FORMULAE/REVISION HINTS FOR SECTION K
 DIFFERENTIAL EQUATIONS

First-order differential equations

Separation of variables

If $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x)$ then $y=\int f(x) \mathrm{d} x$
If $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(y)$ then $\int \mathrm{d} x=\int \frac{\mathrm{d} y}{f(y)}$
If $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) . f(y)$ then $\int \frac{\mathrm{d} y}{f(y)}=\int f(x) \mathrm{d} x$

Homogeneous equations

If $P \frac{\mathrm{~d} y}{\mathrm{~d} x}=Q$, where P and Q are functions of both x and y of the same degree throughout (i.e. a homogeneous first-order differential equation), then:
(i) Rearrange $P \frac{\mathrm{~d} y}{\mathrm{~d} x}=Q$ into the form $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{Q}{P}$
(ii) Make the substitution $y=v x$ (where v is a function of x), from which, by the product rule,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=v(1)+x \frac{\mathrm{~d} v}{\mathrm{~d} x}
$$

(iii) Substitute for both y and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in the equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{Q}{P}$
(iv) Simplify, by cancelling, and then separate the variables and solve using the $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) \cdot f(y)$ method
(v) Substitute $v=\frac{y}{x}$ to solve in terms of the original variables.

Linear first order

If $\frac{\mathrm{d} y}{\mathrm{~d} x}+P y=Q$, where P and Q are functions of x only (i.e. a linear first-order differential equation), then
(i) determine the integrating factor, $\mathrm{e}^{\int P d x}$
(ii) substitute the integrating factor (I.F.) into the equation

$$
y(\text { I.F. })=\int(\text { I.F. }) Q \mathrm{~d} x
$$

(iii) determine the integral \int (I.F.) $Q \mathrm{~d} x$

Numerical solutions of first-order differential equations

Euler's method:

$$
y_{1}=y_{0}+h\left(y^{\prime}\right)_{0}
$$

Euler-Cauchy method: $\quad y_{P_{1}}=y_{0}+h\left(y^{\prime}\right)_{0}$

$$
\text { and } \quad y_{C_{1}}=y_{0}+\frac{1}{2} h\left[\left(y^{\prime}\right)_{0}+f\left(x_{1}, y_{P_{1}}\right)\right]
$$

Runge-Kutta method: To solve the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)$ given the initial condition y $=y_{0}$ at $x=x_{0}$ for a range of values of $x=x_{0}$ (h) x_{n} :
(i) Identify x_{0}, y_{0} and h, and values of $x_{1}, x_{2}, x_{3}, \ldots$
(ii) Evaluate $k_{1}=f\left(x_{n}, y_{n}\right)$ starting with $n=0$
(iii) Evaluate $k_{2}=f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{1}\right)$
(iv) Evaluate $k_{3}=f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{2}\right)$
(v) Evaluate $k_{4}=f\left(x_{n}+h, y_{n}+h k_{3}\right)$
(vi) Use the values determined from steps (ii) to (v) to evaluate:

$$
y_{n+1}=y_{n}+\frac{h}{6}\left\{k_{1}+2 k_{2}+2 k_{3}+k_{4}\right\}
$$

(vii) Repeat steps (ii) to (vi) for $n=1,2,3, \ldots$

Second-order differential equations

If $\boldsymbol{a} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\boldsymbol{b} \frac{\mathrm{d} y}{\mathrm{~d} x}+\boldsymbol{c y}=\mathbf{0}$ (where a, b and c are constants), then:
(i) rewrite the differential equation as $\left(a D^{2}+b D+c\right) y=0$
(ii) substitute m for D and solve the auxiliary equation $a m^{2}+b m+c=0$
(iii) if the roots of the auxiliary equation are:
(a) real and different, say $m=\alpha$ and $m=\beta$, then the general solution is

$$
\boldsymbol{y}=\boldsymbol{A} \mathbf{e}^{\alpha x}+\boldsymbol{B} \mathbf{e}^{\beta x}
$$

(b) real and equal, say $m=\alpha$ twice, then the general solution is

$$
\boldsymbol{y}=(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B}) \mathbf{e}^{\alpha x}
$$

(c) complex, say $m=\alpha \pm j \beta$, then the general solution is

$$
y=\mathbf{e}^{\alpha x}(A \cos \beta x+B \sin \beta x)
$$

(iv) given boundary conditions, constants A and B can be determined and the particular solution obtained.

If $\boldsymbol{a} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\boldsymbol{b} \frac{\mathrm{d} y}{\mathrm{~d} x}+\boldsymbol{c} \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ then:
(i) rewrite the differential equation as $\left(a D^{2}+b D+c\right) y=0$
(ii) substitute m for D and solve the auxiliary equation $a m^{2}+b m+c=0$
(iii) obtain the complimentary function (C.F.), u, as per (iii)
(iv) to find the particular integral, v, first assume a particular integral which is suggested by $f(x)$, but which contains undetermined coefficients (see Table 82.1, page 854 for guidance)
(v) substitute the suggested particular integral into the original differential equation and equate relevant coefficients to find the constants introduced
(vi) the general solution is given by $y=u+v$
(vii) given boundary conditions, arbitrary constants in the C.F. can be determined and the particular solution obtained

Higher derivatives

$$
\begin{array}{ll}
\boldsymbol{y} & y^{(n)} \\
\mathrm{e}^{a x} & a^{n} \mathrm{e}^{a x} \\
\sin a x & a^{n} \sin \left(a x+\frac{n \pi}{2}\right) \\
\cos a x & a^{n} \cos \left(a x+\frac{n \pi}{2}\right) \\
x^{a} & \frac{a!}{(a-n)!} x^{a-n} \\
\sinh a x & \frac{a^{n}}{2}\left\{\left[1+(-1)^{n}\right] \sinh a x+\left[1-(-1)^{n}\right] \cosh a x\right\} \\
\cosh a x & \frac{a^{n}}{2}\left\{\left[1-(-1)^{n}\right] \sinh a x+\left[1+(-1)^{n}\right] \cosh a x\right\} \\
\ln a x & (-1)^{n-1} \frac{(n-1)!}{x^{n}}
\end{array}
$$

Leibniz's theorem

To find the nth derivative of a product $y=u v$:

$$
y^{(n)}=(u v)^{(n)}=u^{(n)} v+n u^{(n-1)} v^{(1)}+\frac{n(n-1)}{2!} u^{(n-2)} v^{(2)}+\frac{n(n-1)(n-2)}{3!} u^{(n-3)} v^{(3)}+\ldots
$$

Power series solutions of second-order differential equations

(a) Leibniz-Maclaurin method
(i) Differentiate the given equation n times, using the Leibniz theorem
(ii) Rearrange the result to obtain the recurrence relation at $x=0$
(iii) Determine the values of the derivatives at $x=0$, i.e. find $(y)_{0}$ and $\left(y^{\prime}\right)_{0}$
(iv) Substitute in the Maclaurin expansion for $y=f(x)$
(v) Simplify the result where possible and apply the boundary condition (if given).
(b) Frobenius method
(i) Assume a trial solution of the form: $y=x^{c}\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots+a_{r} x^{r}+\ldots\right\} \quad a_{0} \neq 0$
(ii) Differentiate the trial series to find y^{\prime} and $y^{\prime \prime}$
(iii) Substitute the results in the given differential equation
(iv) Equate coefficients of corresponding powers of the variable on each side of the equation: this enables index c and coefficients $a_{1}, a_{2}, a_{3}, \ldots$ from the trial solution to be determined.

Bessel's equation

The solution of $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(x^{2}-v^{2}\right) y=0$
is: $\quad y=A x^{v}\left\{1-\frac{x^{2}}{2^{2}(v+1)}+\frac{x^{4}}{2^{4} \times 2!(v+1)(v+2)}-\frac{x^{6}}{2^{6} \times 3!(v+1)(v+2)(v+3)}+\ldots\right\}$

$$
+B x^{-v}\left\{1+\frac{x^{2}}{2^{2}(v-1)}+\frac{x^{4}}{2^{4} \times 2!(v-1)(v-2)}+\frac{x^{6}}{2^{6} \times 3!(v-1)(v-2)(v-3)}+\ldots\right\}
$$

or, in terms of Bessel functions and gamma functions:

$$
\begin{aligned}
y=A J_{v}(x)+B J_{-v}(x)=A\left(\frac{x}{2}\right)^{v}\{ & \left\{\frac{1}{\Gamma(v+1)}-\frac{x^{2}}{2^{2}(1!) \Gamma(v+2)}+\frac{x^{4}}{2^{4}(2!) \Gamma(v+4)}-\ldots\right\} \\
& +B\left(\frac{x}{2}\right)^{-v}\left\{\frac{1}{\Gamma(1-v)}-\frac{x^{2}}{2^{2}(1!) \Gamma(2-v)}+\frac{x^{4}}{2^{4}(2!) \Gamma(3-v)}-\ldots\right\}
\end{aligned}
$$

In general terms: $J_{v}(x)=\left(\frac{x}{2}\right)^{v} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{2^{2 k}(k!) \Gamma(v+k+1)}$ and $J_{-v}(x)=\left(\frac{x}{2}\right)^{-v} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{2^{2 k}(k!) \Gamma(k-v+1)}$ and in particular: $J_{n}(x)=\left(\frac{x}{2}\right)^{n}\left\{\frac{1}{n!}-\frac{1}{(n+1)!}\left(\frac{x}{2}\right)^{2}+\frac{1}{(2!)(n+2)!}\left(\frac{x}{2}\right)^{4}-\ldots\right\}$

$$
J_{0}(x)=1-\frac{x^{2}}{2^{2}(1!)^{2}}+\frac{x^{4}}{2^{4}(2!)^{2}}-\frac{x^{6}}{2^{6}(3!)^{2}}+\ldots
$$

and

$$
J_{1}(x)=\frac{x}{2}-\frac{x^{3}}{2^{3}(1!)(2!)}+\frac{x^{5}}{2^{5}(2!)(3!)}-\frac{x^{7}}{2^{7}(3!)(4!)}+\ldots
$$

Legendre's equation

The solution of $\left(1-x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+k(k+1) y=0$
is: $\quad y=a_{0}\left\{1-\frac{k(k+1)}{2!} x^{2}+\frac{k(k+1)(k-2)(k+3)}{4!} x^{4}-..\right\}$

$$
+a_{1}\left\{x-\frac{(k-1)(k+2)}{3!} x^{3}+\frac{(k-1)(k-3)(k+2)(k+4)}{5!} x^{5}-. .\right\}
$$

Rodrigue's formula

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{\mathrm{d}^{n}\left(x^{2}-1\right)^{n}}{\mathrm{~d} x^{n}}
$$

