FORMULAE/REVISION HINTS FOR SECTION N

FOURIER SERIES

Fourier series

If $f(x)$ is a periodic function of period $\mathbf{2} \boldsymbol{\pi}$, then its Fourier series is given by:

$$
\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

where, for the range $-\pi$ to $+\pi$.

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{d} x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{~d} x \quad(n=1,2,3, \ldots) \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x \mathrm{~d} x \quad(n=1,2,3, \ldots)
\end{aligned}
$$

Even functions

If $f(x)$ is even in the range $-\pi<x<\pi$, then $f(-x)=f(x)$ and the Fourier series has no sine terms, i.e.
$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x$
where $a_{0}=\frac{1}{\pi} \int_{0}^{\pi} f(x) \mathrm{d} x$

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x \mathrm{~d} x
$$

Odd functions

If $f(x)$ is odd in the range $-\pi<x<\pi$, then $f(-x)=-f(x)$ and the Fourier series has no constant term and no cosine terms, i.e.

$$
f(x)=\sum_{n=1}^{\neq} b_{n} \sin n x
$$

where

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x \mathrm{~d} x
$$

If $f(x)$ is a periodic function of period \boldsymbol{L}, then its Fourier series is given by:

$$
\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}_{0}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{2 \pi n x}{L}\right)+b_{n} \sin \left(\frac{2 \pi n x}{L}\right)\right\}
$$

where for the range $-\frac{L}{2}$ to $+\frac{L}{2}$:

$$
\begin{aligned}
& a_{0}=\frac{1}{L} \int_{-L / 2}^{L / 2} f(x) \mathrm{d} x \\
& a_{n}=\frac{2}{L} \int_{-L / 2}^{L / 2} f(x) \cos \left(\frac{2 \pi n x}{L}\right) \mathrm{d} x \quad(n=1,2,3, \ldots) \\
& b_{n}=\frac{2}{L} \int_{-L / 2}^{L / 2} f(x) \sin \left(\frac{2 \pi n x}{L}\right) \mathrm{d} x \quad(n=1,2,3, \ldots)
\end{aligned}
$$

For an even function, $a_{0}=\frac{2}{L} \int_{0}^{L / 2} f(x) \mathrm{d} x$

$$
a_{n}=\frac{4}{L} \int_{0}^{L / 2} f(x) \cos \left(\frac{2 \pi n x}{L}\right) \mathrm{d} x
$$

and

$$
b_{n}=0
$$

For an odd function, $\quad a_{0}=0$

$$
a_{n}=0
$$

and

$$
b_{n}=\frac{4}{L} \int_{0}^{L / 2} f(x) \sin \left(\frac{2 \pi n x}{L}\right) \mathrm{d} x
$$

Complex or exponential Fourier series

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} \mathrm{e}^{j \frac{2 \pi n x}{L}} \quad \text { where } c_{n}=\frac{1}{L} \int_{-L / 2}^{L / 2} f(x) \mathrm{e}^{-j \frac{2 \pi n x}{L}} \mathrm{~d} x
$$

For even symmetry, $c_{n}=\frac{2}{L} \int_{0}^{\frac{L}{2}} f(x) \cos \left(\frac{2 \pi n x}{L}\right) \mathrm{d} x$
For odd symmetry, $c_{n}=-j \frac{2}{L} \int_{0}^{\frac{L}{2}} f(x) \sin \left(\frac{2 \pi n x}{L}\right) \mathrm{d} x$

