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1.1 Introduction

This manual is complementary to the book “Optimal and robust control:
Advanced Topics with MATLABr”, CRC Press, referred in the following to
as the textbook. It contains the solutions to the exercises given at the end
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of each chapter. Although some solutions are given in analytical forms, for
most of them the use of MATLABr is required. The detailed procedures are
all explained in the textbook, so that major emphasis is here given to the
solution flow.

1.2 Solutions of exercises of Chapter 2

1.2.1 Exercise 2.1

Exercise: Apply the vectorization method to solve the Lyapunov equation:

ATP + PA = −I

with

A =

 0 1 −1
2 −5 −1
3 1 −2



Solution: The solution of this exercise follows MATLABr exercise 2.3 of the
textbook. We have first to calculate matrix M = I⊗AT + AT ⊗ I (where I is

the 3× 3 identity matrix) and then to solve P = −M−1



1
0
0
0
1
0
0
0
1


. One gets:

P =

 1.7045 0.2973 −0.3649
0.2973 0.1494 −0.0506
−0.3649 −0.0506 0.4577



1.2.2 Exercise 2.2

Exercise: Given the nonlinear system ẋ = x3 − 8x2 + 17x + u calculate the
equilibrium points for u = −10 and study their stability.
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Solution: The equilibrium points are given by: ẋ = 0, which yields:

x3 − 8x2 + 17x− 10 = 0

Since

x3 − 8x2 + 17x− 10 = x3 − x2 − 7x2 + 7x+ 10x− 10 =

= (x− 1)(x2 − 7x+ 10) = (x− 1)(x− 2)(x− 5)

the equilibrium points are x̄1 = 1, x̄2 = 2 and x̄3 = 5.
Their stability is now calculated by linearizing the system around each of

these equilibrium, i.e., by evaluating ∂f
∂x

∣∣∣
x=x̄

.

Since ∂f
∂x

∣∣∣
x=x̄1=1

= 4, x̄1 is unstable.

Since ∂f
∂x

∣∣∣
x=x̄2=2

= −3, x̄2 is stable.

Since ∂f
∂x

∣∣∣
x=x̄3=5

= 12, x̄3 is unstable.

1.2.3 Exercise 2.3

Exercise: Given the nonlinear system{
ẋ1 = −x1 + 2x2

ẋ2 = −2x1 − x2 + x3
2

analyze numerically the stability of the equilibrium point x̄ = 0.

Solution: Define the suitable MATLAB function to integrate the system dy-
namics as

function xdot=nonlinsysEx2_3(t,x)

xdot=[-x(1)+2*x(2);

-2*x(1)-x(2)+x(2)^3];

end

and calculate the trajectory of the system for different initial conditions with
the command

>> [T,Y]=ode45(@nonlinsys3_2,[0:0.01:20],[x1 x2])

where x1 and x2 are the initial conditions. It can be seen that for values
of the initial conditions around the equilibrium point the system converges,
otherwise choosing initial conditions far from the origin leads the system to
instability. Thus, the equilibrium is locally asymptotically stable.

To characterize numerically this behavior, the following code can be used:
warning off;
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-4 -2 0 2 4

x1

-4

-2

0

2

4

x
2

FIGURE 1.1
Exercise 2.3: basin of attraction of the equilibrium x̄ = 0.

bas=zeros(161);

ind1=0;

for x1=-4:.05:4,

ind1=ind1+1;

ind2=0;

for x2=-4:.05:4,

ind2=ind2+1;

[T,Y]=ode45(@nonlinsys3_2,[0:0.01:20],[x1 x2]);

if (abs(Y(end,1))>1e-2 || abs(Y(end,2))>1e-2)

bas(ind1,ind2)=0;

else bas(ind1,ind2)=1;

end

end

end

>> imagesc(-4:0.05:4,-4:0.05:4,bas)

The code generates a map, reported in Figure 1.1, where the red area
indicates the basin of attraction of the equilibrium x̄ = 0, i.e. those initial
conditions for which the system is locally asymptotically stable.

1.2.4 Exercise 2.4

Exercise: Study the stability of system with transfer function

G(s) =
s2 + 2s+ 2

s4 + a1s3 + a2s2 + a3s+ a4

with 1 ≤ a1 ≤ 3, 4 ≤ a2 ≤ 7, 1 ≤ a3 ≤ 2, 0.5 ≤ a4 ≤ 2.
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Solution: We can study the stability of this uncertain system by applying
the Kharitonov criterion. Let us consider therefore:

D1(s) = s4 + s3 + 7s2 + 2s+ 0.5
D2(s) = s4 + 3s3 + 4s2 + s+ 2
D3(s) = s4 + 3s3 + 7s2 + s+ 0.5
D4(s) = s4 + s3 + 4s2 + 2s+ 2

By calculating the roots of these polynomial (using MATLABr command
roots), we find that D1(s), D3(s) and D4(s) have all roots with negative real
part, while D2(s) has two positive real part roots. Therefore, we cannot state
that for any value of the parameters the uncertain system is stable.

1.2.5 Exercise 2.5

Exercise: Given the polynomial p(s, a) = s4 + 5s3 + 8s2 + 8s + 3 with a =[
3 8 8 5

]
, find p(s,b) with b =

[
(b−0 , b

+
0 ) . . . (b−3 , b

+
3 )
]

so that the
polynomial class p(s, b) is Hurwitz.

Solution: It is possible to solve this problem numerically by exploiting the
Kharitonov criterion. Let us reduce the coefficients in vector a by the same
quantity δ. With the following MATLAB code the roots of the obtained poly-
nomial can be analysed:

for delta=0:0.1:10

b=[1 5-delta 8-delta 8-delta 3-delta];

plot(real(roots(v)),imag(roots(v)),’b.’)

pause

hold on

end

We notice that for δ > −3 the polynomial is Hurwitz. Therefore, we can
fix δ < 3 and verify that the polynomials p1(s) = s4 + b+0 s

3 + b+1 s
2 + b+2 s+ b+3 ,

p2(s) = s4 + b−0 s
3 + b+1 s

2 + b−2 s+ b+3 , and p3(s) = s4 + b+0 s
3 + b−1 s

2 + b+2 s+ b−3
are Hurwitz with b±0 = 5± δ, b±1 = 8± δ, b±2 = 8± δ, b±3 = 3± δ.

1.2.6 Exercise 2.6

Exercise: Study the stability of the system G(s) = s2+3s+2
s4+q1s3+5s2+q2s+q3

with

parameters q1 ∈ [1, 3], q2 ∈ [5, 10], q3 ∈ [2, 18].

Solution: As for exercise 2.4, we can apply the Kharitonov criterion. Consider:
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D1(s) = s4 + s3 + 5s2 + 10s+ 2
D2(s) = s4 + 3s3 + 5s2 + 5s+ 18
D3(s) = s4 + 3s3 + 5s2 + 5s+ 2
D4(s) = s4 + s3 + 5s2 + 10s+ 18

The analysis of the roots of these polynomials reveal that only D3(s) has
all the roots with negative real part. Therefore, there exist values of the pa-
rameters for which the system is unstable.

1.3 Solutions of exercises of Chapter 3

1.3.1 Exercise 3.1

Exercise: Calculate the Kalman decomposition for the system with state-
space matrices:

A =


−2 3 0 0 0
1 0 0 0 0
1 −1 3 0 0
−2 1 −1 −1 0
−4 1 2 −1 −2

 ; B = CT =


1
1
1
1
1



Solution: We first calculate the controllability and observability matrices:

Mc =


1 1 1 1 1
1 1 1 1 1
1 3 9 27 81
1 −3 −1 −9 −19
1 −4 14 −12 84

 ; MT
o =


1 −6 32 −104 384
1 4 −26 94 −362
1 4 10 34 94
1 −2 4 −8 16
1 −2 4 −8 16


Both have rank equal to 4 and in both cases the first four columns are

linearly independent. Therefore, we can determine Xr as the subspace spanned
by the first four columns of Mc and Xo as the subspace spanned by the first four
columns of MT

o . We then determine Xnr as the null space of MT
c (MATLABr

command Xnr=null(Mc’)) and Xno as the null space of Mo (MATLABr

command Xno=null(Mo)). We get: Xnr =
[
−0.7071 0.7071 0 0 0

]T
and Xno =

[
0 0 0 −0.7071 0.7071

]T
.
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We now determine XA as the intersection of Xr and Xno. This can be done
in MATLABr with the following commands:

>> N=null([Xr -Xno])

>> [m,n]=size(Xr)

>> Xa=Xr*N(1:n,:)

We obtain that XA is the subspace spanned by the vector Xa =[
0 0 0 −0.6542 0.6542

]T
(in fact, XA = Xno).

We then calculate X̄B as the intersection of Xr and (Xnr + Xo). Since in
this case Xnr ⊂ Xo we use the commands:

>> N=null([Xr -Xo])

>> [m,n]=size(Xr)

>> Xb=Xr*N(1:n,:)

and get Xb =


−0.2684 0.5936 −0.4116
−0.2684 0.5936 −0.4116
4.1648 −2.1798 −4.8176
−1.0047 0.5700 −0.5190
−1.0047 0.5700 −0.5190

.

Since Xnr ⊂ Xo, X̄C = ∅.
Finally, we calculate X̄D as the intersection of Xnr and Xo with the com-

mands:
>> N=null([Xnr -Xo])

>> [m,n]=size(Xnr)

>> Xd=Xnr*N(1:n,:)

We get Xd =
[

0.7064 −0.7064 0 0 0
]T

(in fact, XD = Xnr).
We can thus define the state transformation matrix T as T=[Xa Xb Xd]

and obtain the Kalman decomposition (we report the exact output of the
MATLABr procedure):

Ã =


−1.0000 11.4958 −6.7769 −9.6240 −1.0799

−0.0000 −5.7606 4.8221 −0.1974 1.7245
−0.0000 −6.3240 5.3374 0.8976 −0.5861
−0.0000 −4.7122 3.1111 2.4232 1.4628

0.0000 0.0000 −0.0000 −0.0000 −3.0000

 ; B̃ =


0.0000

0.0636
1.2236
−0.7062

0.0000


C̃ =

[
0.0000 1.6187 0.1474 −6.6788 −0.0000

]
1.3.2 Exercise 3.2

Exercise: Calculate the Kalman decomposition for the system with state-
space matrices:
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A =


−2 0 0 0 0
1 0 0 0 0
1 −1 3 0 0
−2 1 −1 −1 0
−4 1 2 −1 −2

 ; B = CT =


1
1
1
1
1



Solution: Following the same approach of the exercise previously discussed or
using the MATLABr command minreal (as discussed in MATLABr exercise
3.1 reported in the textbook), we get the following Kalman decomposition (we
report the exact output of the MATLABr procedure):

Ã =


−0.8507 −2.8620 2.9046 −1.2457 −0.0000
1.0153 −0.3045 2.8071 −0.5976 −0.0000
0.3160 2.4929 0.8342 1.2658 −0.0000
−0.3077 −1.4424 0.9940 −0.6791 −0.0000

0.9304 2.3019 0.5671 1.0070 −1.0000

 ; B̃ =


0.5513
−0.4312
−1.1159
1.8069

0.0000


C̃ =

[
0.5513 −0.4312 −1.1159 1.8069 0.0000

]
which shows that the system has a fourth-order controllable and observable
part and a first-order controllable and unobservable part.

1.3.3 Exercise 3.3

Exercise: Calculate the Kalman decomposition for the system with state-
space matrices:

A =


−1 0 0 0
0 −1 0 0
0 0 2 0
1 1 −3 2

 ; B =


0
0
1
0

 ; C =
[

0 1 1 0
]

Solution: By applying the procedure discussed in exercise 3.1, we get:

XA = span


0
0
0
1

 ; X̄B = span


0
0
1
0

 ; X̄C = span


1
0
0
0

 ; X̄D = span


0
1
0
0


This leads to the following state transformation matrix:
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T =


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0


In this case, the Kalman decomposition is obtained by just a reordering of

the original state variables. It is:

Ã =


2 −3 1 1

0 2 0 0

0 0 −1 0

0 0 0 −1

 ; B̃ =


0
1

0

0


C̃ =

[
0 1 0 1

]
All the four parts (each of order 1) exist.

1.3.4 Exercise 3.4

Exercise: Calculate the Kalman decomposition for the system with state-
space matrices:

A =


−1 0 0 0
0 −2 0 0
0 0 3 0
0 0 0 2

 ; B =


1
0
1
0

 ; C =
[

1 1 1 1
]

Solution: The system is in diagonal form, from which it is immediate to
derive that the system is fully observable, but not fully controllable (the order
of the controllable part is 2).

We can apply the minreal command to obtain the Kalman decomposition.
In this case too, the Kalman decomposition is obtained by a reordering of the
original state variables:

Ã =


−1 0 0 0
0 3 0 0

0 0 −2 0
0 0 0 2

 ; B̃ =


1
1
0
0


C̃ =

[
1 1 1 1

]
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1.3.5 Exercise 3.5

Exercise: Calculate the Kalman decomposition for the system with state-
space matrices:

A =


−1 0 0 0
0 −2 0 0
0 0 3 0
0 0 0 2

 ; B =


1
1
1
1

 ; C =
[

0 1 0 1
]

Solution: This system too is in diagonal form. By applying the minreal

command, the following Kalman decomposition is obtained:

Ã =


−2 0 0 0
0 2 0 0

0 0 −1 0
0 0 0 3

 ; B̃ =


1
1

1
1

 ; C̃ =
[

1 1 0 0
]

Even in this case, the state transformation matrix T =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


represents a reordering of the original state variables.

1.3.6 Exercise 3.6

Exercise: Calculate the Kalman decomposition for the system with state-
space matrices:

A =


2 1 0 0
0 −1 0 0
0 0 1 1
1 0 −3 4

 ; B =


1
0
1
0

 ; C =
[

1 1 1 1
]

Solution: Use the MATLABr command minreal command to get the fol-
lowing Kalman decomposition:

Ã =


2 0 0 1
0 1 1 0
1 −3 4 0

0 0 0 −1

 ; B̃ =


1
1
0

0


C̃ =

[
1 1 1 1

]
The system is divided in two parts: a controllable and observable part of

order 3 and an uncontrollable and observable part of order 1.
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1.4 Solutions of exercises of Chapter 4

1.4.1 Exercise 4.1

Exercise: Calculate the singular value decomposition of

A =


0 1 0 0.3 −3
−1 −7 3 −7 −2
1 0.5 2 1 1
2 1 0 0 1



Solution: Using the MATLABr command svd (or equivalently sqrt(eig(A*A’))),
one gets: σ1 = 10.6665, σ2 = 3.5652, σ3 = 2.4450, σ4 = 1.6960.

1.4.2 Exercise 4.2

Exercise: Calculate the singular value decomposition of A =

 2− j j 1
−j 3j 1
7 1 6j

.

Solution: The fact that matrix A is complex does not change the way in which
singular values are computed. One can use either the MATLABr command
svd or sqrt(eig(A’*A)) to get σ1 = 9.5679, σ2 = 3.3196 and σ3 = 1.1981. In
fact, the MATLABr command A’ for a complex matrix returns the conjugate
transpose.

1.4.3 Exercise 4.3

Exercise: Calculate the condition number of matrix A =

 −1 0.5 3
0.1 7 1
3 −4 −5

.

Solution: The matrix is invertible. Since σ1 = 9.3438 and σ3 = 0.7104,
h = σ1/σ3 = 13.1530.
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1.4.4 Exercise 4.4

Exercise: Calculate the inverse of A =


2 0 2 2
2 5 −7 −11
0 −2 6 −7
0 2 −6 −7

.

Solution: We calculate the inverse of A, exploiting its singular value decom-
position with the MATLABr commands [U,S,V]=svd(A) and V*inv(S)*U’:

A−1 =


0.6667 −0.1667 0.0179 0.4345
−0.5000 0.5000 −0.0893 −0.8393
−0.1667 0.1667 0.0536 −0.3631
−0.0000 −0.0000 −0.0714 −0.0714


1.4.5 Exercise 4.5

Exercise: Calculate the eigenvalues of

A =


2.5000 −1.0000 −3.6416 −1.6416
−21.9282 2.0359 13.7439 6.2080
13.4641 −1.7679 −8.1927 −2.9248
−13.4641 1.7679 11.3343 6.0664


and verify that they satisfy equation (4.3).

Solution: The eigenvalues of A are λ1 = 0.5000 + 0.9999i, λ2 = 0.5000 −
0.9999i, λ3 = −1.7320 and λ4 = 3.1416, and in modulus: |λ1| = 1.1179,
|λ2| = 1.1179, |λ3| = 1.7320 and |λ4| = 3.1416. Since σ1 = 36.5160 and
σ4 = 0.0575, the eigenvalues of A satisfy equation (4.3).

1.5 Solutions of exercises of Chapter 5

1.5.1 Exercise 5.1

Exercise: Given the continuous-time LTI system with state matrices

A =

[
0 1
−3 −2

]
; B =

[
0
1

]
; C =

[
−1 1

]
calculate the gramians and study system controllability and observability.
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Solution: Let us consider Wo =

[
x y
y z

]
, where x, y and z indicate three

unknowns (recall that the gramian is symmetrical), and solve the Lyapunov
equation for the observability gramian:

[
0 −3
1 −2

] [
x y
y z

]
+

[
x y
y z

] [
0 1
−3 −2

]
= −

[
1 −1
−1 1

]

⇒
[
−3y −3z
x− 2y y − 2z

]
+

[
−3y x− 2y
−3z y − 2z

]
= −

[
1 −1
−1 1

]

⇒

 −6y = −1
−3z + x− 2y = 1
2y − 4z = −1

⇒Wo =

[
7
3

1
6

1
6

1
3

]
Since the gramian is positive definite, the system is observable.

Let us now indicate Wc =

[
x y
y z

]
and solve the Lyapunov equation for

the controllability gramian:[
0 1
−3 −2

] [
x y
y z

]
+

[
x y
y z

] [
0 −3
1 −2

]
= −

[
0 0
0 1

]

⇒

 2y = 0
z − 3x− 2y = 0
−6y − 4z = −1

⇒Wc =

[
1
12 0
0 1

4

]
Wc is positive definite and so the system is controllable.

1.5.2 Exercise 5.2

Exercise: Calculate analytically the singular values of the system with trans-
fer function G(s) = s+3

(s+1)(s+7) .

Solution: Consider G(s) = s+3
s2+8s+7 (which is stable, controllable and ob-

servable) and a minimal state-space realization of this transfer function given
by:

A =

[
0 1
−7 −8

]
; B =

[
0
1

]
; C =

[
3 1

]
Let us indicate Wo =

[
x y
y z

]
and solve the Lyapunov equation for the

observability gramian:
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[
0 −7
1 −8

] [
x y
y z

]
+

[
x y
y z

] [
0 1
−7 −8

]
= −

[
9 3
3 1

]

⇒
[
−7y −7z
x− 8y y − 8z

]
+

[
−7y x− 8y
−7z y − 8z

]
= −

[
9 3
3 1

]

⇒

 −14y = −9
−7z + x− 8y = −3
2y − 16z = −1

⇒Wo =

[
22
7

9
14

9
14

1
7

]

Let us now indicate Wc =

[
x y
y z

]
and solve the Lyapunov equation for

the controllability gramian:[
0 1
−7 −8

] [
x y
y z

]
+

[
x y
y z

] [
0 −7
1 −8

]
= −

[
0 0
0 1

]

⇒

 2y = 0
z − 7x− 8y = 0
−14y − 16z = −1

⇒Wc =

[
1

112 0
0 1

16

]

Thus, WcWo =

[
22
784

9
1568

9
224

1
112

]
. Finally, the singular values are calculated

as σi =
√
λi(WcWo). We get: σ1 = 0.1909 and σ2 = 0.0234.

1.5.3 Exercise 5.3

Exercise: Calculate analytically the singular values of the system with trans-

fer function G(s) = s2+1
s2+s+1 .

Solution: The system is stable and minimal. Therefore, we can consider a
minimal state-space realization of G(s) given by:

A =

[
0 1
−1 −1

]
; B =

[
0
1

]
; C =

[
0 −1

]
; D = 1

The singular values do not depend on D, since this matrix does not ap-
pear in the equations of the gramians. As in the previous exercise, let us in-

dicate Wo =

[
x y
y z

]
and solve the Lyapunov equation for the observability

gramian:[
0 −1
1 −1

] [
x y
y z

]
+

[
x y
y z

] [
0 1
−1 −1

]
= −

[
0 0
0 1

]
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⇒

 2y = 0
−z + x− y = 0
2y − 2z = −1

⇒Wo =

[
1
2 0
0 1

2

]

Let us now indicate Wc =

[
x y
y z

]
and solve the Lyapunov equation for

the controllability gramian:[
0 1
−1 −1

] [
x y
y z

]
+

[
x y
y z

] [
0 −1
1 −1

]
= −

[
0 0
0 1

]

⇒

 2y = 0
z − x− y = 0
−2y − 2z = −1

⇒Wc =

[
1
2 0
0 1

2

]
The system is open-loop balanced with singular values σ1 = σ2 = 1

2 .

1.5.4 Exercise 5.4

Exercise: Calculate the singular values of the system with transfer function
G(s) = −10 + 60s

s2+3s+2 .

Solution: The system is stable and minimal. Therefore, we can consider a
minimal state-space realization of G(s) given by:

A =

[
0 1
−2 −3

]
; B =

[
0
1

]
; C =

[
0 60

]
; D = −10

As in the previous exercise, let us indicate Wo =

[
x y
y z

]
and solve the

Lyapunov equation for the observability gramian:

[
0 −2
1 −3

] [
x y
y z

]
+

[
x y
y z

] [
0 1
−2 −3

]
= −

[
0 0
0 3600

]

⇒

 4y = 0
x− 3y − 2z = 0
2y − 6z = −3600

⇒Wo =

[
1200 0

0 600

]

Let us now indicate Wc =

[
x y
y z

]
and solve the Lyapunov equation for

the controllability gramian:[
0 1
−2 −3

] [
x y
y z

]
+

[
x y
y z

] [
0 −2
1 −3

]
= −

[
0 0
0 1

]
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⇒

 2y = 0
z − 2x− 3y = 0
−4y − 6z = −1

⇒Wc =

[
1
12 0
0 1

6

]
Note that the gramians are diagonal, but not equal each other, so the

system is not open-loop balanced. Since WcWo =

[
100 0
0 100

]
, the system

singular values are σ1 = σ2 = 10. In fact, this system (see Chapter 6 of the
textbook) is an all-pass system and σ1 = σ2 = |k| where k = −10 as it can be

immediately noticed if G(s) is rewritten as: G(s) = −10 (s−1)(s−2)
(s+1)(s+2) .

1.5.5 Exercise 5.5

Exercise: Calculate the open-loop balanced realization of system with state-
space matrices:

A =


−0.5 −1 0 0

1 −0.5 0 0
0 0 −3 0
0 0 0 −4

 ; B =


1
−1
−1
1

 ; C =
[

0 1 −1 1
]

Solution: The system is in Jordan form, from which it is immediate to de-
rive that it is i) stable; ii) controllable and iii) observable. We can thus use
the MATLABr command balreal to get the following open-loop balanced
realization:

Ā =


−0.2013 −0.7577 0.5968 0.04224
0.7577 −0.2968 1.57 0.07057
0.5968 −1.57 −3.994 −0.4918
0.04224 −0.07057 −0.4918 −3.508

 ; B̄ =


−0.5671
0.5013
0.9624
0.05952


C̄ =

[
−0.5671 −0.5013 0.9624 0.05952

]
; D̄ = 0

1.6 Solutions of exercises of Chapter 6
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1.6.1 Exercise 6.1

Exercise: Given the system with transfer function

G(s) = 1− 56s6 + 2676s4 + 8736s2 + 1600

(s+ 10)2(s+ 2)3(s+ 1)2

determine an open-loop balanced realization and a suitable reduced order
model.

Solution: It is immediate to verify that the system is stable and minimal. By
using the MATLABr command balreal, the open-loop balanced realization
can be calculated:

Ā =



−0.3859 −0.6288 −1.362 0.4492 3.747 0.4233 0.6692
−1.5 −2.937 −3.843 1.016 10.17 0.7449 −1.799
−1.397 −3.767 −4.931 2.825 13.46 1.022 2.183
0.501 1.605 0.5712 −0.5849 −6.447 0.1351 0.5077
0.7759 2.306 2.711 0.8786 −13.25 −0.3517 2.183
−0.02296 0.3594 0.4087 −0.6279 −1.994 −0.1038 6.373

2.325 10.06 8.518 −4.193 −19.73 −7.926 −5.806


;

B̄ =



−0.8785
−2.423
−3.14
1.082
5.148
0.4557
3.408


;

C̄ =
[

0.8785 2.423 3.14 −1.082 −5.148 −0.4557 −3.408
]

;

D̄ = 1

with system singular values σ1 = . . . = σ7 = 1. Since the system singular
values are all equal, an open-loop reduced order model cannot be obtained.

In fact, if we rewrite the transfer function as G(s) = (s−10)2(s−2)3(s−1)2

(s+10)2(s+2)3(s+1)2 , it

is immediate to verify that this system (see Chapter 6 of the textbook) is
all-pass.

1.6.2 Exercise 6.2

Exercise: Calculate a reduced order model of the system G(s) =

200 (s+10)(s2+s+1)
(s+5)3(s+4)(s+2)2 .



20Solutions Manual of Optimal and Robust Control: Advanced Topics with MATLABr

Solution: We have first to verify that the system is stable and minimal. After
this, the open-loop balanced realization can be calculated. It is given by:

Ā =


−0.7922 −3.456 0.02344 1.122 −0.9986 −0.1104

3.456 −1.611 0.08211 1.408 −2.172 −0.2168
0.02344 −0.08211 −0.001352 −1.116 0.08479 0.01083
−1.122 1.408 1.116 −1.701 4.737 0.3989
−0.9986 2.172 0.08479 −4.737 −9.828 −2.126
0.1104 −0.2168 −0.01083 0.3989 2.126 −9.067

 ;

B̄ =


−1.231
1.273

0.02146
−0.7294
−0.8026
0.08574

 ;

C̄ =
[
−1.231 −1.273 0.02146 0.7294 −0.8026 −0.08574

]
;

D̄ = 0

and the system singular values are σ1 = 0.9569, σ2 = 0.5033, σ3 = 0.1704,
σ4 = 0.1564, σ5 = 0.0328 and σ6 = 0.0004. They suggest to build a reduced
order model of order 4 (for instance with direct truncation). The transfer

function of this reduced order model is: G̃(s) = −0.6368s3+15.2s2+6.776s+16.47
s4+4.106s3+17.85s2+15.28s+17.61 .

1.6.3 Exercise 6.3

Exercise: Given the system G(s) = s+1
s4+4.3s3+7.92s2+7.24s+2.64 calculate the

reduced order models with direct truncation and singular perturbation ap-
proximation and compare the models obtained.

Solution: The transfer function can be rewritten as:

G(s) =
s+ 1

(s+ 1.2)(s+ 1.1)(s2 + 2s+ 2)

which clearly shows that the system is stable and minimal. The singular values
are σ1 = 0.2709, σ2 = 0.0932, σ3 = 0.0117, σ4 = 0.0001. Therefore, we can
consider reduced order models of order 2. With direct truncation, we get:
GDT (s) = −0.05094s+0.3114

s2+1.153s+0.876 . With singular perturbation approximation, we

get: GSP (s) = 0.02329s2−0.143s+0.4618
s2+1.723s+1.219 . The two models can be compared, for

instance, in terms of their step response (MATLABr command step).
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1.6.4 Exercise 6.4

Exercise: Given the continuous-time system with state-space matrices:

A =


−2 1 1 0
−3 −5 6 1
0 −1 −5 0
−4 −5 −7 −1

 ; B =


0
1
0
1

 ; C =
[

1 2 1 2
]

calculate the reduced order models with direct truncation and singular per-
turbation approximation and the error and compare the rise and settling time
of the reduced order models and original system.

Solution: It is a stable (λ1,2 = −4.5173± 3.2742i, λ3,4 = −1.9827± 0.3420i)
and minimal (both Mc and Mo have full rank) system. Therefore, we can
calculate the open-loop balanced realization and get the following singular
values: σ1 = 0.3420, σ2 = 0.0238, σ3 = 0.0160 and σ4 = 0.0006.

Since σ1 � σ2, we can consider reduced order models of order 1. We
get with direct truncation Gt(s) = 4.164

s+6.088 and with singular perturbation

approximation Gp(s) = 0.01442s+3.907
s+5.594 .

We calculate the error between approximated model and original model
as in MATLABr exercise 6.1 (MATLABr command normhinf). We get for
Gt(s) an error equal to Et = 0.0326 and for Gp(s) an error equal to Ep =
0.0460. Both satisfy equation (6.14), since 2(σ2 + σ3 + σ4) = 0.0806.

The rise time and the settling time can be calculated using the MATLABr

tool ltiview. They are reported in Table 1.6.4.

TABLE 1.1
Rise and settling time for original system and reduced order models of exercise
4.

rise time settling time
original system 0.4s 1.26s

Gt(s) 0.361s 0.643s
Gp(s) 0.393s 0.7s

1.6.5 Exercise 6.5

Exercise: Given system G(s) = s
s4+3s3+4.1s2+4.1s+0.2 , choose the order of the

reduced model to guarantee an error between nominal model and approxima-
tion not larger than 0.02.
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Solution: By using the MATLABr command ltiview, we can rewrite G(s)
as G(s) = s

(s+1.949)(s+0.05132)(s2+s+2) and observe that it is a stable and min-

imal system. It has singular values given by: σ1 = 0.2445, σ2 = 0.1475,
σ3 = 0.1122 and σ4 = 0.0152. Since 2σ4 > 0.02, the specific of an error
not larger than 0.02 cannot be satisfied.

1.6.6 Exercise 6.6

Exercise: Determine, if possible, the system with eigenvalues λ1 = −1, λ2 =
−2 and with singular values σ1 = 5 and σ2 = 2.

Solution: Consider the open-loop parameterization with three unknowns: b1,
b2 and s1s2 (which can be either +1 or −1). If s1s2 = 1, we get:

A1 =

[
− b21

10 − b1b27

− b1b27 − b
2
2

4

]
while if s1s2 = −1 we get:

A−1 =

[
− b21

10
b1b2

3

− b1b23 − b
2
2

4

]

The characteristic polynomial of A1 is ϕ1(λ) = λ2 +
(
b21
10 +

b22
4

)
λ +

b21b
2
2

(
1
40 −

1
49

)
, while that of of A−1 is ϕ−1(λ) = λ2 +

(
b21
10 +

b22
4

)
λ +

b21b
2
2

(
1
40 + 1

9

)
. We equate the two polynomials with ϕ(λ) = λ2 + 3λ + 2, so

that, if s1s2 = 1, we have: {
b21
10 +

b22
4 = 3

b21b
2
2

(
1
40 −

1
49

)
= 2

while, if s1s2 = −1, we have:{
b21
10 +

b22
4 = 3

b21b
2
2

(
1
40 + 1

9

)
= 2

If s1s2 = 1 the system has no real solution, while if s1s2 = −1 we get
two solutions: b1 = 1.1309 and b2 = 3.3895 or b1 = 5.3592 and b2 = 0.7153.
Therefore, we have two systems that satisfy the given constraints:

A =

[
−0.1279 1.2777
−1.2777 −2.8721

]
; B =

[
1.1309
3.3895

]
; C =

[
1.1309 −3.3895

]
and
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FIGURE 1.2
Circuit for exercise 6.8.

A =

[
−2.8721 1.2777
−1.2777 −0.1279

]
; B =

[
5.3592
0.7153

]
; C =

[
5.3592 −0.7153

]

1.6.7 Exercise 6.7

Exercise: Calculate analytically the Cauchy index of the system G(s) =
s+1

s(s2+s+1) .

Solution: By applying the Cauchy index definition (Definition 16 of the text-
book) we have to study G(σ) = σ+1

σ3+σ2+σ , which has one jump from −∞ to
+∞, so Ic = 1. We can also calculate the index by calculating the Hankel
matrix.

H = MoMc =

 1 1 0
0 1 1
0 −1 0

 0 0 1
0 1 −1
1 −1 0

 =

 0 1 0
1 0 −1
0 −1 1


The eigenvalues of H are λ1 = −1.2470, λ2 = 0.4450 and λ3 = 1.8019.

Thus, Ic = 1. Also note that, since A has one zero eigenvalue, it is not possible
to compute Wco.

1.6.8 Exercise 6.8

Exercise: Given the system in Figure 1.2 with R1 = R2 = 1, C1 = 1 and
C2 = 1

2 determine the transfer function and the Cauchy index.
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Solution: The transfer function of the system is the series of two impedances,
each given by the parallel of a resistor with a capacitor:

G(s) =
R1

sC1R1 + 1
+

R2

sC2R2 + 1
=

3s+ 4

s2 + 3s+ 2

It is a relaxation system, so Ic = n = 2 as it can be verified by calculating
the Hankel matrix:

H = MoMc =

[
4 3
−6 −5

] [
0 1
1 −3

]
=

[
3 −5
−5 9

]
which has both eigenvalues positive (λ1 = 0.1690, λ2 = 11.8310).

1.6.9 Exercise 6.9

Exercise: Write down an example of a relaxation system and verify the value
of the Cauchy index.

Solution: Let us consider for instance a third-order system given by:

G(s) =
1

s+ 2
+

1

s+ 5
+

1

s+ 7
=

3s2 + 28s+ 59

s3 + 14s2 + 59s+ 70

.
To verify that Ic = 3, we determine the minimal realization:

A =

 0 1 0
0 0 1
−70 −59 −14

 ; B =

 0
0
1

 ; C =
[

59 28 3
]

and compute the cross-gramian Wco from the Lyapunov equation (we generi-

cally indicate the unknowns as Wco =

 w1 w2 w3

w4 w5 w6

w7 w8 w9

):

 0 1 0
0 0 1
−70 −59 −14

 w1 w2 w3

w4 w5 w6

w7 w8 w9

+

 w1 w2 w3

w4 w5 w6

w7 w8 w9

 0 1 0
0 0 1
−70 −59 −14

 =

= −

 0 0 0
0 0 0
59 28 3


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⇒



−70w3 + w4 = 0
w1 − 59w3 + w5 = 0
w2 − 14w3 + w6 = 0
−70w6 + w7 = 0
w4 − 59w6 + w8 = 0
w5 − 14w6 + w9 = 0
−70w1 − 59w4 − 14w7 − 70w9 = −59
−70w2 − 59w5 + w7 − 14w8 − 59w9 = −28
−70w3 − 59w6 + w8 − 28w9 = −3

⇒Wco =

 0.1622 0.0630 0.0058
0.4074 0.1812 0.0185
1.2963 0.6852 0.0780


Since the eigenvalues of Wco are λ1 = 0.3954, λ2 = 0.0258 and λ3 = 0.0003,

then Ic = 3.

1.6.10 Exercise 6.10

Exercise: Calculate the singular values of system G(z) = 3+2z+5z2+6z3

z4 .

Solution: G(z) is a FIR filter. The Hankel matrix is H =


6 5 2 3
5 2 3 0
2 3 0 0
3 0 0 0

.

The eigenvalues of H are λ1 = −2.9670, λ2 = −1.5766, λ3 = 1.5793 and λ4 =
10.9643 and, thus, σ1 = 10.9643, σ2 = 2.9670, σ3 = 1.5793 and σ4 = 1.5766.

1.6.11 Exercise 6.11

Exercise: Consider an open-loop balanced representation of a discrete-time
system. Derive a model of order r < n and verify that its singular values do
not coincide with the first r singular values of the original system.

Solution: Let us consider the system in Exercise 6.10 which admits the fol-
lowing state-space representation

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ; B =


0
0
0
1

 ; C =
[

3 2 5 6
]
. (1.1)

Let us calculate an open-loop balance representation using MATLAB with
the command
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[Ab,Bb,Cb,S,T]=dbalreal(A,B,C);

The singular values are those reported in the previous example, i.e. σ1 =
10.964, σ2 = 2.967, σ3 = 1.579, and σ4 = 1.577. We fix r = 2 and determine
a reduced order model through direct truncation with the commands

Abr=Ab(1:2,1:2);

Bbr=Bb(1:2,1:2);

Cbr=Cb(1:2,1:2);

The singular values of the reduced order model are calculated using the
command

[Abrb,Bbrb,Cbrb,S1,Tr]=dbalreal(Abr,Bbr,Cbr);

as σ̄1 = 10.777 < σ1 and σ̄2 = 2.479 < σ2.

1.7 Solutions of exercises of Chapter 7

1.7.1 Exercise 7.1

Exercise: Given the system G(s) = s+2
s2+4s+6 calculate the optimal controller

that minimizes the index defined by Q = CTC in these three cases: r = r1 = 1,
r = r2 = 0.01 and r = r3 = 20. Verify the performance of the control law
obtained.

Solution: We consider a minimal realization of the system in canonical control
form:

A =

[
0 1
−6 −4

]
; B =

[
0
1

]
; C =

[
2 1

]
and calculate the linear quadratic regulator through the MATLABr com-
mand [K,E,L]=lqr(A,B,C’*C,r) with different values of r. The results are
summarized in Table 1.7.1 where the optimal eigenvalues are also compared
with those obtained by the approximated Letov formulas discussed in Sec. 7.8
of the textbook.

1.7.2 Exercise 7.2

Exercise: Given the system with transfer function G(s) = 2s−1
s(s−1) calculate

the optimal eigenvalues with respect to r, if the index to optimize is J =
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TABLE 1.2
Linear quadratic regulator and optimal eigenvalues for exercise 1.

K optimal eigenvalues appr. opt. eigenvalues
r = r1 [ 0.3246 0.2011 ] λ1,2 = −2.1005± 1.3829i −
r = r2 [ 14.8806 8.0732 ] λ1 = −9.9812, λ2 = −2.0920 λ1 = −10, λ2 = −2
r = r3 [ 0.0166 0.0104 ] λ1,2 = −2.0052± 1.4127i λ1,2 = −2± 1.4142i

∫∞
0

(yTy + uT ru)dt. Then calculate the characteristic values of the system

fixing r so that the optimal eigenvalue is λ = −
√

2.

Solution: The system is minimal and we can apply the Letov theorem so that
the optimal poles are the negative real part solutions of:

s4 + s2

(
−1− 4

r

)
+

1

r
= 0

which yields:

s1,2 = −

√√√√1 + 4
r ±

√
1 + 16

r2 + 4
r

2

To find that value of r so that one of the optimal poles is −
√

2, we can
equate the polynomial s4 + s2

(
−1− 4

r

)
+ 1

r with (s2 − 2)(s2 − b2) where b is
a parameter. This yields r = 7

2 .

1.7.3 Exercise 7.3

Exercise: Design the linear quadratic regulator (r = 2) for the system G(s) =
s2+2s+1

s3−s2+5s+3 and calculate the optimal eigenvalues.

Solution: We consider a minimal realization of the system in canonical control
form:

A =

 0 1 0
0 0 1
−3 −5 1

 ; B =

 0
0
1

 ; C =
[

1 2 1
]

and calculate the linear quadratic regulator through the MATLABr command
[K,E,L]=lqr(A,B,C’*C,2). We get: K =

[
0.0822 1.7706 3.2452

]
and

λ1,2 = −0.8600± 2.2644i and λ3 = −0.5253.
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1.7.4 Exercise 7.4

Exercise: Given the system with state-space matrices:

A =

[
0 1
3 −2

]
; B =

[
0
1

]
; C =

[
−1 1

]
design the linear quadratic regulator with Q = CTC and r = 5.

Solution: The system is controllable since it is in canonical control form. We
can use the MATLABr command K=lqr(A,B,C’*C,5) to calculate the linear
quadratic regulator. We get K =

[
6.0332 2.0332

]
.

1.7.5 Exercise 7.5

Exercise: Given the system with state-space matrices:

A =

 0 1 0
−1 0 0
0 0 3

 ; B =

 0
1
−1

 ; C =
[

1 1 1
]

design the linear quadratic regulator with Q = I and r = 7.

Solution: First, the controllability matrix has to be calculated (with the
MATLABr command ctrb(A,B)), since it is full rank, the system is control-
lable. We can then use the MATLABr command K=lqr(A,B,eye(3),7) to
get: K =

[
0.2623 −0.4658 −7.0161

]
.

1.8 Solutions of exercises of Chapter 8

1.8.1 Exercise 8.1

Exercise: Given matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−3 −8 −8 −5

 (1.2)
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determine ‖∆A‖max so that A+∆A is a matrix with eigenvalues with negative
real part.

Solution: Observe that A has all eigenvalues with negative real part. So,
we can apply equation (8.10) of the textbook. To calculate ‖(sI−A)−1‖∞ in
MATLABr, we determine the H∞ norm of a fictitious system with B = C = I.
We get: ‖(sI − A)−1‖∞ = 4.5463. Thus ‖∆A‖max = 1/4.5463 = 0.22. As an
example consider a perturbation ‖∆A‖ = 0.20I and note that A + ∆A has all
eigenvalues with negative real part.

1.8.2 Exercise 8.2

Exercise: Given the system with transfer function

G(s) =
1

(1− s)(s+ 2)2(s+ 0.5)2

determine a balanced closed-loop realization and a suitable reduced order
model. Then verify that the model is closed-loop stable.

Solution: We consider a minimal realization of G(s):

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 4 3.25 −3.25 −4

 ; B =


0
0
0
0
1

 ; C =
[
−1 0 0 0 0

]

and use the command balrealmcc introduced in Section 8.4 of the textbook.
The following characteristic values are obtained: µ1 = 47.0192, µ2 = 0.4970,
µ3 = 0.0971, µ4 = 0.0072, µ5 = 0.0002. We consider a second-order (r = 2)
reduced model (calculated through direct truncation). Its transfer function is:
G(s) = 0.0934s−0.1466

s2−0.8983s−0.1016 . We then verify that the closed-loop system is stable

by imposing P̄2 = 0 and calculating the closed-loop eigenvalues (see also
MATLABr exercise 8.2 of the textbook). They are λ1,2 = −2.0165± 0.1153i,
λ3,4 = −0.5876± 0.2284i and λ5 = −0.8628 and so the closed-loop system is
stable.

1.8.3 Exercise 8.3

Exercise: Calculate the characteristic values for the system with transfer
function G(s) = 2s

s2+1 .
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Solution: We consider a minimal realization of G(s):

A =

[
0 1
−1 0

]
; B =

[
0
1

]
; C =

[
0 2

]
and solve the CARE and FARE equations. This yields:

P =

[
2 0
0 2

]
; Π =

[
1/2 0
0 1/2

]
;

Since PΠ = I, the characteristic values are µ1 = µ2 = 1.

1.8.4 Exercise 8.4

Exercise: Calculate the closed-loop balanced realization for the system with
transfer function G(s) = s+1

s5+7s2+6s+5 . Design a reduced order regulator and
observer making sure that the closed-loop system is asymptotically stable.

Solution: First of all, we consider a minimal realization of G(s):

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−5 −6 −7 0 0

 ; B =


0
0
0
0
1

 ; C =
[

1 1 0 0 0
]

and use the command balrealmcc introduced in Section 8.4 of the textbook
to find the closed-loop balanced realization and calculate the system char-
acteristic values: µ1 = 126.9094, µ2 = 41.4091, µ3 = 0.1344, µ4 = 0.0496
and µ5 = 0.0016. We then calculate the right hand term of equation (8.14).
Since f(Ac) = 1/8.64 and ‖B̃B̃T ‖ = 0.2657, r has to be selected such that
µr+1 ≤ 0.4361. Thus, we can choose r = 2 and obtain a second-order reduced
model with direct truncation. Finally, we can verify that the closed-loop sys-
tem with the reduced order controller is stable (see also MATLABr exercise
8.2 of the textbook) by calculating the closed-loop eigenvalues which are all
with negative real part: λ1,2 = −1.2618 ± 1.6939i, λ3,4 = −0.4008 ± 0.6989i
and λ5 = −1.7371.

1.8.5 Exercise 8.5

Exercise: Given the system with transfer function G(s) = s
s2+1 + s2+1

s(s2+2)

calculate the characteristic values and synthesize the system with circuit com-
ponents.
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FIGURE 1.3
Circuit synthesizing G(s) = s

s2+1 + s2+1
s(s2+2) .

Solution: G(s) can be rewritten as G(s) = 2s4+4s2+1
s5+3s3+2s , from which a minimal

realization is derived:

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 −2 0 −3 0

 ; B =


0
0
0
0
1

 ; C =
[

1 0 4 0 2
]

We now solve the CARE and FARE equations:

P =


2 0 3 0 1
0 5 0 3 0
3 0 9 0 4
0 3 0 2 0
1 0 4 0 2

 ; Π =


2 0 2 0 3
0 2 0 −3 0
−2 0 3 0 −5
0 −3 0 5 0
3 0 −5 0 9

 ;

Since PΠ = I, the characteristic values are µ1 = . . . = µ5 = 1. In fact, the
system is a loss-less one, being given by the series of two loss-less systems.

We synthesize the system by considering G(s) = I(s)
V (s) and implementing

the parallel of two circuital blocks, the first synthesizing I1(s)
V (s) = s

s2+1 and

the second I2(s)
V (s) = s2+1

s(s2+2) . The circuit is shown in Figure 1.3. The transfer

function, given by I(s)
V (s) = sC1

1+s2C1L1
+ 1+s2C2L2+s2C2L3

sL3(1+s2C2L2) , matches G(s) if C1 =

L1 = 1, C2 = 1/4, L2 = L3 = 2.
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FIGURE 1.4
Block scheme for exercise 8.6.

1.8.6 Exercise 8.6

Exercise: Given the system with transfer function G(s) = 1
s−1 calculate

the linear state regulator, optimal observer and the compensator C(s) (see
Figure 1.4), using the CARE and FARE equations.

Solution: Consider a minimal realization of G(s): A = B = C = 1. The
CARE is: 2p − p2 + 1 = 0 and so P = 1 +

√
2. The FARE is exactly the

same equations and so Π = 1 +
√

2. Since B = C = 1, K = 1 +
√

2 (linear
state regulator) and H = 1 +

√
2 (optimal observer). We now calculate C(s)

which is given by C(s) = K(sI−A)−1H = (1+
√

2)2

s+1+2
√

2
. Finally, we calculate the

closed-loop transfer function W (s) = G(s)
1+C(s)G(s) = s+1+2

√
2

(s+
√

2)2
. Note that the

closed-loop poles are those of the optimal regulator and optimal observer (in
this case they coincide).

1.8.7 Exercise 8.7

Exercise: Calculate, if possible, the system that has characteristic values
ρ1 = 5 e ρ2 = 1 and eigenvalues λ1 = −5 and λ2 = −1.

Solution: The closed-loop parameterization for a SISO system is given by:

aii =
µ2
i − 1

2µi
b2i

aij =
µj(1 + µ2

i )− sisjµi(1 + µ2
j )

µ2
i − µ2

j

bibj

with bi = sici.
Let us consider two different cases: s1s2 = 1 and s1s2 = −1.
In the first case, we get:
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A1 =

[
2.4b2i

2
3b1b2

2
3b1b2 0

]
while for s1s2 = −1 we get:

A−1 =

[
2.4b2i

3
2b1b2

− 3
2b1b2 0

]
In both cases (as it is evident from the characteristic polynomial, ϕ1(λ) =

λ2 − 2.4b21 − 4
9b

2
1b

2
2 or ϕ−1(λ) = λ2 − 2.4b21 + 9

4b
2
1b

2
2) the system is unstable for

each value of b1 and b2 and, thus, it cannot have λ1 = −5 and λ2 = −1.

1.8.8 Exercise 8.8

Exercise: Verify that the characteristic values of an all-pass system are all
equal to k.

Solution: Consider for instance G(s) = 2 (1−s)(5−s)
(1+s)(5+s) = 2− 24

s2+6s+5 . Consider

now a minimal realization of G(s):

A =

[
0 1
−5 −6

]
; B =

[
0
1

]
; C =

[
0 −24

]
and solve the CARE and FARE equations for not-strictly proper systems
(equations (B.5) and (B.6)). We get:

P =

[
240 0
0 48

]
; Π =

[
1/60 0

0 1/12

]
;

and so µ1 = µ2 = 2.

1.8.9 Exercise 8.9

Exercise: Design a reduced order model for system G(s) = s+1
s3+5s2+7s−2 .

Solution: Consider a minimal realization of G(s):

A =

 0 1 0
0 0 1
2 −7 −5

 ; B =

 0
0
1

 ; C =
[

1 1 0
]

and solve the CARE and FARE equations. Then, compute the characteristic
values as µi =

√
λi(ΠP). One gets: µ1 = 3.9444, µ2 = 0.0309, and µ3 =

0.0144. Consider thus a first-order reduced model (obtained for instance with
direct truncation) and verify (following the procedure of MATLABr exercise
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8.2 of the textbook) that the closed-loop system is stable. In fact, the closed-
loop eigenvalues with the reduced order approximation are: λ1 = −0.2691,
λ2,3 = −2.6238± 1.1960i.

1.8.10 Exercise 8.10

Exercise: Given the system

G(s) =
1

(1− s) (s+ 2)
2

(s+ 0.5)
2

determine a closed-loop balanced realization and a reduced order model. Verify
then that the reduced order model is stable in closed-loop.

Solution: Consider a minimal realization of G(s):

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 4 3.25 −3.25 −4

 ; B =


0
0
0
0
1

 ; C =
[
−1 0 0 0 0

]

and solve the CARE and FARE equations. Then, compute the characteristic
values as µi =

√
λi(ΠP). One gets: µ1 = 47.019, µ2 = 0.4970, µ3 = 0.097,

µ4 = 0.007 and µ5 = 0.0002. Consider thus a first-order reduced model and
calculate the closed-loop eigenvalues with the reduced order approximation of
the gain vector which are λ1 = −2.1073, λ2 = −1.8383, λ3 = −1.1593, and
λ4,5 = −0.4493± 0.4407j. Hence the closed-loop system is stable.

1.9 Solutions of exercises of Chapter 9

1.9.1 Exercise 9.1

Exercise: Given the continuous-time system with transfer function G(s) =
α

s3+s2+4s+4 calculate for which values of α the system is bounded-real.

Solution: G(s) can be rewritten as G(s) = α
(s+1)(s2+4) which clearly shows
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that G(s) has a pair of imaginary poles. Therefore, the system is not asymp-
totically stable. There are no values of α for which the system is bounded-real.

1.9.2 Exercise 9.2

Exercise: Given the continuous-time system with transfer function G(s) =
4

s2+αs+4 calculate for which values of α the system is bounded-real.

Solution: The system is second-order. Recall that a second-order system

written as G(s) =
ω2
n

s2+2ξωns+ω2
n

has a resonance peak equal to Mr = 1

2ξ
√

1−ξ2

for 0 < ξ < 1√
2
. Since in our case α = 4ξ, we can conclude that G(s) is

bounded real if α ≥ 2
√

2.

1.9.3 Exercise 9.3

Exercise: Given the continuous-time system with state-space matrices:

A =

 0 1 0
0 0 1
−5 −3 −2

 ; B =

 0
0
α

 C =
[

1 0 0
]

calculate for which values of α the system is bounded-real.

Solution: The system is in control canonical form. Its transfer function is
G(s) = α

s3+2s2+3s+5 = α
(s+1.844)(s2+0.1563s+2.712) . The system is asymptotically

stable. Consider G(s)/α. The maximum of the Bode magnitude plot of system
G(s)/α occurs at ω = 1.64rad/s and is equal to 1.575. Therefore, ||G(s)||∞ =
1.575α and so G(s) is bounded real if |α| ≤ 1/1.575.

1.9.4 Exercise 9.4

Exercise: Given the continuous-time system with state-space matrices:

A =

 −1 0 0
0 −2 0
0 0 −0.5

 ; B = CT =

 α
α
α


calculate for which values of α the system is strictly bounded-real.

Solution: This is a stable system in diagonal form. Its transfer function is
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FIGURE 1.5
Block scheme for exercise 9.5.

G(s) = α
s+1 + α

s+2 + α
s+0.5 , which can be rewritten asG(s) = α 3s2+7s+3.5

s3+3.5s2+3.5s+1 or

G(s) = α 3(s+1.608)(s+0.7257)
(s+2)(s+1)(s+0.5) . Consider the system G(s)/α. Its Bode magnitude

plot has a maximum (equal to 3.5) for ω → 0. Thus, ||G(s)||∞ = 3.5α and so
G(s) is bounded real if |α| ≤ 1/3.5.

1.9.5 Exercise 9.5

Exercise: For the feedback system shown in Figure 1.5 with G(s) = 1
s2 prove,

if possible, that there is a stable first order compensator which makes the
system closed-loop passive. Note: do not make any cancellations.

Solution: Given a generic first-order C(s) = s+α
s+β , the closed-loop transfer

function is W (s) = G(s)
1+C(s)G(s) = s+β

s3+βs2+s+α . Since the relative degree of

W (s) is 2, the system cannot be passive.

1.9.6 Exercise 9.6

Exercise: Given the system with transfer functionG(s) = s+1
(s+2)(s+3) calculate

the Cauchy index of the system with two different analytical methods. Then
calculate the energy associated with the impulse response. Finally, using the
bounded-real lemma, verify analytically if G(s) is bounded-real.

Solution: Let us rewrite G(s) as G(s) = −1
s+2 + 2

s+3 . Thus, since the two
residuals have opposite signs, Ic = 0.

Let us now consider a minimal realization of the system given by:

A =

[
0 1
−6 −5

]
; B =

[
0
1

]
; C =

[
1 1

]
and calculate
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Mc =

[
0 1
1 −5

]
; Mo =

[
1 1
−6 −4

]
; H = MoMc =

[
1 −4
−4 14

]
;

Since the eigenvalues of H are λ1 = −0.1322 and λ2 = 15.1322, then Ic = 0.
The energy associated to the impulse response is calculated as E =

BTW2
oB and is E = 0.1167.

To prove that the system is bounded-real, we calculate the Hamiltonian
matrix as in equation (10.32) of the textbook:

H =


0 1 0 0
−6 −5 0 1
−1 −1 0 6
−1 −1 −1 5


The characteristic polynomial of H is ϕ(λ4) = λ4− 12λ2 + 35, whose roots

are λ1,2 = ±
√

7 and λ3,4 = ±
√

5.

1.9.7 Exercise 9.7

Exercise: Determine for which values of α the system with transfer function
G(s) = α

2s3+s2+4s+5 is bounded-real using two different methods.

Solution: Rewrite G(s) as G(s) = 0.5
(s+1)(s2−0.5s+2.5) and observe that the

system is not asymptotically stable. Thus, it is not bounded-real.

1.9.8 Exercise 9.8

Exercise: Given the system with transfer function G(s) = s(s2+2)
(s2+1)(s2+4) , pro-

pose, if possible, a passive electric circuit realization.

Solution: Note preliminarily that G(s) is lossless. Consider the system in

Figure 9.7(b) of the textbook and calculate the transfer function F (s) = I(s)
V (s) .

This is given by:

F (s) =
sC1(1 + s2L2C2 + s2L1C2)

s4C1C2L1L2 + s2(C1L1 + C2L2 + C2L1) + 1

Let us rewrite G(s) as G(s) =
s 1
2 ( s

2

2 +1)

(s2+1)( s
2

4 +1)
and equate G(s) with F (s) to

get: C1 = 1
2 , C2 = 1

9 , L1 = 3
2 and L2 = 3.
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1.9.9 Exercise 9.9

Exercise: Given the system G(s) = 1
(s+1)2 determine if there is an R such that

the optimal closed-loop system (with functional J =
∫∞

0
(yT y + uTRu)dt) is

passive.

Solution: Recall that the state feedback does not change the zeros of the
system, i.e., the closed-loop system has the same zeros of the open-loop system.
Therefore, the closed-loop systems will have a numerator of degree zero, while
a denominator of degree two. Therefore, the closed-loop system will never be
passive, since the difference of the degrees is greater than one.

1.9.10 Exercise 9.10

Exercise: Write down an example of a third-order lossless system and verify
that its characteristic values are equal to one.

Solution: Consider for instance G(s) = s2+1
s3+4s . To verify that the character-

istic values are all equal to one, consider a minimal realization given by:

A =

 0 1 0
0 0 1
0 −4 0

 ; B =

 0
0
1

 ; C =
[

1 0 1
]

and solve the CARE and FARE. We get:

P =

 4 0 1
0 3 0
1 0 1

 ; Π =

 1/3 0 −1/3
0 1/3 0
−1/3 0 4/3


Since PΠ = I, the system has all characteristic values equal to one.

1.9.11 Exercise 9.11

Exercise: Determine for which values of z1 and p1 the continuous-time system
with transfer function G(s) = s+z1

s2(s+p1) is negative-imaginary.

Solution: SinceG(s) has two poles at the origin, we should consider Definition
25 of Chapter 9. Condition 1) requires that there are no poles in the open right
half of the complex plane, from which we derive that p1 must be positive, i.e.,
p1 > 0. Considering condition 4), then lim

s→0
s2G(s) = z1

p1
must be positive, and

thus z1 > 0. Finally, to meet condition 2), we must have that:
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j(G(jω)−G(−jω)) =
2(p1 − z1)

ω(ω2 + p2
1)
> 0

that yields: 0 < z1 < p1.

1.9.12 Exercise 9.12

Exercise: Given the system in positive feedback configuration (as in Figure
1.6) with G1(s) = 40

s+40 and G(s) = 5
s2+5s+α , find for which values of α > 0

the closed-loop system is stable.

FIGURE 1.6
Positive-feedback configuration with negative-imaginary G1(s) and G2(s).

Solution: Since G1(s) is negative-imaginary and G2(s) is so for α > 0, we can
leverage the results of Theorem 27 of Chapter 9 to solve the problem. Notice
that G1(s) and G2(s) satisfy the hypotheses of the theorem, so we only need
to check that ρ(G1(0)G2(0)) < 1. This yields 5/α < 1 and so α > 5.

1.9.13 Exercise 9.13

Exercise: Consider the continuous-time system with transfer function G(s) =
1

s2+3s+4 . If possible, derive an electric circuit realization and a mechanical one.

Solution: For the mechanical realization, one can refer to Example 9.2 of
Chapter 9. Selecting M = 1, k = 4, b = 3, and y = x, we obtain a mechanical

system with a transfer function G(s) = Y (s)
U(s) = 1

Ms2+sb+k = 1
s2+3s+4 .

For the electric circuit realization, we can start with the configuration of
Figure 1.7 and determine Z(s) to meet the requirement of the problem. The
circuit has a transfer function equal to G(s) = 1

1+sCZ(s) . Therefore, Z(s) must

satisfy:
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FIGURE 1.7
Electrical circuit that can implement a negative-imaginary transfer function.

1 + sCZ(s) = s2 + 3s+ 4

and then

Z(s) =
s2 + 3s+ 4

sC
=

s

C
+

3

C
+

3

sC

which corresponds to the circuit of Figure 1.8 with an inductor L = 1
C , a

resistor R = 3
C and a capacitor C1 = C

3 . Here C (the value of the capacitor
where the output is measured) remains a free parameter.

FIGURE 1.8
Electrical circuit that can be modeled by G(s) = 1

s2+3s+4 selecting L = 1
C , a

resistor R = 3
C and a capacitor C1 = C

3 .
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1.10 Solutions of exercises of Chapter 10

1.10.1 Exercise 10.1

Exercise: Given the continuous-time system with transfer function G(s) =
7−s

s2+7s+10 , find F (s) such that G(s) + F (s) is positive-real.

Solution: The system G(s) = 7−s
s2+7s+10 is not positive-real. In fact, one has:

G(jω) =
7(10− ω2)− 7ω2

(10− ω2)2 + 49ω2
+ j

ω(ω2 − 10)− 49ω

(10− ω2)2 + 49ω2

such that the real part is not always positive for ω > 0. Now, notice that G(s)
may be rewritten as

G(s) =
3

s+ 2
− 4

s+ 5

Hence, if we consider for instance F (s) = 8
s+5 , then we will get

G(s) + F (s) =
3

s+ 2
+

4

s+ 5

that is positive-real, as it is a relaxation system.

1.10.2 Exercise 10.2

Exercise: Given the continuous-time system with transfer function G(s) =
7−s

s2+7s+10 , find F (s) such that G(s) + F (s) is negative-imaginary.

Solution: The system G(s) is not negative-imaginary, as the imaginary part
of G(jω) is given by:

GI(jω) =
ω3 − 59ω

(10− ω2)2 + 49ω2

a function which is not always negative for ω > 0.

Let us fix α = 2. We have then to study the function 4GI(jω)
ω +GI(jω)ω.

This study can be done numerically or analytically, finding that the maximum
of this function for ω > 0 is one. At this point we can select F (s) = k

s+2 with
k > 1. Let us select for instance k = 2 to obtain
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G(s) + F (s) =
s+ 17

s2 + 7s+ 10

This is a negative-imaginary function as it can be verified by the Nyquist
plot or by calculating its imaginary part:

GI(jω) + FI(jω) =
−ω3 − 109ω

(10− ω2)2 + 49ω2

1.10.3 Exercise 10.3

Exercise: Given a system G(s) = s
(s+5)2 , find a forward action F (s) such

that the system G(s) + F (s) is negative-imaginary. Use F (s) = F1(s) = k
s+2

and repeat the exercise with F (s) = F2(s) = k
s . Then, compare the results.

Solution: Let us first calculate G(jω):

G(jω) =
jω

(5− jω)2
= − 10ω2

(25 + ω2)2
+ j

ω(25− ω2)

(25 + ω2)2

from which it follows that GI(jω) = ω(25−ω2)
(25+ω2)2 .

If F (s) = F1(s) = k
s+2 is used, then the minimum value of k to obtain a

negative-imaginary system is given by:

k = max
ω>0

(4 + ω2)(25− ω2)

(25 + ω2)2
' 6.2

Otherwise, when F (s) = F2(s) = k
s is used, then the minimum value of k

is:

k = max
ω>0

ω2(25− ω2)

(25 + ω2)2
' 4.3

Notice that, in the second case, a lower gain is required, but an imaginary-
system with a pole in the origin (i.e., not asymptotically stable) is obtained.

1.10.4 Exercise 10.4

Exercise: Consider the system in Figure 1.9 with G1(s) = s−2
s2+2s+1 and

G2(s) = 1
s+5 . Find a transfer function F (s) such that the closed-loop sys-

tem is stable.

Solution: Since in Figure 1.9 the feedback is negative and G2(s) = 1
s+5 is
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FIGURE 1.9
Block scheme for exercise 10.4.

strictly positive-real, then we can select F (s) such thatG1(s)+F (s) is positive-
real and then obtain a stable closed-loop system in virtue of Theorem 22 of
Chapter 9.

Let us then consider G1(s) + F (s) and calculate its real part:

G1,R(jω) + FR(jω) =
kω2 + 4ω2 + k − 2

(1 + ω2)2

Selecting k > 2 guarantees that G1(s) +F (s) is positive-real and then the
closed-loop system is stable.

1.10.5 Exercise 10.5

Exercise: Consider the system in Figure 1.10 with G1(s) = s−2
s2+2s+1 and

G2(s) = 1
s+5 . Find a transfer function F (s) such that the closed-loop system

is stable.

Solution: In Figure 1.10 the feedback is positive, so (taking into account that
G2(s) = 1

s+5 is also strictly negative-imaginary) we can select F (s) such that
G1(s) + F (s) is positive-real and then check the condition on the static gain
ρ((G1(0) + F (s))G2(0)) < 1.

We have that G1,I(jω) = ω(5−ω2)
(1+ω2)2 . Considering F (s) = k

s+α , then

G1,I(jω) + FI(jω) = (5−ω2)(α2+ω2)
(1+ω2)2 . Now, setting for instance α = 2, this

function has a maximum equal to 20. So, k > 20. On the other hand, from the
condition on the static gain we derive that k < 14, thus α = 2 cannot be used.

Instead, if we select α = 1, the maximum of G1,I(jω)+FI(jω) = (5−ω2)(α2+ω2)
(1+ω2)2

is equal to 5. On the other hand, from the condition on the static gain one
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FIGURE 1.10
Block scheme for exercise 10.5.

has k < 7, such that the problem can be solved selecting F (s) = k
s+1 with

5 < k < 7.

1.11 Solutions of exercises of Chapter 11

1.11.1 Exercise 11.1

Exercise: Calculate analytically the H∞ norm for the system with transfer
function G(s) = 2s+1

s+2 .

Solution: The system G(s) can be written as G(s) = 2s+1
s+2 = 2(s+2)−3

s+2 =

2 − 3
s+2 . Hence, |G(jω)| = 2 − 3√

ω2+4
whose maximum value corresponds to

‖G(s)‖∞ = 2.

1.11.2 Exercise 11.2

Exercise: Given the continuous-time system with state-space matrices:

A = −1; B =
[

1 2
]

; C =

[
3
4

]
determine analytically the H∞ norm.
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Solution: The method based on the bounded-real lemma can be applied. The
Hamiltonian matrix associated to the Riccati equation is:

H =

[
−1 5

γ2

−25 1

]
whose characteristic polynomial is p(λ) = λ2 + 125

γ2 − 1. The H∞ norm can be

obtained solving 1− 125
γ2 = 0, hence γ =

√
125 ≈ 11.18.

1.11.3 Exercise 11.3

Exercise: Given the continuous-time system with state-space matrices:

A = −3; B =
[

1 3
]

; C =

[
6
9

]
determine analytically the H∞ norm.

Solution: The method based on the bounded-real lemma can be applied also
in this case. The Hamiltonian matrix associated to the Riccati equation is:

H =

[
−3 10

γ2

−117 3

]
whose characteristic polynomial is p(λ) = λ2 + 1170

γ2 − 9. The H∞ norm can

be obtained solving 9− 1170
γ2 = 0, hence γ =

√
1170

9 ≈ 11.40.

1.11.4 Exercise 11.4

Exercise: Given the system ẋ1 = x1 + u+ 2w
y = x1 + w
z = 2x1 + 2u

calculate analytically the compensator C(s) with the H∞ control technique.

Solution: The H∞ controller can be designed with the MATLABr function
hinfric through the following command:

>> [gopt,C] = hinfric(P,[1 1])

where P is the process to be controlled defined as a ltisys object. The con-
troller C(s) = −173.2 1

s+89.58 allows to obtain a performance ‖Tz∞w‖∞ < 4.02.
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1.11.5 Exercise 11.5

Exercise: Calculate the performance of the H∞ control for the system: ẋ = 2x+ 0.1w + u
z = 2x+ 0.7u
y = −x+ 2w

(1.3)

Solution: The H∞ controller can be designed with the MATLABr function
hinflmi through the following command:

>> [gopt,C] = hinflmi(P,[1 1])

where P is the process to be controlled defined as a ltisys object. The con-
troller C(s) = 26160 1

s+9159 allows to obtain a performance ‖Tz∞w‖∞ < 4.002.

1.12 Solutions of exercises of Chapter 12

1.12.1 Exercise 12.1

Exercise: Using LMI techniques, determine the H∞ norm of the system with
transfer function G(s) = s+1

(s+2)(s+3) .

Solution: Choosing the following state-space representation of G(s):

A =

[
0 1
−6 −5

]
; B =

[
0
1

]
; C =

[
1 1

]
the LMI problem for H∞ norm calculation can be written as:

P > 0[
ATP + PA + CTC PB

BTP 0

]
≤ α2

[
εI 0
0 I

]
which is a generalized eigenvalue minimization problem. The following
MATLABr code allows to define and solve the LMI problem and to derive
‖G(s)‖∞ =

√
α2:

>> setlmis([]);

>> P=lmivar(1,[2 1]);

>> lmiterm([-1 1 1 P],1,1);

>> lmiterm([2 1 1 P],A’,1,’s’);
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>> lmiterm([2 1 1 0],C’*C);

>> lmiterm([2 2 1 P],B’,1);

>> lmiterm([2 2 2 0],0);

>> lmiterm([-2 1 1 0],e*1);

>> lmiterm([-2 2 1 0],0);

>> lmiterm([-2 2 2 0],1);

>> hinfnormLMI=getlmis;

>> [tmin,xfeas]=gevp(hinfnormLMI,1);

where e = 0.001. The value of α2 is tmin = 0.0481. Hence ‖G(s)‖∞ = 0.2193.

1.12.2 Exercise 12.2

Exercise: Using LMI techniques, determine if the system with transfer func-
tion G(s) = 10 s+1

(s2+5s+10) is bounded-real or not.

Solution: Choosing the following state-space representation of G(s):

A =

[
0 1
−10 −5

]
; B =

[
0
1

]
; C =

[
10 10

]
the LMI problem for the bounded-real lemma can be written as:

P > 0[
ATP + PA + CTC PB

BTP −I

]
≤ 0

which is a linear objective minimization problem where the trace of the solu-
tion P has to be minimized. The following MATLABr code allows to define
the LMI problem, if the problem is feasible, then the system is bounded-real.

>> setlmis([]);

>> P=lmivar(1,[2 1]);

>> lmiterm([-1 1 1 P],1,1);

>> lmiterm([2 1 1 P],A’,1,’s’);

>> lmiterm([2 1 1 0],C’*C);

>> lmiterm([2 2 1 P],B’,1);

>> lmiterm([2 2 2 0],-1);

>> brlLMI=getlmis;

>> c=mat2dec(brlLMI,eye(2));

>> [copt,xopt]=mincx(brlLMI,c,[1e-5 0 0 0 0]);

The LMI problem is unfeasible and, hence, the systemG(s) is not bounded-
real. This result can be verified calculating the H∞ norm of G(s) with the
MATLABr command normhinf obtaining ‖G(s)‖∞ = 2.1021 > 1.
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1.12.3 Exercise 12.3

Exercise: Given the system:
ẋ = Ax + B1w + B2u
z∞ = C1x + D11w + D12u
z2 = C2x + D21w + D22u
y = C3x + D31w + D32u

with A =

[
0 1

0.2 −1

]
; B1 =

[
0
1

]
; B2 =

[
0
1

]
; C1 =

[
2 1

]
; C2 =[

0 0
]
; C3 =

[
1 0

]
; D11 = D12 = 0; D21 = 0; D22 = 1; D31 = 1 and

D32 = 0, design a multiobjective control and verify the obtained performance.
Consider then the objective ‖Tz∞w‖∞ ≤ 0.5 and ‖Tz2w‖2 ≤ 2.5. Is it possible
to design a controller satisfying the specifications?

Solution: The multiobjective controller can be designed using the MATLABr

function hinfmix:
>> [gopt,h2opt,K] = hinfmix(P,[1 1 1],[0 0 1 1]);

where P is the ltisys object defining the process to be controlled. The
multiobjective controller is K(s) = −2.19 s+1.42

s2+3.19s+3.91 with performances
‖Tz∞w‖∞ ≤ 0.78 and ‖Tz2w‖2 ≤ 1.26.

In order to impose an upper bound to ‖Tz∞w‖∞ and ‖Tz2w‖2, the following
MATLABr command can be used:

>> [gopt,h2opt,K] = hinfmix(P,[1 1 1],[0.5 2.5 1 1]);

obtaining a compensator K(s) = −3.13 s+1.495
s2+4.13s+5.48 whose performance sati-

fies the imposed constraints: ‖Tz∞w‖∞ ≤ 0.4991 and ‖Tz2w‖2 ≤ 1.49.

1.12.4 Exercise 12.4

Exercise: Calculate the compensator (regulator and observer) which stabi-
lizes the system

ẋ = Ax + Bu
y = Cx

with A =

 λ1 0 0
0 λ2 0
0 0 λ3

; B =

 b1,i
b2
b3

; C = BT ; λ1 = −1; λ2 = 1; λ3 = 5;

b1,1 = 4; b1,2 = −1; b2 = 1 and b3 = 1.

Solution: The simultaneous stabilization problem can be formulated in terms
of linear matrix inequalities and solved with the MATLABr function feasp

through the following commands:
>> setlmis([]);

>> P=lmivar(1,[3 1]);
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>> Q=lmivar(2,[1,3]);

>> lmiterm([-1 1 1 P],1,1);

>> lmiterm([2 1 1 P],A,1,’s’);

>> lmiterm([2 1 1 Q],B1,-1,’s’);

>> lmiterm([3 1 1 P],A,1,’s’);

>> lmiterm([3 1 1 Q],B2,-1,’s’);

>> simstab=getlmis;

>> [tmin,xfeas]=feasp(simstab);

>> Pvalue=dec2mat(simstab,xfeas,P);

>> Qvalue=dec2mat(simstab,xfeas,Q);

>> k=Qvalue*inv(Pvalue);

Since A is diagonal and B = CT, the observer gain are h = kT .

1.12.5 Exercise 12.5

Exercise: Using the LMI approach, find the control law that stabilizes simul-
taneously the two systems:

A1 =

 −2 0 0
0 1 0
0 0 5

; B1 =

 0
1
1


and

A2 =

 −5 0 0
0 −6 0
0 0 3

; B2 =

 0
1
3

.

Solution: The problem can be formulated in terms of linear matrix inequal-
ities and solved with the MATLABr function feasp through the following
commands:

>> setlmis([]);

>> P=lmivar(1,[3 1]);

>> Q=lmivar(2,[1,3]);

>> lmiterm([-1 1 1 P],1,1);

>> lmiterm([2 1 1 P],A1,1,’s’);

>> lmiterm([2 1 1 Q],B1,-1,’s’);

>> lmiterm([3 1 1 P],A2,1,’s’);

>> lmiterm([3 1 1 Q],B2,-1,’s’);

>> simstab=getlmis;

>> [tmin,xfeas]=feasp(simstab);

>> Pvalue=dec2mat(simstab,xfeas,P);

>> Qvalue=dec2mat(simstab,xfeas,Q);

>> k=Qvalue*inv(Pvalue);

To verify the obtained controller, it is sufficient to calculate the closed-loop
eigenvalues:

>> eigenv1=eig(A1-B1*k);

>> eigenv2=eig(A2-B2*k);
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1.13 Solutions of exercises of Chapter 13

1.13.1 Exercise 13.1

Exercise: Given the system G(s) = s+5
s2+2s+2 determine the class of stabilizing

compensators. Then determine a closed-loop compensator that assures zero
error of the unit step response.

Solution: The system G(s) has two stable poles, hence the class of stabilizing
compensators for stable plants can be used:

C(s) =
Q(s)

1−G(s)Q(s)

where Q(s) ∈ H∞ can be chosen according to specifications. In particular,
calculating the final value of the unit step response of the closed-loop system:

lim
t→∞

y(t) = lim
s→0

sF (s)
1

s
= Q(0)P (0) = 1

we derive that Q(0) = 1
P (0) = 2

5 is the only constrain for the parametric

function: Hence, we can select Q(s) = 2
5 .

1.13.2 Exercise 13.2

Exercise: Given the system G(s) = s+5
s2−2s+2 determine the class of stabilizing

compensators. Then determine a closed-loop compensator that assures zero
error of the unit step response.

Solution: The system G(s) has two unstable poles, hence the class of stabi-
lizing compensators for unstable plants can be used:

C(s) =
X(s) +M(s)Q(s)

Y (s)−N(s)Q(s)

where Q(s) ∈ H∞ can be chosen according to specifications, while N(s), M(s),
X(s), and Y (s) are a coprime factorization of G(s). We can select N(s) =
s+5

(s+1)2 and M(s) = s2−2s+2
(s+1)2 , and calculate X(s) and Y (s) in order to obtain

a coprime factorization. Assuming X(s) = k s+α
(s+1)2 and Y (s) = (s+β)(s+γ)

(s+1)2 , it

follows
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N(s)X(s) +M(S)Y (s) =

=
s4 + (β + γ − 2)s3 + δs2 + (2β + 2γ + 5k − 2βγ + kα)s+ 2βγ + 5kα

(s+ 1)4

with δ = (k − 2γ − 2β + βγ + 2). Equating coefficients of the numerator and
denominator polynomials, the four unknowns can be calculated as k = 4.08,
α = −1.12, β = 3 + 1.71j, and γ = 3− 1.71j.

In order to choose the parametric function Q(s), the final value of the unit
step response of the closed-loop system can be calculated:

lim
t→∞

y(t) = lim
s→0

sF (s)
1

s
= (X(0) +M(0)Q(0))N(0) = 1

Hence Q(0) = 1
M(0)N(0) −

X(0)
M(0) = 2.38 is the only constrain for the para-

metric function, which can be Q(s) = 2.38.

1.13.3 Exercise 13.3

Exercise: Given the system G(s) = 1
s−2 determine the class of the stable

and stabilizing compensators. Then determine a closed-loop compensator that
assures a pole in p = −5.

Solution: The system G(s) satisfies the parity interlacing property, hence it
can be stabilized with a stable compensator. The class of stable and stabilizing
compensators is:

C(s) =
U(s)−M(s)

N(s)

where U(s) is a unit function which can be chosen according to specifications,
whileN(s) andM(s) are a coprime factorization ofG(s). We can selectN(s) =

1
s+1 and M(s) = s−2

s+1 , obtaining

C(s) = U(s)(s+ 1)− (s− 2)

In order to have a realizable compensator the maximum degree coefficient
of the two terms in C(s) must be equal, this leads to the condition U(∞) =
M(∞) = 1. Furthermore the closed-loop transfer function can be calculated
as

F (s) =
C(s)G(s)

1 + C(s)G(s)
=

U(s)−M(s)
N(s)

N(s)
M(s)

1 + U(s)−M(s)
N(s)

N(s)
M(s)

=
U −M
U

This implies that the poles of F (s) are the poles of M(s) and the zeros of
U(s). Choosing U(s) = s+5

s+α , with α > 0, allows to impose a pole in p = −5
to F (s).
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1.13.4 Exercise 13.4

Exercise: Given the system G(s) = s−1
(s−2)(s−5) determine the class of stable

and stabilizing compensators.

Solution: The system G(s) satisfies the parity interlacing property, hence it
can be stabilized with a stable compensator. Also in this case the class of
stable and stabilizing compensators is:

C(s) =
U(s)−M(s)

N(s)

where U(s) is a unit function, while N(s) and M(s) are a coprime factorization

of G(s). We can select N(s) = s−1
(s+2)2 and M(s) = (s−2)(s−5)

(s+2)2 , obtaining

C(s) =
U(s)(s+ 2)2 − (s− 2)(s− 5)

s− 1

In this case, we have to ensure that the term s − 1 at the denominator
is simplified. This means that U(1) = M(1) = 4

9 . Furthermore, in order to
obtain a realizable compensator U(∞) = M(∞) = 1. Choosing U(s) = k s+αs+β ,

the first condition implies k 1+α
1+β = 4

9 , while the second conditions corresponds

to k = 1. All the values 1+α
1+β = 4

9 satisfy the two conditions, e.g. for α = 3

and β = 8 the stable compensator is C(s) = 6(s+11.33)(s+1)2

(s+8)(s+2)2 .

1.13.5 Exercise 13.5

Exercise: Given the system with transfer function G(s) = 4
s−3 determine the

coprime factorization. Then determine the class of stabilizing compensators
with unit step response equal to 1. Finally, calculate the energy associated to
the impulse response for the closed-loop system.

Solution: The coprime factorization of G(s) can be obtained choosing ar-
bitrarily N(s) = 4

s+1 and M(s) = s−3
s+1 and calculating X(s) = k

s+1 and

Y (s) = s+α
s+1 according to N(s)X(s) +M(s)Y (s) = 4k+(s−3)(s+α)

s2+2s+1 = 1. Hence,

α− 3 = 2 and 4k − 3α = 1 from which X(s) = 4
s+1 and Y (s) = s+5

s+1 follows.
The class of stabilizing compensators is

C(s) =
X(s) +M(s)Q(s)

Y (s)−N(s)Q(s)

with Q(s) ∈ H∞. Calculating the final value of the step response of the closed-
loop system F (s) = (X(s) +M(s)Q(s))N(s):
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lim
t→∞

y(t) = lim
s→0

sF (s)
1

s
= (X(0) +M(0)Q(0))N(0) = 1

Hence, Q(0) = 5
4 . Choosing for example Q(s) = 5

4 , the compensator is
C(s) = 1.25s+0.25

s and the closed-loop system is F (s) = 5s+1
(s+1)2 .

The impulse response of the closed-loop system is of the type:

F (s) =
R1

s+ 1
+

R2

(s+ 1)2
⇒ y(t) = R1e

−t +R2te
−t

with R1 = 5, and R2 = −4. The energy of the impulse response is defined by
E =

∫∞
0
y(t)2dt = 6.5.

1.13.6 Exercise 13.6

Exercise: Determine the right and left unitary coprime factorization of the
system G(s) = 1

(s−1)2 .

Solution: Being G(s) a SISO system, the right and left coprime factoriza-
tion are equal. The functions N(s) and M(s) are defined by the following
realization matrices:

N(s) =

[
A+BF B

C 0

]
,M(s) =

[
A+BF B

F I

]
or equivalently:

Ñ(s) =

[
(A+HC)T CT

BT 0

]
, M̃(s) =

[
(A+HC)T CT

HT I

]
where F = −BTP1, and H = −P2C

T with P1 and P2 the solutions of the
CARE and FARE associated to G(s). In order to derive the solutions of the
CARE and FARE, consider the following state-space realization:

A =

[
0 1
−1 2

]
; B =

[
0
1

]
; C =

[
1 0

]
The solution P1 of the CARE can be calculated assuming

P1 =

[
p1 p2

p2 p3

]
obtaining:

ATP1 + P1A− P1BTBTP1 + CTC = 0[
0 −1
1 2

] [
p1 p2

p2 p3

]
+

[
p1 p2

p2 p3

] [
0 1
−1 2

]
+
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−
[
p1 p2

p2 p3

] [
0 0
0 1

] [
p1 p2

p2 p3

]
+

[
1 0
0 0

]
= 0

This matrix equation leads to an algebraic nonlinear system of three equa-
tions in the three unknowns: −2p2 − p2

2 + 1 = 0
p1 + 2p2 − p3 − p2p3 = 0
2p2 + 4p3p

2
3 = 0

Solving the system, the solution P of the CARE is:

P =

[
2(1 +

√
1 +
√

2)
√

2− 1
√

2− 1 2 +
√

2(1 +
√

2)

]

and F =
[
−
√

2 + 1 −2−
√

2(1 +
√

2)

]
.

The same procedure can be applied to solve the FARE and derive the

vector H =

[
−4.197

−
√

2 + 1

]
.

The two functions of the coprime factorization are N(s) = Ñ(s) =
1

s2+2.197s+1.414 , and M(s) = M̃(s) = s2−2s+1
s2+2.197s+1.414 .

1.13.7 Exercise 13.7

Exercise: Calculate the unitary coprime factorization of the system with
transfer function G(s) = s+1

s2+3s+1 .

Solution: In order to derive the functions N(s) and M(s), the solutions of
the CARE and FARE associated to G(s) have to be calculated. Consider the
following state-space realization:

A =

[
0 1
−1 −3

]
; B =

[
0
1

]
; C =

[
1 1

]
The solution P1 of the CARE and P2 of the FARE can be calculated

according to the procedure adopted in the previous exercise or by using the
MATLABr function are:

>> F=-B’*are(A,B*B’,C’*C)

>> H=-are(A’,C’*C,B*B’)*C’

The unitary coprime factorization is given by the functions N(s) =
s+1

(s+2.78)(s+0.51) , M(s) = (s+2.62)(s+0.38)
(s+2.78)(s+0.51) , X(s) = 0.1 s+1.87

(s+2.78)(s+0.51) , and

Y (s) = (s+2.97)(s+0.61)
(s+2.78)(s+0.51) .
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1.13.8 Exercise 13.8

Exercise: Calculate a compensator that stabilizes simultaneously the two
plants with transfer function G1(s) = 1

s−1 and G2(s) = 1
s−2 .

Solution: The two systems can be simultaneously stabilized if the system
∆(s) = G1(s) − G2(s) = −1

(s−1)(s−2) is strongly stabilizable, i.e. ∆(s) satisfies

the parity interlacing property. This is indeed the case and we can proceed
with the solution of the problem. In particular, a state-feedback controller with
k > 2 allows to simultaneously stabilize the two plants, in fact: A1 − B1k =
1−k < 0 and A2−B2k = 2−k < 0, where A1 = 1, A2 = 2, and B1 = B2 = 1.

1.13.9 Exercise 13.9

Exercise: Given the systems{
ẋ = Aix + Biu
y = Cix

with Ai =

 αi 0 0
0 −1 0
0 0 −2

; Bi = CTi =

 1
−1
θi

 and with αi = i and

θi = i+ 1 for i = {1, 2}, determine if it is possible to simultaneously stabilize
them and, if so, design the linear state regulator and observer so that the two
systems are asymptotically stable. Verify the result.

Solution: The problem can be formulated in terms of linear matrix inequal-
ities and solved with the MATLABr function feasp through the following
commands:

>> setlmis([]);

>> P=lmivar(1,[3 1]);

>> Q=lmivar(2,[1,3]);

>> lmiterm([-1 1 1 P],1,1);

>> lmiterm([2 1 1 P],A1,1,’s’);

>> lmiterm([2 1 1 Q],B1,-1,’s’);

>> lmiterm([3 1 1 P],A2,1,’s’);

>> lmiterm([3 1 1 Q],B2,-1,’s’);

>> simstab=getlmis;

>> [tmin,xfeas]=feasp(simstab);

>> Pvalue=dec2mat(simstab,xfeas,P);

>> Qvalue=dec2mat(simstab,xfeas,Q);

>> k=Qvalue*inv(Pvalue);

To verify the obtained controller, it is sufficient to calculate the closed-loop
eigenvalues:
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>> eigenv1=eig(A1-B1*k);

>> eigenv2=eig(A2-B2*k);

1.13.10 Exercise 13.10

Exercise: Calculate, if possible, a control law u = −Kx that can simultane-
ously stabilize the two systems with state-space matrices:

A1 =


−1 0 0 0 0
0 2 0 0 0

0 0
√

5 0 0
0 0 0 −3 0
0 0 0 0 −4

; A2 =


1 0 0 0 0

0
√

7 0 0 0
0 0 −4 0 0
0 0 0 −5 0
0 0 0 0 −7

;

BT1 = BT2 =
[

1 1 1 1 0
]T

.

Solution: The problem can be formulated in terms of linear matrix inequal-
ities and solved with the procedure described in the previous exercise leading
to a compensator with gains

k =
[
−0.19 −240.07 259.42 −1.29 0

]

1.14 Solutions of exercises of Chapter 14

1.14.1 Exercise 14.1

Exercise: Using the procedure introduced in Chapter 14, calculate the inverse

of the matrix A =

 1 0 0
0 2 0
0 0 a

 with a = 0.1, a = 0.01, and a = 0.001.

Evaluate the time needed to reach the steady-state in the three cases.

Solution: The exercise can be solved in MATLAB with the following com-
mands

A=[1 0 0;0 2 0; 0 0 a]

[T,Y]=ode45(@prob1_MatrixInversion,[0 10000],rand(numel(A),1),[],A);

plot(T,Y)

end
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As it possible to determine by inspecting the resulting plots, for a = 0.1
the steady-state is reached at t ≈ 100s, for a = 0.01 at t ≈ 9000s, while for
a = 0.001 a higher integration time is needed (approximatively 106s).

1.14.2 Exercise 14.2

Exercise: Calculate the eigenvalues of the matrix A in equation (14.13) per-
turbing the matrix N with a gaussian noise. Evaluate the effect of the pertur-
bation on the steady-state matrix.

Solution: Let us rewrite the MATLAB function reported in Section 14.1.2 as
function dxdt=prob2_MatrixEigenvalues(t,x,N)

n2=length(x);

H=reshape(x,sqrt(n2),sqrt(n2));

dxdt=H*(H*N-N*H)-(H*N-N*H)*H;

dxdt=dxdt(:);

end

where the matrix N is now a further input of the MATLAB function.
Let us define in MATLAB the matrix A in Eq. (14.13)
A=[0.6930 0.7707 0.1762; 0.2608 0.0757 0.5628; 0.1127 0.5856 0.1239];

and calculate the eigenvalues including a perturbation on matrix N
N=diag([sqrt(3):-1:1])+0.01*randn;

[T,Y]=ode45(@Prob2_MatrixEigenvalues,[0:0.01:100],A,[],N);

As it is possible to verify the steady-state is not a diagonal matrix, but a
matrix which is similar to matrix A, i.e. they share the same set of eigenvalues.

1.14.3 Exercise 14.3

Exercise: Calculate the eigenvectors of the matrix A in equation (14.16)
perturbing the matrix N with a gaussian noise. Evaluate the effect of the
perturbation on the steady-state matrix.

Solution: Let us rewrite the MATLAB function reported in Section 14.1.3 as
function dxdt=prob3_MEigenv(t,x,A,N)

n2=length(x);

Theta=reshape(x,sqrt(n2),sqrt(n2));

dxdt=A*Theta*N-Theta*N*Theta’*A*Theta;

dxdt=dxdt(:);

end

where the matrix N is now a further input of the MATLAB function.
Let us define in MATLAB the matrix A in equation (14.16)
>> A=[7.0975 -8.4650 5.8477 -6.3906 -0.9032;

-8.4650 25.2876 -19.9587 2.3167 15.7190;
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5.8477 -19.9587 16.8034 1.0059 -14.2585;

-6.3906 2.3167 1.0059 24.2867 -12.0941;

-0.9032 15.7190 -14.2585 -12.0941 29.2483];

and calculate the eigenvalues including a perturbation on matrix N
N=diag([sqrt(5):-1:1])+0.01*randn;

[T,Y]=ode45(@Prob2_MatrixEigenvalues,[0:0.01:100],A,[],N);

>> Q=reshape(Y(end,:),length(A),length(A));

As it is possible to verify the steady-state matrix Q does not contains the
eigenvectors of matrix A. Even a small perturbation of the matrix N can make
it non-diagonal, thus violating the hypothesis on which the method relies and
yielding a steady-state matrix Q that does not solve the eigenvectors problem.

1.14.4 Exercise 14.4

Exercise: Determine the controllability and observability gramians for the
continuous-time LTI system with state-space realization

A =

[
0 1
−3 −2

]
; B =

[
0
1

]
; C

[
−1 1

]
(1.4)

Solution: Following the procedure described in Section 14.1.4, it is possible
to solve the exercise with the commands

>> A=[0 1; -3 -2];

>> B=[0; 1];

>> C=[-1 1];

>> [T,Y]=ode45(@CtrbGram,[0:0.01:10],eye(length(A)),[],A,B);

>> Wc=reshape(Y(end,:),length(A),length(A));

>> [T,Y]=ode45(@ObsvGram,[0:0.01:10],eye(length(A)),[],A,C);

>> Wo=reshape(Y(end,:),length(A),length(A));

getting Wc =

[
0.0833 0

0 0.25

]
and Wo =

[
2.334 0.1667
0.1667 0.3333

]
.

1.14.5 Exercise 14.5

Exercise: Calculate the singular values of the system with transfer function

G(s) = s2−5s+4
s2+5s+4 .

Solution: Following the procedure described in Section 14.1.4, it is possible
to solve the exercise with the commands

>> A=[0 1; -4 -5];

>> B=[0; 1];

>> C=[0 -10];

>> D=1;
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>> [T,Y]=ode45(@CtrbGram,[0:0.01:10],eye(length(A)),[],A,B);

>> Wc=reshape(Y(end,:),length(A),length(A));

>> [T,Y]=ode45(@ObsvGram,[0:0.01:10],eye(length(A)),[],A,C);

>> Wo=reshape(Y(end,:),length(A),length(A));

getting Wc =

[
0.025 0

0 0.1

]
and Wo =

[
40 0
0 10

]
. The singular values can

be calculated as
>> eig(Wc*Wo)

which are both one, as expected since the system is all-pass.

1.14.6 Exercise 14.6

Exercise: Calculate an open-loop balanced realization for the system with
state-space matrices:

A =


−0.5 −1 0 0

1 −0.5 0 0
0 0 −3 0
0 0 0 −4

 ; B =


1
−1
−1
1

 ;

C =
[

0 1 −1 1
] (1.5)

Solution: We can follow the procedure described in Section 14.2 as
>> [T,Y]=ode45(@ObsvGram,[0:0.01:10],reshape(eye(4),16,1),[],A,C);

>> Wo=reshape(Y(end,:),4,4);

>> [T,Y]=ode45(@CtrbGram,[0:0.01:10],reshape(eye(4),16,1),[],A,B);

>> Wc=reshape(Y(end,:),4,4);

>> [T,Y]=ode45(@PinfSystem,[0:0.01:10],reshape(eye(4),16,1),[],Wo,Wc);

>> Pinf=reshape(Y(end,:),4,4);

>> Tt=Pinf^(-0.5);

>> [T,Y]=ode45(@prob1_MatrixInversion,[0:0.01:10],rand(numel(Tt),1),[],Tt);

>> TtInv=reshape(Y(end,:),4,4);

>> At=TtInv*A*Tt;

>> Bt=TtInv*B;

>> Ct=C*Tt;

>> [T,Y]=ode45(@CtrbGram,[0:0.01:10],reshape(eye(4),16,1),[],At,Bt);

>> Wct=reshape(Y(end,:),4,4)

>> [T,Y]=ode45(@ObsvGram,[0:0.01:10],reshape(eye(4),16,1),[],At,Ct);

>> Wot=reshape(Y(end,:),4,4)

>> [T,Y]=ode45(@prob3_MEigenv,[0:0.01:50],reshape(eye(4),16,1),[],Wct);

>> Q=reshape(Y(end,:),4,4);

>> Tbal=Tt’*Q;

>> Abal=inv(Tbal)*A*Tbal

>> Bbal=inv(Tbal)*B

>> Cbal=C*Tbal
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yielding the open-loop balanced realization

Ab =


−0.2013 0.7577 0.5968 0.0422
−0.7577 −0.2989 −1.5695 −0.0706
0.5968 1.5695 −3.9936 −0.4918
0.0422 0.0706 −0.4918 −3.5082

 ; Bb =


−0.5671
−0.5013
0.9624
0.0595

 ;

Cb =
[
−0.5671 0.5013 0.9624 0.0595

]
(1.6)

1.15 Solutions of exercises of Chapter 15

1.15.1 Exercise 15.1

Exercise: Propose an approximation for G(s) = e−sτ with τ = 1, τ = 0.5 and
τ = 0.1 by using the Padé method and numerically compute the H∞ norm of
the error between G(s) and its approximation.

Solution: The exercise can be solved in MATLAB by using the function
pade to determine the approximation H(s) of the desired order. In principle,
it is possible to use the function normhinf to estimate the H∞ norm but
this function generates numerical errors when used for systems with internal
delays, as it is for G(s)−H(s). Therefore, we may use the following commands:

for tau=[1 0.5 0.1]

err=zeros(20,1);

for n=1:20

[nn,dd]=pade(tau,n);

ind=0;

errOmega=zeros(2000,1);

for o=0.01:0.01:20

ind=ind+1;

vv=[];

for k=n:-1:0

vv=[vv (1j*o)^k];

end

H=sum(nn.*vv(1:end))./sum(dd.*vv(1:end));

G=exp(-1j*o*tau);

errOmega(ind)=abs(G-H);
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end

err(n)=max(errOmega);

end

plot(1:20,err)

hold on

end

The results are shown in Fig. 1.11, where the three curves illustrate the H∞
norm of the error dynamics for increasing order of the Padé approximation.
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FIGURE 1.11
H∞ norm of the error dynamics G(s)−H(s) for increasing order of the Padé
approximation and for τ = 1 (blue curve), τ = 0.5 (red curve), and τ = 0.1
(black curve).

1.15.2 Exercise 15.2

Exercise: Determine, if possible, the compensator C(s) that stabilizes the
closed-loop system of Figure 1.12 with G(s) = k

s , k = 1 and τ = 2.

FIGURE 1.12
Block scheme for Exercise 15.22.
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Solution: This problem can be solved recalling the results obtained in Ex-
ample 15.1. In this case we have k = 1 and τ = 2, therefore we can select
C(s) = K deriving the condition Kkτ < π

2 which leads to K < π
2kτ = π

4 .

1.15.3 Exercise 15.3

Exercise: Consider the block scheme in Figure 1.13 with G(s) = 1
s+α . Deter-

mine the value of α such that the system is asymptotically stable.

FIGURE 1.13
Block scheme for Exercises 15.3 and 15.4.

Solution: Recall that system G(s) is positive-real for α > 0. Therefore in
virtue of the small-gain theorem, the closed-loop system is asymptotically
stable for α > 0.

1.15.4 Exercise 15.4

Exercise: Consider the system in Figure 1.13 with G(s) = 1
(s+1)3 and deter-

mine for which values of τ the system is asymptotically stable.

Solution: Since the closed-loop transfer function is F (s) = 1
(s+1)3+e−sτ

, the

quasi-polynomial p(s, τ) is

p(s, τ) = p0(s) + p1(s)e−sτ = (s+ 1)
3

+ e−sτ

with p0(s) = (s+ 1)
3

and p1(s) = 1. Note that for τ = 0 the roots lie in the
left half-plane. We now apply the direct method discussed in Section 15.5,
which consists in studying the roots of the equation |p1(jω)|2− |p0(jω)|2 = 0,
which leads to −ω2

(
ω4 + 3ω2 + 3

)
= 0 which admits no strictly positive real

solutions. Therefore the system is delay-independent stable.
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1.15.5 Exercise 15.5

Exercise: With reference to system in Figure 1.14 with G(s) = k
(s+1)3 and

τ = 0.1, determine for which values of k the feedback system is asymptotically
stable.

FIGURE 1.14
Block scheme for Exercise 15.5.

Solution: The gain margin of system F (s) = 1
(s+1)3 e

−s0.1 can be calculated

as mG = 6.2373. In order to have a closed-loop asymptotically stable system,
the gain k should not exceed this value. Therefore, we have that for k < 6.2373
the feedback system is asymptotically stable.


