LAPLACE TRANSFORMS

Laplace transforms

Function $\mathrm{f}(\mathbf{t})$	Laplace transforms $\mathscr{L}\{f(t)\}=\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) \mathrm{d} t$
1	$\frac{1}{s}$
k	$\frac{k}{s}$
$\mathrm{e}^{a t}$	$\frac{1}{s-a}$
$\sin a t$	$\frac{a}{s^{2}+a^{2}}$
$\cos a t$	$\frac{s}{s^{2}+a^{2}}$
t	$\frac{1}{s^{2}}$
$t^{n}(n=$ positve integer $)$	$\frac{n!}{s^{n+1}}$
$\cosh a t$	$\frac{s}{s^{2}-a^{2}}$
$\sinh a t$	$\frac{a}{s^{2}-a^{2}}$
$\mathrm{e}^{-a t} \mathrm{t}^{n}$	$\frac{n!}{(s+a)^{n+1}}$
$\mathrm{e}^{-a t} \sin \omega t$	$\frac{\omega}{(s+a)^{2}+\omega^{2}}$
$\mathrm{e}^{-a t} \cos \omega t$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$
$\mathrm{e}^{-a t} \cosh \omega t$	$\frac{s+a}{(s+a)^{2}-\omega^{2}}$
$\mathrm{e}^{-a t} \sinh \omega t$	$\frac{\omega}{(s+a)^{2}-\omega^{2}}$

The Laplace transforms of derivatives

First derivative $\mathscr{L}\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}\right\}=\boldsymbol{s}\{\boldsymbol{y}\}-\boldsymbol{y}(\mathbf{0}) \quad$ where $y(0)$ is the value of y at $x=0$

Second derivative $\quad \mathscr{L}\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}\right\}=\boldsymbol{s}^{2}\{\boldsymbol{y}\}-\boldsymbol{s} \boldsymbol{y}(\mathbf{0})-\boldsymbol{y}^{\prime}(\mathbf{0}) \quad$ where $y^{\prime}(0)$ is the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=0$

Heaviside unit step function

Figure M. 1

Figure M. 2

Laplace transform of $\boldsymbol{H}(\boldsymbol{t}-\boldsymbol{c})$

$$
\mathscr{L}\{H(t-c)\}=\frac{\mathrm{e}^{-c s}}{s} \quad \text { and } \mathscr{L}\{H(t)\}=\frac{1}{s}
$$

Laplace transform of $\boldsymbol{H}(t-c) . f(t-c)$

$$
\mathscr{L}\{H(t-c) \cdot f(t-c)\}=\mathrm{e}^{-c s} F(s) \quad \text { where } F(s)=\mathscr{L}\{f(t)\}
$$

Inverse Laplace transform of Heaviside functions

if $F(s)=\mathscr{L}\{f(t)\}$, then $\mathrm{e}^{-c s} F(s)=\mathscr{L}\{H(t-c) \cdot f(t-c)\}$

