theta = \frac{2dt}{(1+t^2)}$

Integration by parts

If *u* and *v* are both functions of *x*, then:

$$\int u \frac{\mathrm{d}v}{\mathrm{d}x} \mathrm{d}x = uv - \int v \frac{\mathrm{d}u}{\mathrm{d}x} \mathrm{d}x$$

Reduction formulae

$$\int x^{n} e^{x} dx = I_{n} = x^{n} e^{x} - nI_{n-1}$$

$$\int x^{n} \cos x dx = I_{n} = x^{n} \sin x + nx^{n-1} \cos x - n(n-1)I_{n-2}$$

$$\int_{0}^{\pi} x^{n} \cos x dx = I_{n} = -n\pi^{n-1} - n(n-1)I_{n-2}$$

$$\int x^{n} \sin x dx = I_{n} = -x^{n} \cos x + nx^{n-1} \sin x - n(n-1)I_{n-2}$$

$$\int \sin^{n} x \, dx = I_{n} = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} I_{n-2}$$
$$\int \cos^{n} x \, dx = I_{n} = \frac{1}{n} \cos^{n-1} \sin x + \frac{n-1}{n} I_{n-2}$$
$$\int_{0}^{\pi/2} \sin^{n} x \, dx = \int_{0}^{\pi/2} \cos^{n} x \, dx = I_{n} = \frac{n-1}{n} I_{n-2}$$
$$\int \tan^{n} x \, dx = I_{n} = \frac{\tan^{n-1} x}{n-1} - I_{n-2}$$
$$\int (\ln x)^{n} \, dx = I_{n} = x(\ln x)^{n} - nI_{n-1}$$

With reference to Figure FJ1

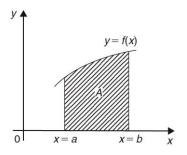


Figure FJ1

Area
$$A = \int_{a}^{b} y \, dx$$

Mean value $= \frac{1}{b-a} \int_{a}^{b} y \, dx$
R.m.s. value $= \sqrt{\left\{\frac{1}{b-a} \int_{a}^{b} y^{2} \, dx\right\}}$

Volume of solid of revolution = $\int_{a}^{b} \pi y^2 dx$ about the *x*-axis

Centroids

With reference to Figure FJ2

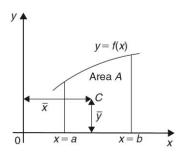


Figure FJ2

$$\overline{x} = \frac{\int_{a}^{b} xy \, \mathrm{d} x}{\int_{a}^{b} y \, \mathrm{d} x} \text{ and } \overline{y} = \frac{\frac{1}{2} \int_{a}^{b} y^{2} \, \mathrm{d} x}{\int_{a}^{b} y \, \mathrm{d} x}$$

Theorem of Pappus

With reference to Figure FJ2, when the curve is rotated one revolution about the *x*-axis between the limits x = a and x = b, the volume *V* generated is given by:

$$V = 2\pi A y$$

Second moment of area and radius of gyration

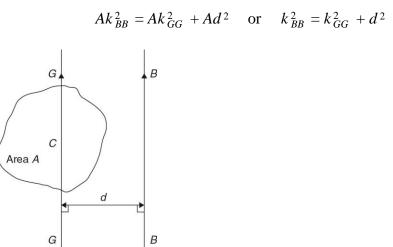
Shape	Position of axis	Second moment of area, <i>I</i>	Radius of gyration, <i>k</i>
Rectangle length <i>l</i> breadth <i>b</i>	 (1) Coinciding with <i>b</i> (2) Coinciding with <i>l</i> (3) Through centroid, parallel to <i>b</i> (4) Through centroid, parallel to <i>l</i> 	$\frac{bl^3}{3}$ $\frac{lb^3}{3}$ $\frac{bl^3}{12}$ $\frac{lb^3}{12}$	$\frac{l}{\sqrt{3}}$ $\frac{b}{\sqrt{3}}$ $\frac{l}{\sqrt{12}}$ $\frac{b}{\sqrt{12}}$
Triangle Perpendicular height <i>h</i> base <i>b</i>	 (1) Coinciding with <i>b</i> (2) Through centroid, parallel to base (3) Through vertex, parallel to base 	$\frac{bh^3}{12}$ $\frac{bh^3}{36}$ $\frac{bh^3}{4}$	$\frac{h}{\sqrt{6}}$ $\frac{h}{\sqrt{18}}$ $\frac{h}{\sqrt{2}}$

Circle	(1) Through centre, perpendicular	πr^4	r
radius r	to plane (i.e. polar axis)	2	$\overline{\sqrt{2}}$
	(2) Coinciding with diameter	$\frac{\pi r^4}{4}$	$\frac{r}{2}$
	(3) About a tangent	$\frac{5\pi r^4}{4}$	$\frac{\sqrt{5}}{2}r$
Semicircle radius <i>r</i>	Coinciding with diameter	$\frac{\pi r^4}{8}$	$\frac{r}{2}$

Parallel axis theorem

If C is the centroid of area A in Figure FJ3, then

В



Perpendicular axis theorem

If OX and OY lie in the plane of area A in Figure FJ4, then

$$Ak_{OZ}^{2} = Ak_{OX}^{2} + Ak_{OY}^{2} \text{ or } k_{OZ}^{2} = k_{OX}^{2} + k_{OY}^{2}$$

Figure FJ4

X×

Numerical integration

Trapezoidal rule

$$\int y \, dx \approx \begin{pmatrix} \text{width of} \\ \text{interval} \end{pmatrix} \left[\frac{1}{2} \begin{pmatrix} \text{first + last} \\ \text{ordinates} \end{pmatrix} + \text{sum of remaining ordinates} \right]$$

Mid-ordinate rule

 $\int y \, dx \approx$ (width of interval)(sum of mid-ordinates)

Simpson's rule

$$\int y \, dx \approx \frac{1}{3} \begin{pmatrix} \text{width of} \\ \text{interval} \end{pmatrix} \left[\begin{pmatrix} \text{first + last} \\ \text{ordinate} \end{pmatrix} + 4 \begin{pmatrix} \text{sum of even} \\ \text{ordinates} \end{pmatrix} + 2 \begin{pmatrix} \text{sum of remaining} \\ \text{odd ordinates} \end{pmatrix} \right]$$