
	 1

Manipulating Variables in R

At some point after you have begun working with R, it is likely that you will want to

manipulate your variables and do such things as combine vectors or group participants

differently than your original grouping. If you have just started using R, this section may

not seem pertinent and may be more confusing than helpful. I recommend coming back

to this section as needed when R is more familiar to you. I will also note that for me

personally, manipulating variables is the hardest part of using R. I will often go to a

different program like Excel to do this part, because the ability to paste and copy numbers

is a lot more intuitive than trying to figure out the syntax for manipulating numbers in R.

Nevertheless, I want my readers to know how to do these things in R if they like, so I

provide the information here in this part.

Moving or Deleting Columns or Rows
Sometimes you may want to make a large dataset more manageable with just the

variables you absolutely need in it. For example, in the case of the Obarow (2004) dataset

(which is discussed in Chapter 10 on Factorial ANOVA), there are 35 variables, and let’s

say you’re really only interested in doing a statistical analysis on a few of the variables.

To follow along with this analysis, import the SPSS file Obarow.Original.sav and name it

obarow; you should have a dataset with 81 rows and 35 columns).

To cut out an entire column of data, make sure your data is the active dataset and then use

R Commander’s menu sequence DATA > MANAGE VARIABLES IN ACTIVE DATASET >

DELETE VARIABLES FROM DATASET. Let’s say that we want to cut out the variable grade.

	 2

All we do is choose it out of the list of variables. A prompt comes up to verify that I want

to delete it, and I press OK. If you want to delete more than one variable, just hold the

Ctrl button down and click on additional variables.

The R code for this action is quite simple:

obarow$grade <- NULL

You just assign nothingness to the variable, and it ceases to exist.

Sometimes you may have a principled reason for excluding some part of the dataset you

have gathered. If you are getting rid of outliers, robust statistics (which I will discuss

throughout this book) are probably the best way to deal with such a situation. However,

there are other situations where you just need to exclude some part of the dataset a priori.

In the Obarow (2004) study, some children who participated in the experiment on

vocabulary learning achieved very high scores on the vocabulary pretest. Children with

such high scores would not be able to achieve many gains on a posttest, and one might

then have a principled reason for cutting them out of the analysis (although you should

tell your readers that you did this). This would mean cutting out certain rows in the

dataset.

If you already know in advance which rows you want to remove, the process is

straightforward. Follow the menu command in R Commander: DATA > ACTIVE DATASET

	 3

> REMOVE ROW(S) FROM ACTIVE DATASET. Looking at the window labeled “Indices or

quoted names of row(s) to remove” in Figure 1 you could specify only one row to remove

(put in a single number, such as “7”, to remove row 7), a range of rows (use a colon to

specify the range, such as rows 7 to 11 by writing “7:11”), or a number of different rows

(here use the concatenation function by adding a “c” before the number of the rows, all

listed in the parentheses, like this “c(3,6,7,11)”). You also have the option to save this file

under a different name.

Figure 1 Removing a row from the active dataset in R Commander.

The R code for performing this action is simple as well, as long as you understand that in

R you specify rows and columns in brackets, with rows first and columns second. The R

code for removing rows 7 through 11 from the obarow	dataset and creating a new one is:

	 4

NewObarow<-obarow[-c(7:11),]

R uses the minus sign (“-”) to show that it will subtract this subset of rows. The

concatenation function, c(), is used whether or not there is more than one row or column

being deleted. So the R command says to subtract out rows 7 through 11 (we know they

are rows because they come before the comma) from all of the columns (we know this

because nothing is specified after the comma; if you wanted to subtract out certain rows

only from certain columns you would specify the columns after the comma.

But what if you don’t know exactly which rows you want to delete? What if, instead, you

want to remove any data that exceeds a certain number? To do this, you can use the R

console and the subset() command. The following command puts a subset of the

original dataset into a file with a different name. In this command I get rid of any cases

where the Pretest 1 score was over 18 points (out of 20 possible).

NewObarow<-subset(obarow, subset=pretest1<=18)

Tip: Here’s a silly mnemonics device to help you remember which
comes first, the row or the column:
Row, row, row your boat gently down the stream, toss your column overboard and
listen to it scream.
Row comes first and column comes second in my version of the nursery rhyme, so
you can remember it works that way in the syntax too.

	 5

Notice that in the subset command I have used the comparison operators less than or

equal to (“<=”). Other such operators in R include more than (“>”), more than or equal to

(“>=”), less than (“<”), equal to (“==”), or not equal to (“!=”). In this case, any row

where the pretest1 score is over 18 will be cut from the dataset.

Deleting Parts of a Dataset Practice Activities
1 Working with rows and columns. First, let’s do some of the examples with data

that are found in R itself. These examples use a dataset that comes built-in in R

called swiss, which has data on Swiss fertility and socioeconomic indicators for

various cities (use the command library(help="datasets") to see a list of all

datasets that are included in R). This is a rather large dataframe, so let’s first cut it

down to make it more manageable. Type:

sw<-swiss[1:5, 1:4] #this cuts down to the first 5 rows and the first 4 columns

sw #look at your data now

Summary: Deleting Parts of a Dataset
In R Commander, for removing columns, choose DATA > MANAGE VARIABLES IN

ACTIVE DATASET > DELETE VARIABLES FROM DATASET
For removing rows choose:

DATA > ACTIVE DATASET > REMOVE ROW(S) FROM ACTIVE DATASET
To remove one number, write in the number ("7")
To remove a range, put a colon between two numbers (7:11)
To remove selected rows, use the c() command ("c(3,6,7,11)")

In R, to remove columns, assign the column to the NULL operator (N.B. items in red
should be replaced with your own data names):

obarow$grade <- NULL

To remove rows specify which rows to subtract out (and possibly rename your data):

NewObarow<-obarow[-c(7:11),]
	

	 6

Now we will work with the dataset sw.

Perform the following commands, and explain what happens for each one,

following the example answer given in (a):

a. sw[1:3] #shows first 3 columns, all rows

b. sw[1:3,] #

c. sw[,1:3]

d. sw[4:5, 1:3]

e. sw[[1]]

f. sw[[5]]

g. sw["C",]

2 In exercise #1 you created a new data frame called sw, with 4 variables. Remove

the variable Examination.

3 Use the dataset ChickWeight (this is a built-in R dataset). This data looks at the

weight versus age of chicks on different diets. How many data points are there?

Find out using the length() command with any variable in the dataset (don’t just

use the name of the dataset itself, or it will only be 4!). Create a new variable

called ChickDiet that excludes chicks who received Diet #4. How many

participants are in the ChickDiet dataset?

Combining or Recalculating Variables
For this example we will use a dataset from Torres (2004). Torres surveyed ESL learners

on their preference for native speaking teachers in various areas of language teaching.

This file contains data from 34 questions about perception of native- versus non-native-

	 7

speaking teachers. Let’s say that I am interested in combining data from 5 separate

questions about whether native-speaking teachers are preferable for various areas of

language study into one overall measure of student preference. I want to combine the 5

variables of Pronunciation, Grammar, Writing, Reading and Culture, but then average the

score so it will use the same 1–5 scale as the other questions.

To do this in R Commander, first make sure the dataset you want to work with is

currently active and shown in the “Dataset” box in R Commander (you will need to

import it from the SPSS file Torres.sav; call it torres). Combine variables by using DATA

> MANAGE VARIABLES IN ACTIVE DATASET > COMPUTE NEW VARIABLE. You will see a

computation box like the one in Figure 2 come up:

Figure 2 Computing a new variable in R Commander.

As you can see in Figure 2, I called the new variable preference. I moved the 5 variables

that make up this new variable from the “Current variables” box into the “Expression to

compute” box by double-clicking on them. After starting out with a parenthesis at the

beginning, I added the variables one by one. After each variable I manually typed in a

	 8

plus sign, and at the end of the entire string I typed in “)/5” to divide it all by 5. You can

use the same symbols (such as “+”, “*”, “^”) that were explained in Section 1.5.1 of the

book to perform mathematical computations. Last of all you will want to make sure this

worked right by opening up the “View dataset” button on the R Commander interface and

scrolling over to the end of the dataset. The new column gets appended to the end of the

dataset. Figure 3 shows how I have done this, and the column appears to be appropriately

measured on a 5-point scale.

Figure 3 Verifying that a new variable was correctly calculated in R Commander.

I also ask for the range of scores to make sure I’m on the right track:

range(torres$preference)

[1] 2.266667 5.000000

	 9

Looks good! I will also show you how commands can be executed on the R Console. As

we go along I will first show you how to perform an action using R Commander, but then

I will also explain the R code as well. At first you may not care about this, but as you

become more experienced with R you might want to begin to move toward using more

code, and so I want you to understand it. Note that the R code can be found in R

Commander in the Script window. If you want to take the code that R Commander used

for a certain command and tweak it a little, you can simply copy the code from the Script

window to the console and paste it in.

Every time I give you R code, I will try to explain it in more detail. The box below first

gives the command that was used to combine the variables. I then try to break down the

command into its constituent parts and explain what each part is doing.

torres$preference <- with(torres, (pron+ grammar+ writing+ reading+ culture)/5)

torres$preference This command creates and names the new variable

preference

<- This symbol says to assign everything to the right of it

into the expression at the left; you can also use an

‘equals’ sign (“=”)

with(torres, (expression)) with(data, expression, . . .)

The with() command says to evaluate an R expression in

an environment constructed from data

(pron+grammar+ writing+

reading+ culture)/5

This is the arithmetic expression

	 10

Combining or Recalculating Variables Practice Activities
1 Use the torres dataset. From this dataset, create a new variable called

OralPreferences by combining the variables of speaking and listening

preference for a native-speaker teacher. Don’t forget to average the two

scores so the result stays on a 1–5 scale. What is the range of scores for

this new variable? Find out by using the function range() on the new

variable.

2 Use the dataset mcguireSR (this is a text file, comma delimited, if you

did not import it earlier in the chapter). Create a variable called gainscore

by subtracting the pretest from the posttest scores. What is the mean score

for this variable?

3 Use the dataset partial (this is an SPSS file, called LarsonHall.partial.sav;

import it now, if you have not imported it before). The variable of

r_l_accuracy is measured in its raw form as a score out of 7. Convert the

scores to percentages out of 100 and call the new variable

PercentAccuracy. What is the maximum percentage achieved?

Summary: To use existing variables to calculate a new variable
In R Commander, choose:DATA > MANAGE VARIABLES IN ACTIVE DATASET >

COMPUTE NEW VARIABLE
Use ordinary arithmetic expressions to combine variables or make calculations
In R, use the template:
torres$preference <- with(torres, (pron+ grammar+ writing+ reading+
culture)/5)

	 11

Recoding Group Boundaries
Sometimes you want to take the data and make categorical groups from it (you should be

careful though; making categorical groups when you have interval-level data is just

throwing away information). To illustrate this process, let’s look at data from DeKeyser

(2000). DeKeyser administered a grammaticality judgment test to a variable of child and

adult Hungarian L1 learners of English. DeKeyser divided the participants on the basis of

whether they immigrated to the US before age 15 or after (this is his Status variable).

But let’s suppose we have a good theoretical reason to suspect that there should be 4

different groups, and we want to code the data accordingly (I want to make it clear that I

don’t actually think this is a good idea for this particular dataset; I’m just using it as an

example).

In R Commander, we can create new groups (also called recoding variables) by first

making sure the dataset we want is the active one in the “Dataset” box in R Commander

(if you have not already done so for a previous application activity, in order to follow

along with me here you’ll need to import the DeKeyser2000.sav SPSS file; name it

dekeyser). Then pull down the DATA menu and choose MANAGE VARIABLES IN ACTIVE

DATASET > RECODE VARIABLES. A dialogue box will open (see Figure 4).

	 12

Figure 4 Recoding variables in R Commander.

The recode directive is the most important part of this process. Make sure to put the name

of the new category in between parentheses. You can choose individual numbers

separated by commas (1,2,3) or ranges (as shown in Figure 4) as ways of specifying data.

The phrase “else” can be used to recode everything that has not already been specified.

After I pressed OK I then looked at the dataset and verified that this new variable had

been created and seemed fine.

	 13

The R code for this command is:

dekeyser$FourCat <- recode(dekeyser$Age,

 '0:9="child"; 10:12="tween"; 13:18="teen"; else="adult"; ',

 as.factor.result=TRUE)

dekeyser$FourCat This command creates and names the new variable

FourCat

<- Assignment operator

recode(data, expression,

as.factor.result=TRUE)

The recode command gives instructions on how to

restructure a numeric vector into one that is a factor. The

expression part gives the recode specifications

'0:9="child"; 10:12="tween";

13:18="teen";

else="adult"; '

This is the recode specification; note that the entire

expression is enclosed in single quotes; each part of the

recode directive is separated by a semi-colon; the

expression 0:9="child" specifies that if the number is 0

through 9, the label child (and so on) should be attached

in this factor; the expression else="adult" means I don’t

have to specify how high the ages go after age 18

If you want to change existing factor levels that are already categorical and named with

non-numerical characters, you will need to put quotation marks around the existing

names as well as the new names, as shown in the recoding done for the beq file (shown

in Figure 5).

	 14

Figure 5 Recoding character variables in R Commander (factors with labels).

The R code for this command is:

beq$Langs <- recode(beq$NumberOfLang,

'"Two"="LessFive"; "Three"="LessFive"; "Four"="LessFive"; "Five"="Five"; ',

as.factor.result=TRUE)

levels(beq$Langs) #Use this to check that everything came out right

[1] "Five" "LessFive" #Looks good!

	 15

Recoding Group Boundaries Practice Activities
1 Using the beq dataset, recode the variable NumberOfLang so there are

only two levels: Those with two or three languages (call them

“minorglots”) and those with four or more languages (call them

“majorglots). Call your new variable Glots. Use the summary()

command to see how many participants are in each of your new

categories. Note: You might want to reimport this file

(BEQ.Dominance.sav) so that all of the cases will be there, since if you

were following along with me in the text you might have deleted some

cases in previous activities.

2 Use the mcguireSR dataset (import as a text file; it is comma-delimited).

Currently the participants are divided into whether they were in the

experimental or control group. But let’s say you decided you wanted to

divide them into slow and fast speakers, according to their fluency scores

on the pretest (again, I don’t think this is a good idea, but it’s just for

practice in manipulating variables!). Divide the speakers by calling those

Summary: Creating categorical groups from existing data
In R Commander, choose:
DATA > MANAGE VARIABLES IN ACTIVE DATASET > RECODE VARIABLES
In recode directives, enter a range of numbers to the left of the equal sign
(separate range with colon) and enter the name of the new category in quotes to
the right of the equal sign. If you are recoding categories that already exist, put
parentheses around character symbols to the left of the equal sign as well.
In R, use the template:
beq$Langs <- recode(beq$NumberOfLang,
'"Two"="LessFive"; "Three"="LessFive"; "Four"="LessFive";
"Five"="Five"; ',
as.factor.result=TRUE)
	

	 16

lower than the mean score “slow” and those at the mean or higher “fast”.

Name your new variable rate. Verify your variable has two levels by

typing the name of the new variable, and use the summary() command to

see how many participants are in each of your new categories.

3 Use the torres dataset (import SPSS file Torres.sav), and the variable

labeled beginner. This indicates whether each person prefers a NS teacher

for a beginning-level language learner (where 5 = strongly prefer, 3 =

neither prefer nor dislike and 1 = strongly dislike). Categorize participants

into those who have strong opinions (both 5s and 1s), moderate opinions

(2s and 4s) and neutral (label them as ‘strong’, ‘moderate’, and ‘neutral’).

Call this new variable TypeOfPreference. Which type of participant

predominates? Use the summary() command to see how many

participants are in each category.

Getting Your Data in the Correct Form for Statistical Tests
There are two basic ways that you might have your dataset up:

1 Data is split so that the results for each group for each variable are found

in different columns. We’ll call this the ‘wide’ form (see Figure 6). This

form of data which is already split by the categorical variables is often

used for the robust statistics tests in the WRS package created by Wilcox

(2005, 2012) that are used in this book.

2 All the data for one variable is in one column, and there is another column

that codes the data as to which group it belongs to. Everitt and Dunn

	 17

(2001) call this the ‘long’ form because the columns will be longer in this

case. This is the form used for ANOVA analysis (see Figure 7).

Here is an example of the data in the wide format. Let’s say we are looking at the

correlation between test scores of children and adults on regular and irregular verbs. We

would have one column that represented the scores of the children on regular verbs,

another column containing the scores of adults on the regular verbs, etc. In the wide

format, we do not need any indexing (or categorical) variables, because the groups are

already split by those variables (adult vs. child, regular vs. irregular verbs) into separate

columns (see Figure 6; note that I just typed this data in by hand—it does not come from

any dataset. If you’d like to follow along with me, just type the initial data in Figure 6 in

yourself and call the file verbs).

Figure 6 Data in the ‘wide’ format.

	 18

This data can be put into the long format (see Figure 7). In this case all of the scores are

put into just one column, and there is another column (which is a factor) that indexes both

the group variable and the verb regularity variable at the same time.

Figure 7 Data in the ‘long’ format.

With the help of R Commander, moving from one form to another is not too difficult.

This section will explain how to do this with R Commander’s stack() command, but

	 19

also see Section 11.2.3, which uses a different command called melt() to change data

from the wide form to the long form.

To go from the wide form to the long form, in R Commander I went to DATA > ACTIVE

DATASET > STACK VARIABLES IN ACTIVE DATASET. There I picked all 4 variables in the

verbs dataset by holding down the CTRL button on my keyboard and right-clicking my

mouse on each variable. I renamed the entire file verbsLong, renamed the numeric

variable Score and the factor variable that would be created Group. Figure 8 shows the

“Stack Variables” dialogue box, and Figure 7 is the result from that command.

Figure 8 Going from wide form to long form in R Commander.

	 20

This process can be done using R code:

verbsLong <- stack(verbs[,

c("AdultIrregV","AdultRegVerb","ChildIrregVerb","ChildRegVerb")])

names(verbsLong) <- c("Score", "Group")

verbsLong<- Assign the result of what’s on the

right-hand side of the assignment

operator to the object verbsLong.

stack(verbs[]) This command stacks separate vectors

on top of each other and then creates

an indexing column; here, it is told to

work on the dataset verbs.

[, c("AdultIrregV", "AdultRegVerb",

"ChildIrregVerb", "ChildRegVerb")]

The data inside the brackets specifies

that we want all of the rows from the

dataset verbs, and the 4 columns that

correspond to the ones listed.

names(verbsLong) The names on the right-hand side

("Score", "Group") are assigned to

the names dimension of the newly

created verbsLong data frame.

For moving from a long format to a wide one, you can simply subset the original dataset

along the categorical variable or variables. In R Commander, choose DATA > ACTIVE

DATASET > SUBSET ACTIVE DATASET. The tricky part comes in figuring out what to put in

	 21

the box “Subset expression.” This needs to be set up so that the level of the categorical

variable is specified. Therefore, before you open the dialogue box to do this, makes sure

to find out what the levels are for your variable.

levels(verbsLong$Group)

[1] "AdultRegVerb" "ChildRegVerb" "AdultIrregV" "ChildIrregVerb"

First, I click off “Include all variables” and select the variable of “Score” because I only

want one column of data, not a column with Group and a column with Score. For the

subset expression, notice that I need to use double equal signs (“==”) after the name of

the variable (“Group”) and that I need to spell and capitalize the name of the level exactly

right, and put it in parentheses. Figure 9 shows the dialogue box and resulting dataset.

Figure 9 Subsetting a dataset in the long form.

	 22

In order to recreate the wide form, you’d then need to continue on with this process,

subsetting all of the different columns that you need (you can see that for this small

dataset, it would be much easier to simply type the numbers in by hand!). If you use this

process, don’t forget to change your active dataset in R Commander back to the original

dataset (in this case, the one called verbsLong) before subsetting another column of data.

If you try to subset the dataset you just created (in my case, AdultRegVerb) your result

will be null! Click in the “Dataset” box along the top of the R Commander window to go

back and choose the original dataset. In the end I will have four different datasets that I

will want to put together into one wide dataset. What is needed is to coerce the data

together into a data frame and correctly label the columns. There’s no way I know of in R

Commander to do this, but this R code will do it:

Verbs<-cbind.data.frame(ChildRegVerb,AdultRegVerb,ChildIrregularVerb,

AdultIrregularVerb)

Verbs<- Assign the result of what’s on the right

hand side of the assignment operator to the

object Verbs.

cbind.data.frame() cbind stands for “column bind,” so this ties

together columns and makes them into a

data frame

ChildRegVerb,AdultRegVerb,

ChildIrregularVerb, AdultIrregularVerb

The names of the 4 columns I want to bind

together

	 23

The next step is to name all of the columns the way I want:

dimnames(Verbs)[[2]]=c("ChildRegVerb","AdultRegVerb","ChildIrregVerb","AdultI

rregVerb")

dimnames(Verbs) Set the dimension names of an object,

in this case, the data frame Verbs.

[[2]] Specifies that the dimension should be

the columns (remember rows come

first, then columns).

c("ChildRegVerb","AdultRegVerb",

"ChildIrregVerb", "AdultIrregVerb")

The concatenation command c()

contains the names I want appended to

the columns. Note these must have

quotes around them!

If you have followed my computations, you can verify for yourself at this time that the

dataset Verbs looks just like it started out in Figure 5. One major problem with this

process is that to make a data frame, the vectors you are binding together must be exactly

the same length. If they are not, you will get an error message that tells you the vectors

have differing numbers of rows. But actually in most cases, you don’t need to bind the

subsetted vectors together—as a single vector they will perform in the statistical

command the way you intended.

To subset using R code, use the subset() command. Here is an example of one I used

with this data.

	 24

ChildRegVerb <- subset(VerbsLong, subset=Group=="ChildRegVerb",

select=c(Score))

ChildRegVerb<- Assign the result of what’s on the right

hand side of the assignment operator to

the object ChildRegVerb.

subset() Take a subset of the first argument

VerbsLong The name of the dataset I want to

subset

subset=Group=="ChildRegVerb" Name the level of the variable you

want to subset out. Be careful to use

the double equal signs and the quotes

around the name of the level, otherwise

you’ll get an error message

select=c(Score) Include this if you don’t want to take

all of the columns from the original

dataset. Here I only wanted the column

with the Score

In summary, manipulating data from the wide form to the long or vice versa is not

impossible in R, but it is a process requiring a number of steps. Certainly if you cut and

paste data this may be a much easier process in another program that works with

spreadsheets such as Excel, depending on how large your dataset is.

	 25

Getting Data in the Correct form for Statistical Tests Application Activity
1 Open the dekeyser dataset (it is an SPSS file). It is currently in the long

form (you could look at it by using the command head(dekeyser) to just

see the first 6 rows). Subset it into the wide form so there are only 2

columns of data, one for participants “Under 15” and one for those “Over

15” for the gjtscore variable. The resulting vectors are of different lengths

so do not try to combine them together. How many entries are in each of

the 2 subsetted vectors (you can use the length(DkCats1$gjtscore))

command or the Messages section of R Commander will tell you how

many rows the new subset contains)?

2 Import the Obarow.Story1.sav SPSS file (call it OStory). This file is in

the long form. Subset it into 4 columns of data, each one with results on

the first gainscore (gnsc1.1) for each of the 4 possible conditions (+

pictures, +music) listed in the Treatment variable. How many entries are

in each of the 4 subsetted vectors (you can use the length() command or

the Messages section of R Commander will tell you how many rows the

new subset contains)?

3 Open the .comma delimited (.csv) text file called Effort. This is an

invented dataset comparing outcomes of the same participant in 4 different

conditions. It is set up in the wide form. Change it to the long form so

there are only 2 columns of data and call it EffortLong; call one column

Score and the other Condition. What is the average score over the entire

group (this is not really something you’d be interested in, but it’s just a

way to check you’ve set up the file correctly)?

	 26

4 Open the comma delimited (.csv) text file called Arabic. This is an

invented dataset that looks at the results of 10 participants on 4 phonemic

contrasts in Arabic, and also records the gender of each participant. It is

set up in the wide form. Change it to the long form so there are only 2

columns of data that are indexed by the type of contrast that was used, and

call it ArabicLong. Call one column Contrast (as in the phonemic

contrast) and the other Score. What is the average score over the entire

group (this is not really something you’d be interested in, but it’s just a

way to check you’ve set up the file correctly)?

Splitting Files by Groups
Many times you will want to perform statistical operations on data split by groups. Some

commands in R Commander provide a way for you to split data into groups easily by

building it into the dialogue box. However, other commands do not have this built in.

When you want to split data on your own you then have two options: 1) You can split

your original data file into parts for each group. You will then be working with separate

datasets, and will have to remember to change the active dataset each time in R

Commander; or you can 2) Specify the row numbers for each group in square brackets

after the name of the data file, using the command in R console. The second method is

much easier I think, but requires that you move to R console, which you might not want

to do.

	 27

To split the original data file into separate files, follow the R Commander menu DATA >

ACTIVE DATASET > SUBSET ACTIVE DATASET. If you want to subset the entire file, keep

the box called “Include all variables” checked. If you only want to make a new dataset

for some of the variables, check off that box and select only the variables you want. The

tricky part for this dialogue box is the “Subset expression” box. This needs to be in the

form of the exact name of your splitting variable (your group variable) followed by two

equals signs, and then the exact name of your group in parentheses. The section titled

“Getting your data in the correct form for statistical tests” showed this process for the file

verbsLong (see Figure 9 for the Subset Dataset dialogue box). I will give another

example here. In the application activities you have worked with the DeKeyser data.

Let’s say you want to split this file by the groups. First look at the names of the variables

by opening up the “View dataset” button on R Commander, or typing names(dekeyser)

into R console. Here we will want to divide gjtscore by status, so we have to look at the

exact name of the groups in the status variable. Again, do this in the “View dataset” mode

in R Commander, or type levels(dekeyser$status) into R console and see what names

are given.

If you’re using R Commander then, in the “Subset expression” box you’d have to now

create this string:

status=="Under 15"

	 28

for the “Under 15” group. You should then give this dataset a new name, such as

dekeyser.under15. I’ve shown the dialogue box for this process in Figure 10. Notice that

if you forgot the space between “Under” and “15”, or didn’t capitalize the “U” in

“Under”, R Commander would execute your command without any complaints, but you

would have an empty dataset.

Figure 10 Subsetting a dataset in the long form (the dekeyser dataset)

To finish off the process, you’d need to go back and make the dekeyser file your active

dataset, and repeat the process again, this time entering status == "Over 15" and naming

the data file differently.

	 29

You can see that this process of splitting up your data into two files is a little time

consuming and must be done exactly right. However, you can then continue to use all of

the commands in R Commander. I think it is much easier to simply move to R console

and specify exact row numbers if you have a command that doesn’t split the file by

groups. For example, Chapter 3 of the book shows a plot called a histogram, and in R

Commander there is no way to call for histograms split by groups.

But in that case, you could simply open the “View dataset” button in R Commander, see

which rows describe which groups (for the dekeyser dataset, rows 1 through 15 are the

“Under 15” group, and rows 16–57 are the “Over 15” group), and type in the command

for histograms with those row numbers. I myself would probably first run the menu

sequence for the histogram in R Commander so I could get the R console command. For

example, here is the command R Commander returns when I call for a histogram through

the menus:

Hist(dekeyser$gjtscore, scale="frequency", breaks="Sturges", col="darkgray")

Now I simply add the row numbers in square brackets after copying the command over to

the R console:

Hist(dekeyser$gjtscore[1:15], scale="frequency", breaks="Sturges",

col="darkgray")

	 30

Hist(dekeyser$gjtscore[16:57], scale="frequency", breaks="Sturges",

col="darkgray")

Bibliography
DeKeyser, R. M. (2000). The robustness of critical period effects in second language

acquisition. Studies in Second Language Acquisition, 22, 499–533.

Everitt, B., & Dunn, G. (2001). Applied multivariate data analysis (2nd ed.). New York:

Oxford University Press.

Obarow, S. E. H. (2004). The impact of music on the vocabulary acquisition of

kindergarten and first grade students. (Ed. Dissertation). Available from

ProQuest Dissertations & Theses database. (UMI No. 3120733).

Torres, J. (2004). Speaking up! Adult ESL students’ perceptions of native and non-native

English speaking teachers. Unpublished MA, University of North Texas, Denton.

