
1 
 

Online Document for DIPA: Computer Vision & Image Analysis, 4th Edition, and 
DIPA: Digital Image Enhancement, Restoration and Compression, 4th Edition, 
Scott E Umbaugh, © 2023 

Compiling and Linking CVIPlab with Visual Studio 

 

1. Install CVIPtools and CVIPlab  

2. Choose the desired location for the installation – in this guide, we use 

C:\CVIPtools\CVIPlab as the working folder. 

3. Run Microsoft Visual Studio. 

4. Open the CVIPlab solution file, CVIPlab_Project.sln, in C:\CVIPtools\CVIPlab as 

shown:  

Opening CVIPlab_Project.sln.  

 

(a) Select Open->Project/Solution 

 



2 
 

 

(b) Select the file CVIPlab_Project.sln. 

5. Build the project by selecting Build→ Build Solution as shown: 

Building the project.  

 

6. Activate the output window by selecting Output from the View menu, or press Ctrl+W, O 

(if it is not shown). CVIPlab_Project should be compiled with 0 errors as shown below in 

(a), and the executable file is located in C:\CVIPtools\CVIPlab\Debug. It should be noted 



3 
 

that it is not unusual to get warning messages during compilation. These warning 

messages should be investigated as they may indicate poor programming practices that 

can cause problems. In this case, the last few warning messages are due to variables that 

are not referenced, meaning they are not currently used in the program. Here, these 

variables are included for future use so we will not be concerned with these warnings. 

 

(a) Screen after compilation with no errors 

 



4 
 

(b) Screen after running CVIPlab and performing a threshold operation on cam.bmp. Note that 

CVIPlab requires a complete path name for the image files; or the images can be put in the same 

directory from which CVIPlab is running. 

7. Press F5 to run the program. Select ‘2’ and enter the file name for an image in the 

directory, or enter the full path name for an image elsewhere – here we used cam.pgm 

from the C:\CVIPtools\images directory. Enter a threshold value to perform the threshold 

operation, as shown in (b) above. If you see this, CVIPlab has complied and run 

successfully! 

8. If the computer being used has video capture capability, add this to your CVIPlab as 

follows: Open file cviplab.c, go to the #define VIDEO_APP line directly after the include 

header section, modify the video/image capture string to the executable you plan to use, 

as show below: 

 

 

9. Run CVIPlab project by pressing F5. Select 1, and your video/image capture application 

will run. 

Change “explorer.exe” 

to the video capture 

executable 



5 
 

The Mechanics of Adding a Function with Visual Studio 

 

 The following guide provides a step-by-step process for those unfamiliar with Visual 

C++. For those familiar with Visual C++, or those planning to use another compiler, skip to the 

next section, which provides details for adding a CVIP function to the CVIPlab menu.  

To add a function using Visual C++: 

 

1. First add a new file by right clicking on the Source Files folder in the Solution Explorer 

window on the left. Then select Add->New Item as shown in (a) below. 

2. From the upcoming window select C++ File (.cpp) and input test_new_file.c as the name, as 

shown in (b) below. Even though the C++ File option is selected, be sure to keep the extension 

“.c” for the new functions or files. Otherwise, compilation errors will occur. 

 

a) From the Solution Explorer menu, right click on Source Files and select Add->New Item, 

 



6 
 

b) Select C++ File (.cpp), as shown  with an arrow, and name the new file “test_new_file.c” and 

press Add button 

 

c) Select test_new_file.c from Solution Explorer menu and type in your function body. 

 

3. Click Add button and enter the text below in test_new_file.c, as show in (c) above. 

 int test_function(int i) 



7 
 

{ 

 return i+1; 

} 

4. Right click on test_new_file.c (located under CVIPlab_Project\Source Files) and select 

Properties. From the upcoming window expand the C/C++ selection on the left and select 

Precompiled Headers as shown below. Check the text box Create/Use Precompiled Header to 

make sure that Not Using Precompiled Headers is chosen. If it is chosen click OK, if not, click 

on the text box to change the selection. 

 

 

a) Right click on test_new_file.c and select Properties. From the upcoming window, expand 

Configuration Properties, then expand C/C++ and select Precompiled Headers 

 



8 
 

b) From the Precompiled Headers section, click the combo button next to the Create/Use 

Precompiled Header, and select Not Using Precompiled Headers 

 

5. Select Build->Build Solution from the menu bar above, to compile the project again. There 

should be no errors in the output box. 

6. Double click on CVIPlab.h and CVIPlab.c to open them. 

7. Find this line in the CVIPlab.h file: 

extern Image *threshold_lab(Image *imageP, unsigned int level) 

And directly after it add a new line (see screenshots below):  

extern int test_function(int i); 

 



9 
 

 

(a) Declare the new function in the header file CVIPlab.h 

 

 

(b) Call the new function in CVIPlab.c. 
 

8. Build the project again. It should pass the build without any error (Warning messages are OK). 



10 
 

9. Call this function in the main function of  CVIPlab.c by inserting the following line: 

print_CVIP("test new function, return value is %d\n",test_function(5)); 

after the function declarations; as  shown in (b) above. 

10. Select Build->Build Solution to build the project. There should be no errors (again, you can 

ignore warnings) 

11. Run the project by pressing F5. You should see: 

test new function, return value is 6 

in the second line of the console window as shown below. If you see this, you have successfully 

added a new function to the CVIPlab project. 

 

 

 

  

 



11 
 

Using CVIPlab in the Programming Exercises 

 

The previous section outlines the mechanics of adding a function with Visual C++. To follow the 

existing file organization and program format using any compiler, do the following: 

1. Create a file similar to threshold_lab.c for the new_function. The easiest method is to select 

the threshold.c file and perform a Save As the new_function.c. Next, edit the header to change 

the file name, description, modify the date, add your name, and change the old comments and the 

function name. The last step is to modify the code inside the band, row and column for loop to 

perform the new function, as shown: 

 

 

(a) Create your new function by using the threshold function as a prototype. Edit the header to 

change the file name, description, modify the date, add your name, and change the old comments 

and the function name. 

 

 

Update header 

information 

Modify comments 

and function name 

 

 



12 
 

 

(b) The last step is to modify the code inside the band, row and column for loop to perform the 

new function. 
 

2. Add the new function to the CVIPlab menu as shown in (a) below. Next, add a case statement 

for the function as shown in (b) below. The case statement code for case 2 can be copied and 

used by modifying threshold_Setup to new_function_Setup. 

Be sure to update 

comments here and 

everywhere 

Modify code to 

perform the new 

function 

 

 

 



13 
 

 

(a) Add the case statement for the new function to CVIPlab. a) Add your new function to the 

menu. 

 

(b) Simply copy the statement from Case 2, and change the function name and update the 

comment. 
 

 

 

Copy Here 

 Add here 

 

 



14 
 

3. Add the new_function_Setup to CVIPlab.c, similar to threshold_Setup. 

4. Add the function prototype to the CVIPlab.h header file: 

extern Image *new_function(new_function parameters...) 

 


