FORMULAE/REVISION HINTS FOR SECTION L

STATISTICS AND PROBABILITY

Mean, median, mode and standard deviation

If x = variate and f = frequency then: mean $\overline{x} = \frac{\sum fx}{\sum f}$

The **median** is the middle term of a ranked set of data.

The mode is the most commonly occurring value in a set of data

Probability

The addition law

The probability of events A or B or C or ... occurring is given by:

$$p_{\rm A} + p_{\rm B} + p_{\rm C} + \dots$$

The multiplication law

The probability of events A and B and C and ... occurring is given by:

$$p_{\rm A} \times p_{\rm B} \times p_{\rm C} \times \dots$$

Binomial probability distribution

If n = number in sample, p = probability of the occurrence of an event and

q = 1 - p, then the probability of 0, 1, 2, 3, ... occurrences is given by:

$$q^{n}, nq^{n-1}p, \frac{n(n-1)}{2!}q^{n-2}p^{2}, \frac{n(n-1)(n-2)}{3!}q^{n-3}p^{3}, \dots$$

(i.e. successive terms of the $(q + p)^n$ expansion)

Normal approximation to a binomial distribution:

Mean = np Standard deviation $\sigma = \sqrt{(n p q)}$

Poisson distribution

If λ is the expectation of the occurrence of an event then the probability of 0, 1, 2, 3, ... occurrences

is given by:

$$e^{-\lambda}$$
, $\lambda e^{-\lambda}$, $\lambda^2 \frac{e^{-\lambda}}{2!}$, $\lambda^3 \frac{e^{-\lambda}}{3!}$, ...

Product-moment formula for the linear correlation coefficient

Coefficient of correlation $r = \frac{\sum xy}{\sqrt{[(\sum x^2)(\sum y^2)]}}$

where $x = X - \overline{X}$ and $y = Y - \overline{Y}$ and $(X_1, Y_1), (X_2, Y_2), ...$ denote a random sample from a bivariate normal distribution and \overline{X} and \overline{Y} are the means of the *X* and *Y* values, respectively.

Normal probability distribution

Partial areas under the standardized normal curve - see Table 89.1 on page 944.

Student's t distribution

Percentile values (t_p) for Student's t distribution with v degrees of freedom – see Table 92.1 on

page 966.

Chi-square distribution

Percentile values (χ_p^2) for the chi-square distribution with ν degrees of freedom – see Table 94.1 on

page 994.

$$\chi^2 = \sum \left\{ \frac{(o-e)^2}{e} \right\}$$
 where *o* and *e* are the observed and expected frequencies.

Symbols

х

Population: number of members N_p , mean μ , standard deviation σ .

Sample: number of members N, mean \overline{x} , standard deviation s.

Sampling distributions: mean of sampling distribution of means $\mu_{\bar{x}}$, standard error of means $\sigma_{\bar{x}}$,

standard error of the standard deviations σ_s .

Standard error of the means

Standard error of the means of a sample distribution, i.e. the standard deviation of the means of samples, is:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{N}} \sqrt{\left(\frac{N_p - N}{N_p - 1}\right)}$$
 for a finite population and/or for sampling without replacement, and
$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{N}}$$
 for an infinite population and/or for sampling with replacement.

The relationship between sample mean and population mean

 $\mu_{\bar{x}} = \mu$ for all possible samples of size N which are drawn from a population of size N_p .

Estimating the mean of a population (σ known)

The confidence coefficient for a large sample size ($N \ge 30$) is z_c where:

Confidence level %	Confidence coefficient z_c
99	2.58
98	2.33
96	2.05

95	1.96
90	1.645
80	1.28
50	0.6745

The confidence limits of a population mean based on sample data are given by:

$$\bar{x} \pm \frac{z_c \sigma}{\sqrt{N}} \sqrt{\left(\frac{N_p - N}{N_p - 1}\right)} \text{ for a finite population of size } N_p \text{, and by}$$
$$\bar{x} \pm \frac{z_c \sigma}{\sqrt{N}} \text{ for an infinite population.}$$

Estimating the mean of a population (σ unknown)

The confidence limits of a population mean based on sample data are given by

$$\mu_{\bar{x}} \pm z_c \sigma_{\bar{x}}$$

Estimating the standard deviation of a population

The confidence limits of the standard deviation of a population based on sample data are given by:

 $s \pm z_c \sigma_s$

Estimating the mean of a population based on a small sample size

The confidence coefficient for a small sample size (N < 30) is t_c which can be determined using Table 92.1, page 966. The confidence limits of a population mean based on sample data are given by:

$$\overline{x} \pm \frac{t_c s}{\sqrt{(N-1)}}$$