FORMULAE/REVISION HINTS FOR SECTION M

LAPLACE TRANSFORMS

Laplace transforms

Function f(t)	Laplace transforms
	$\mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$
1	1
k	$\frac{s}{\frac{k}{s}}$
e ^{at}	$\frac{1}{s-a}$
sin at	$\frac{a}{s^2 + a^2}$ $\frac{s}{s^2 + a^2}$ $\frac{1}{s^2}$
cos at	$\frac{s}{s^2 + a^2}$
t	$\frac{1}{s^2}$
t^n (<i>n</i> = positve integer)	$\frac{n!}{s^{n+1}}$
cosh at	$\frac{s}{s^2 - a^2}$ $\frac{a}{s^2 - a^2}$ $\frac{n!}{(s+a)^{n+1}}$
sinh at	$\frac{a}{s^2 - a^2}$
$e^{-at}t^n$	$\frac{n!}{(s+a)^{n+1}}$
$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
$e^{-at}\cos \omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
$e^{-at}\cosh \omega t$	$\frac{s+a}{(s+a)^2 - \omega^2}$
$e^{-at} \sinh \omega t$	$\frac{\omega}{(s+a)^2 - \omega^2}$

The Laplace transforms of derivatives

First derivative
$$\mathcal{L}\left\{\frac{\mathrm{d}\,y}{\mathrm{d}\,x}\right\} = s\left\{y\right\} - y(0)$$
 where $y(0)$ is the value of y at $x = 0$
Second derivative $\mathcal{L}\left\{\frac{\mathrm{d}\,y}{\mathrm{d}\,x}\right\} = s^2\left\{y\right\} - s\,y(0) - y'(0)$ where $y'(0)$ is the value of $\frac{\mathrm{d}\,y}{\mathrm{d}\,x}$ at $x = 0$

Heaviside unit step function



Figure M.1

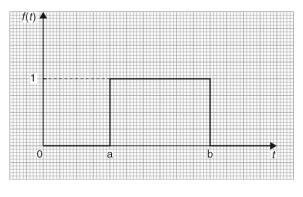


Figure M.2

Laplace transform of H(t-c)

$$\mathcal{L}{H(t-c)} = \frac{e^{-cs}}{s}$$
 and $\mathcal{L}{H(t)} = \frac{1}{s}$

Laplace transform of H(t-c).f(t-c)

 $\mathcal{L}{H(t-c),f(t-c)} = e^{-cs}F(s)$ where $F(s) = \mathcal{L}{f(t)}$

Inverse Laplace transform of Heaviside functions

if $F(s) = \mathcal{L}{f(t)}$, then $e^{-cs}F(s) = \mathcal{L}{H(t-c).f(t-c)}$