FORMULAE/REVISION HINTS FOR SECTION L STATISTICS AND PROBABILITY

Mean, median, mode and standard deviation

If $x=$ variate and $f=$ frequency then: mean $\bar{x}=\frac{\sum f x}{\sum f}$
The median is the middle term of a ranked set of data.

The mode is the most commonly occurring value in a set of data
Standard deviation $\sigma=\sqrt{\left[\frac{\sum\left\{f(x-\bar{x})^{2}\right\}}{\sum f}\right]}$ for a population

Probability

The addition law

The probability of events A or B or C or ... occurring is given by:

$$
p_{\mathrm{A}}+p_{\mathrm{B}}+p_{\mathrm{C}}+\ldots
$$

The multiplication law

The probability of events A and B and C and ... occurring is given by:

$$
p_{\mathrm{A}} \times p_{\mathrm{B}} \times p_{\mathrm{C}} \times \ldots
$$

Binomial probability distribution

If $n=$ number in sample, $p=$ probability of the occurrence of an event and $q=1-p$, then the probability of $0,1,2,3, \ldots$ occurrences is given by:

$$
q^{n}, n q^{n-1} p, \frac{n(n-1)}{2!} q^{n-2} p^{2}, \frac{n(n-1)(n-2)}{3!} q^{n-3} p^{3}, \ldots
$$

(i.e. successive terms of the $(q+p)^{n}$ expansion)

Normal approximation to a binomial distribution:
Mean $=n p \quad$ Standard deviation $\sigma=\sqrt{(n p q)}$

Poisson distribution

If λ is the expectation of the occurrence of an event then the probability of $0,1,2,3, \ldots$ occurrences is given by:

$$
\mathrm{e}^{-\lambda}, \lambda \mathrm{e}^{-\lambda}, \lambda^{2} \frac{\mathrm{e}^{-\lambda}}{2!}, \lambda^{3} \frac{\mathrm{e}^{-\lambda}}{3!}, \ldots
$$

Product-moment formula for the linear correlation coefficient

Coefficient of correlation $r=\frac{\sum x y}{\sqrt{\left[\left(\sum x^{2}\right)\left(\sum y^{2}\right)\right]}}$
where $x=X-\bar{X}$ and $y=Y-\bar{Y}$ and $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots$ denote a random sample from a bivariate normal distribution and \bar{X} and \bar{Y} are the means of the X and Y values, respectively.

Normal probability distribution

Partial areas under the standardized normal curve - see Table 89.1 on page 944.

Student's \boldsymbol{t} distribution

Percentile values $\left(t_{p}\right)$ for Student's t distribution with v degrees of freedom - see Table 92.1 on page 966.

Chi-square distribution

Percentile values $\left(\chi_{p}^{2}\right)$ for the chi-square distribution with v degrees of freedom - see Table 94.1 on page 994.
$\chi^{2}=\sum\left\{\frac{(o-\mathrm{e})^{2}}{\mathrm{e}}\right\}$ where o and e are the observed and expected frequencies.

Symbols

Population: number of members N_{p}, mean μ, standard deviation σ.

Sample: number of members N, mean \bar{x}, standard deviation s.
Sampling distributions: mean of sampling distribution of means $\mu_{\bar{x}}$, standard error of means $\sigma_{\bar{x}}$, standard error of the standard deviations σ_{s}.

Standard error of the means

Standard error of the means of a sample distribution, i.e. the standard deviation of the means of samples, is:
$\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}} \sqrt{\left(\frac{N_{p}-N}{N_{p}-1}\right)}$ for a finite population and/or for sampling without replacement, and $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}}$ for an infinite population and/or for sampling with replacement.

The relationship between sample mean and population mean

$\mu_{\bar{x}}=\mu$ for all possible samples of size N which are drawn from a population of size N_{p}.

Estimating the mean of a population (σ known)

The confidence coefficient for a large sample size $(N \geq 30)$ is z_{c} where:

Confidence level \%	Confidence coefficient z_{c}
99	2.58
98	2.33
96	2.05

95	1.96
90	1.645
80	1.28
50	0.6745

The confidence limits of a population mean based on sample data are given by:

$$
\begin{aligned}
& \bar{x} \pm \frac{z_{c} \sigma}{\sqrt{N}} \sqrt{\left(\frac{N_{p}-N}{N_{p}-1}\right)} \text { for a finite population of size } N_{p}, \text { and by } \\
& \bar{x} \pm \frac{z_{c} \sigma}{\sqrt{N}} \text { for an infinite population. }
\end{aligned}
$$

Estimating the mean of a population (σ unknown)

The confidence limits of a population mean based on sample data are given by

$$
\mu_{\bar{x}} \pm z_{c} \sigma_{\bar{x}}
$$

Estimating the standard deviation of a population

The confidence limits of the standard deviation of a population based on sample data are given by:

$$
s \pm z_{c} \sigma_{s}
$$

Estimating the mean of a population based on a small sample size

The confidence coefficient for a small sample size $(N<30)$ is t_{c} which can be determined using
Table 92.1, page 966. The confidence limits of a population mean based on sample data are given by:

$$
\bar{x} \pm \frac{t_{c} s}{\sqrt{(N-1)}}
$$

