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Two‐Way Factorial ANOVA with R 

This section will illustrate a factorial ANOVA where there are more than two levels 

within a variable. The data I will be using in this section are adapted from a dataset called 

“ChickWeight” from the R statistical program built-in package. These data provide the 

complex analysis that I want to show here, but I have renamed the dataset in order to 

better help you understand the types of analyses that we would do in second language 

research. I call this dataset “Writing.txt,” and we will pretend that this data describes an 

experiment that investigated the role of L1 background and experimental condition on 

scores on a writing sample. The file is a .csv file, not an SPSS one. 

 

The dependent variable in this dataset is the score on the writing assessment, which 

ranges from 35 to 373 (pretend this is an aggregated score from four separate judges who 

each rated the writing samples on a 100-point score). The independent variables are L1 

(four L1s: Arabic, Japanese, Russian, and Spanish) and Condition. There were three 

conditions that students were asked to write their essays in—“correctAll,” which means 

they were told their teachers would correct all of their errors; “correctTarget,” which 

means the writers were told only specific targeted errors would be corrected; and 

“noCorrect,” in which nothing about correction was mentioned to the students.  

 

First of all, we want to examine the data before running any tests, so Table 1 gives a 

numerical summary of the data. The very highest scores within each L1 were obtained in 

the condition where no corrections were made, and the lowest scores in the condition 

where writers were told everything would be corrected. Standard deviations certainly 
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have a large amount of variation within each L1. The numbers of participants in each 

group are unbalanced but there are a large number of them at least. 

 

Table 1 Descriptive Statistics for the Writing Dataset. 

 

Next, graphics will help in visually getting a feel for the multivariate data. Let’s look at 

data using both of the graphics plots that I introduced in this chapter. First, the interaction 

plot: 

 

library(phia)  

wmodel1<-lm(score~L1*condition, data=writing) 

writing.mean<-interactionMeans(wmodel1) 

plot(writing.mean) 

 

The code above will give us the interaction plot in Figure 1. The top right panel of the 

interaction plot quickly shows shows that all of the L1s performed similarly in the 

different conditions (lines are mostly parallel), with the Russian and Spanish speakers 

performing with the highest scores, and the Arabic speakers with the lowest scores. The 
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bottom left panel shows that there may be an interaction between L1 and condition, 

because while in the correctAll condition there was little difference between L1s, in the 

correctAll condition there seemed to be great differences between L1s. It also shows in 

the main effect panels (top left and bottom right) that Spanish speakers did best overall, 

and that that those who were not told anything about correction got the highest overall 

scores (noCorrect) and those who were told everything would be corrected (correctAll) 

got the most depressed scores. 
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Figure 1 Interaction plot from phia package with Writing dataset. 

 

Next, let’s look at an interaction plot with boxplots for main effects: 

 

library(HH) 

interaction2wt(score~L1*condition,data=writing) #this is the basic command, 

#although I did alter it a bit for readability 
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Figure 2 Interaction and boxplot from HH package with Writing dataset. 

 

The interaction plots in Figure 2 don’t tell us any more than the ones in Figure 1, but I 

like the boxplots because we can see that the data are not normally distributed (there are 

outliers, represented by dots outside the maximum lines of the boxplots, and the 

distribution is not symmetrical) and variances are certainly not equal for Condition, as the 

amount of variation for the correctAll condition is quite low while for the noCorrect it is 
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quite large. 

 

In the first edition of the book I published a barplot for these same data. This is 

reproduced now in Figure 3. You can see that a barplot is not nearly as informative as 

either of these graphics for this data. 

 

 

Figure 3 Barplot of Writing dataset. 
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Calling for a two‐way factorial ANOVA 
In R Commander, open the writing.csv file by going to DATA > IMPORT DATA > FROM 

TEXT FILE, CLIPBOARD, OR URL . . . . Enter the name writing for this file, and change the 

“Field Separator” to “Commas.” Navigate to the file and open it, verifying that it has 3 

columns and 578 rows. We’ll be working with this file from now on, so let’s go ahead 

and attach it to our workspace. To get descriptive statistics such as were shown in Table 

11.12, you could use the tapply( ) command with the two independent variables of L1 

and condition on the response (dependent) variable of score, like this: 

 

attach(Writing) 

tapply(score,list(L1,condition),mean) #use sd and function(x) sum(!is.na(x)) instead 

of mean to get standard 

deviation and counts  

 

 

Now we will begin to model. We can use either aov( ) or lm( ) commands, it makes no 

difference in the end. Using the summary call for aov( ) will result in an ANOVA table, 

while the summary for lm( ) will result in parameter estimates and standard errors (what I 

call regression output). However, you can easily switch to the other form by using either 

summary.lm( ) or summary.aov( ). In order to illustrate a different method than before, 

I will be focusing on the regression output, so I will model with lm( ). I will illustrate the 

“old statistics” point estimation model first before looking at confidence intervals. 
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An initial full factor ANOVA is called with the following call: 

 

write=lm(score~L1*condition) 

Anova(write) 

 

 

 

The ANOVA shows that the main effect of first language, the main effect of condition, 

and the interaction of L1 and condition are statistical. Remember, however, that when 

interactions are statistical we are more interested in what is happening in the interaction 

and the main effects are not as important. Thus, we now know that scores are affected by 

the combination of both first language and condition, but we still need to know in more 

detail how L1 and condition affect scores. This is when we will need to perform 

comparisons. 

 

We’ll start by looking at a summary of the model (notice that this is the regression output 

summary, because I modeled with lm( ) instead of aov( ). 

 

summary(write) 
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This output is considerably more complex than the ANOVA tables we’ve seen before, so 

let’s go through what this output means. In the parameter estimate (regression) version of 

the output, the factor levels are compared to the first level of the factor, which will be 

whatever comes first alphabetically (unless you have specifically ordered the levels). To 

see what the first level is, examine it with the levels command: 

 

levels(L1) 

[1] "Arabic" "Japanese" "Russian" "Spanish" 

 

Thus, the row labeled L1[T.Japanese] compares the Arabic group with the Japanese 

group because it compares the first level of L1 (Arabic) to the level indicated. The first 

level of condition is allCorrect. The Intercept estimate shows that the overall mean score 

on the writing sample for Arabic speakers in the allCorrect condition is 48.2 points, and 
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Japanese learners in the allCorrect condition score, on average, 1.7 points above the 

Arabic speakers (that is what the Estimate for L1[T.Japanese] shows). The first 3 rows 

after the intercept show, then, that no group is statistically different from the Arabic 

speakers in the allCorrect condition. The next 2 rows, with “condition” at the beginning, 

are comparing the correctTarget and noCorrect condition each with the noCorrect 

condition, and both of these comparisons are statistical. The last 6 rows of the output 

compare various L1 groups in either the correctTarget condition or the noCorrect 

condition with the Arabic speakers in the allCorrect condition (remember, this is the 

default level). Thus, the last 6 lines tell us that there is a difference between the Russian 

speakers in the correctTarget condition with the Arabic speakers in the allCorrect 

condition, and also that all L1 speakers are statistically different in the noCorrect 

condition from the Arabic speakers in the allCorrect condition.  

 

At this point, you may be thinking this is really complicated and you really didn’t want 

comparisons only with Arabic or only in the allCorrect condition. What can you do to 

get the type of post-hoc tests you would find in a commercial statistical program like 

SPSS which can compare all levels? The pairwise.t.test( ) command can perform all 

possible pairwise comparisons if that is what you would like. 

 

For example, we can look at comparisons only between the L1s and see a p-value for 

these comparisons: 

 

pairwise.t.test(score,L1, p.adjust.method="fdr") 
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This shows that overall, Arabic L1 speakers are different from all the other groups; the 

Japanese L1 speakers are different from the Spanish L1 speakers, but not the Russian L1 

speakers. Lastly, the Russian speakers are not different from the Spanish speakers. We 

can also look at the comparisons between conditions: 

 

pairwise.t.test(score,condition, p.adjust.method="fdr") 

 

 

Here we see very low p-values for all conditions, meaning all conditions are different 

from each other. Lastly, we can look at comparisons on the interaction: 

 

pairwise.t.test(score,L1:condition, p.adjust.method="fdr") 

 

This is only the beginning of a very long chart . . .  
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Going down the first column, it’s clear that none of the groups are different from the 

Arabic L1 speakers in the correctAll condition (comparing Arabic to Japanese p=.87, 

Arabic to Russian p=.69, Arabic Spanish p=.80). That, of course, doesn’t tell us 

everything; for example, we don’t know whether the Japanese speakers are different from 

the Russian and Spanish speakers in the correctAll condition, but given our graphics in 

Figures 1 to 4, we might assume they will be when we check. Looking over the entire 

chart we get a full picture of the nature of the interaction: no groups are different from 

each other in the correctAll condition; in the correctTarget condition, only the Russian 

and Arabic and the Spanish and Arabic speakers differ statistically from each other; in the 

noCorrect condition, all groups perform differently from one another.  

 

Here is the analysis of the post-hoc command in R: 

 

pairwise.t.test(score,L1:condition, p.adjust.method="fdr") 
pairwise.t.test(score, . . . Put in the dependent (response) variable as the 

first argument 
L1:condition The second argument is the variable containing 

the levels you want compared; here, I didn’t care 
about the main effects of L1 or condition, just the 
interaction between them, so I put the interaction 
as the second argument 

p.adjust.method="fdr" Specifies the method of adjusting p-values for 
multiple tests; you can choose hochberg, 
hommel, bonferroni, BH, BY, and none (equal 
to LSD); I chose fdr because it gives more power 
while still controlling for type I error 

 

Now that we’ve seen how to look at this comparison by only using p-values, let’s look at 

how we could instead examine confidence intervals. Since we only have two variables we 
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do not need to subset the data, as we did in Section 10.5.2 of the book, and can instead go 

straight to using the multcomp package and the syntax used there to create a coefficient 

matrix that will test all of the comparisons between groups. This syntax will be a little 

different from the syntax used in Section 10.5.2 because each variable has more than 2 

levels. If you can understand the syntax you can understand how you would need to 

change the syntax to fit your own situation with the number of levels in each variable that 

you have. I have added a number of annotations in the syntax to help you, but you’ll 

understand best if you work through the example and look at each object that you create 

after you make it as you go along. 

 

 

The following syntax creates a contrax matrix for L1 for each level of condition (N.B. 

items in red should be replaced with your own data name): 

 

Tip: How do I change this syntax for my own data? 
The basic idea is that comparisons will be made among the levels of the first variable 
that you enter (L1 for my writing dataset; since there are four levels of L1, there are 6 
comparisons). Then you will need to make matrices that will be of size 6 rows × 4 
columns, so you see the number of rows is the number of comparisons among the IV 
entered first (L1 for my data) and the number of columns is the number of levels in 
that same IV (L1). But you will need to repeat this matrix 3 times. That is because 
there are 3 levels of condition. Repeating three times also has to happen in two places: 
1) In the width of the matrix K, and in the number of K that need to be created. That is 
why in the syntax below I had to: 1) Put in 3 sets of 6 rows × 4 column matrices, 2 
with only zeros and 1 with the +1s and -1s necessary to call for the correct contrasts, 
whereas in Section 10.5.2 of the book I only had 2 sets of 2 rows × 2 column matrices 
and 2) Create 3 sets of K (K1, K2, K3) whereas in Section 10.5.2 I only created 2 
(because there were only 2 levels of my IV). 
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library(multcomp) 

names(writing) 

Tukey=contrMat(table(writing$L1),"Tukey") 

K1=cbind(Tukey, matrix(0,nrow=nrow(Tukey), ncol=ncol(Tukey)), 

matrix(0,nrow=nrow(Tukey), ncol=ncol(Tukey))) #there are 3 levels of condition, so 

#we bind together 3 matrices of 4 columns 

#the 4 columns are because there are 4 columns in the Tukey matrix from L1 

#the +1 and -1 are in the first matrix of 4 columns, where Tukey is 

rownames(K1)=paste(levels(writing$condition)[1], rownames(K1), sep=":")  

K2=cbind(matrix(0,nrow=nrow(Tukey),ncol=ncol(Tukey)),Tukey, 

matrix(0,nrow=nrow(Tukey), ncol=ncol(Tukey))) 

#the +1 and -1 are in the second matrix of 4 columns, where Tukey is 

rownames(K2)=paste(levels(writing $condition)[2],rownames(K2),sep=":") 

K3=cbind(matrix(0,nrow=nrow(Tukey),ncol=ncol(Tukey)), 

matrix(0,nrow=nrow(Tukey),ncol=ncol(Tukey)), Tukey) #a third matrix is needed 

#because there are 3 levels of condition 

#the +1 and -1 are in the third matrix of 4 columns, where Tukey is 

rownames(K3)=paste(levels(writing$condition)[3],rownames(K3),sep=":") 

K=rbind(K1, K2,K3) 

colnames(K)=c(colnames(Tukey), colnames(Tukey), colnames(Tukey)) 

#we have 3 matrices of 4 columns each so we have to repeat the column names 3 times 

writing$L1C=with(writing, interaction(L1,condition)) 

cell=lm(score~L1C-1, data=writing) 
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summary(glht(cell, linfct=K)) 

confint(glht(cell,linfct=K)) 

detach(writing) 

 

Here is the output for the confidence intervals for the 12 comparisons: 

 

 

 

Remember that the contrasts are adjusted with a Tukey adjustment, which is why there 

are different results in this section compared with the results with p-values above, which 

were adjusted with the more lenient fdr method. 
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Another nice thing to do here is to plot the confidence intervals on a graph: 

 

par(mar=c(4,14,4,2))#adjusts margin parameters to make left margin large enough for 

#labels 

#default margins are (5,4,4,2) and you might want to set them back to normal after 

#printing 

plot(glht(cell,linfct=K)) 
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Figure 4 Confidence intervals for multiple comparisons in factorial ANOVA. 

 

The basic conclusion we can make from the confidence intervals in Figure 4 is that in the 

noCorrect condition L1 was very important. Most L1 groups scored differently from the 

others in this condition, with the largest effects being between the Spanish and Arabic 

speakers (95% CI [49.33, 91.57]) and the Russian and Arabic speakers (CI[26.69, 

69.49]). Mean scores show that Spanish L1 speakers were better (by 49 points at worst, 
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perhaps 91 points at best) than the Arabic speakers, and that the Russian L1 speakers 

were better than the Arabic L1 by 27 points at least, and possibly as much as 69 points. 

The confidence intervals were quite wide in all cases, however, and for some 

comparisons in the noCorrect condition the CI was very close to zero, such as for the 

comparison between Arabic L1 and Japanese L1 speakers, with a mean difference of 28.5 

points and CI of [-49.85, -7.5], with mean scores showing the Japanese did better than the 

Arabic speakers. In other cases, we could not be sure of any real effect as the CI went 

through zero, as for the comparison between Russian L1 and Japanese L1 speakers, 

although this confidence interval was not centered around zero and with a more precision 

may have shown a weak effect. For the correctTarget and correctAll conditions, L1 was 

not very important, as most comparisons (except one) did not show any effect for L1.  

Of course, this is not nearly the end of the analysis one could do, and in reporting on the 

results I would want to present descriptive statistics of mean scores, estimates of mean 

differences between groups, and confidence intervals for a full complement of 

comparisons, not just the ones where there was an effect. This is true whether you report 

CIs or p-values. 

 

However, it would be the end of my investigation of this dataset. Since I found two-way 

interactions with real effects, I would not be interested in looking at the main effects of 

just L1 or just Condition. Stop looking at lower-order comparisons if you find effects at 

the higher level. In other words, if you find real effects for a two-way comparison, do not 

bother to look at main effects (the levels of one variable). If you need to examine main 

effects, use techniques for one-way ANOVAs if there are more than two levels, or 
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techniques for t-tests if there are only two levels. 

 

We’ve been able to answer our question about how the levels of the groups differ from 

one another, but we have had to perform a large number of post-hoc tests. If we didn’t 

really care about the answers to all the questions, we have wasted some power by 

performing so many. One way to avoid such a large number of post-hoc tests would be to 

have planned out your question in advance and to run a priori planned comparisons.  

Robust Methods of Performing Factorial ANOVA in R 
 
In this section I will provide explanation of some of Wilcox’s (2005) robust methods for 

two-way and three-way ANOVAs. Before using these commands you will need to load 

Wilcox’s package, WRS, into R (see Section 8.4.4 in the book for a complete list of what 

to install) and then open Wilcox’s WRS package (library(WRS)). Wilcox recommends a 

bootstrap-t method when comparing means or trimmed means with a small amount of 

trimming (20% is the default), especially when sample sizes are small, while a percentile 

bootstrap is better when comparing groups based on other measures of location that are 

not means (such as M-estimators or MOM). 

 

The command t2waybt( ) uses trimmed means and a bootstrap-t for a two-way ANOVA, 

the command t3waybt( ) uses trimmed means and a bootstrap-t for a three-way ANOVA, 

and the command pbad2way( ) uses the percentile bootstrap and M-measures of location 

(not means) in a two-way design. For all of these tests, the data need to be stored in a 

matrix or list. The WRS command fac2list(x, g) takes the response variable data in x and 
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divides it up by the factors in g, which can be specified as more than one column in the 

case of two-way or three-way ANOVA. Here is how I split the data into 12 different lists 

for L1 and Condition for the writing data: 

 

 

 

z=fac2list(writing[,1 ],writing[,2:3]) #don’t forget to open the WRS package 

 

Notice how in the second argument I put column 2 and 3, which will divide the data by 

the interaction of these two variables. This variable does not label the separate lists, so 

how do you know which lists are what? You would ask for the levels of L1 and 

Condition.  

 

 

 

R will combine the variable so that it takes the first level of the first factor (“Arabic”) and 

the first level of the second factor (“correctAll”). Then it will take the first level of the 

first factor (“Arabic”) and the second level of the second factor (“correctTarget”). It will 

finish off the row by taking the first level of the first factor (“Arabic”) and then the third 

level of the second factor (“noCorrect”). Then it will start on the second row, which is the 

second level of the first factor (“Japanese”) and the first level of the second factor 

(“correctAll”), and continue on in this manner.  
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If you have your data already in the wide format where each column represents the 

response variable divided by your independent variables, there is no need to put it into a 

list. Instead, you can tell the command what order to take the columns in by specifying 

for grp, like this: 

 

grp<-c(2,3,5,8,4,1,6,7) 

 

where column 2 (as denoted by c(2)) is the data for level 1 of Factors A and B, column 3 

is the data for level 1 of Factor A and level 2 of Factor B, etc. (do rows first, columns 

second). 

 

Now that the data are in the correct form I can run the t2waybt( ) test. Here is the basic 

syntax: 

 

t2waybt(J, K, x, tr=0.2, grp=c(1:p), p=J*K, nboot=599, SEED=T) 

 

where J= the number of levels of the first variable used in whatever you have made that 

specifies groups (we made z, where the first variable was Pictures), K= the number of 

levels of the second variable, tr is the amount of trimming (default 20%), x is the place 

where the data is stored, grp specifies the groups if you need to specify them in an order 

different from the way they are listed in x or if they are a subset of x, and where p is 

something you can ignore as it works out whether the total number of groups is correct. 
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Leave nboot as it is for now, and SEED is something you should only use if you want to 

be able to replicate a particular run of the command with the bootstrap. Now I run the 

command with the writing data: 

 

t2way(4,3,z,tr=.2) #the output is skinny so I am going to rearrange it to fit better on my 

#page 

 

The output from this test returns the test statistic Q for Factor A (which is L1 here) in the 

$Qa line, and the p-value for this test in the $A.p.value line. So the factor of L1 is 

statistical, p=.001. So is the factor of Condition, listed as $Qb (p=.001), and also the 

interaction between the two is statistical, listed as $Qab (p=.001).  

 

Great! We know we have a statistical interaction but now we need to perform multiple 

comparisons to find out which levels are statistically different from one another. In this 

case, use the linconb( ) command that uses the bootstrap-t and trimmed means, described 

in Section 9.4.8. I will walk you through the steps. 
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w=con2way(4,3)  
 

Create an object, w, that holds the contrasts for 
a 4 × 3 matrix. Make sure your first number 
specifies the levels of the first factor of your 
data in z (from above in this section, it is an 
object that holds our data and the independent 
variables)

linconb(z, con=w$conA, tr=.2) This will perform multiple comparisons of all 
of the interactions between the first variable 
(L1) with bootstrapping and means trimming 
of default 20%

 

The output is long, so I have cut it down to a sample: 

 

 

 

The warning tells us the confidence intervals are adjusted to control for having multiple 

comparisons (there are 18 in all) but the p-values (not shown) are not. In the part labeled 

$n we get the number of participants in each group (not the number in each comparison 

though). Which group is it? Remember that Group 1=Arabic_CorrectAll, Group 

2=Arabic_CorrectTarget, Group 3=Arabic_noCorrect, Group 4=Japanese_CorrectAll, 

and Group 5=Japanese_CorrectTarget, and so on. 
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Then under $psihat we get the difference between the two compared groups, and the 

confidence level of that comparison. But what has been compared? For that, we need to 

look at the last part of the output labeled $con: 

 

 

To interpret this we need to understand how contrasts work. I first looked at contrasts in 

Section 9.4.7 of the book, and most recently looked at them in Section 10.5.3 when doing 

planned comparisons. If you understand how contrasts work, you can see that what was 

compared in the first column of these contrasts was all of the Arabic speakers to the 

Japanese speakers (because each one of the 3 condition contrasts for Arabic speakers got 

a +1, and each one of the 3 condition contrasts for Arabic speakers got a -1). Column 2 

describes the contrast between Arabic and Russian speakers, column 3 between Arabic 

and Spanish speakers. Can you work the rest out?  

 

Now go back and look at the confidence intervals (I’ve already discussed the results in 

previous sections so won’t do so again here except to note that compared with non-

trimmed and non-bootstrapped comparisons in the first section (“Performing a two-way 

factorial ANOVA”) of this document, there is a difference in the comparison between 
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Japanese and Russian speakers (the 4th row), which has a CI that does not pass through 

zero here, although it is fairly close, whereas in the first section of this document the p-

value was higher than .05). 

 

We should be able to also look at the comparison between all the levels of the two factors 

in the w$conAB argument, but I found this to be a strange comparison the way it was set 

up. In fact, Wilcox says that the AB comparison is between “all interactions associated 

with any two rows and columns” (2011, p. 596), and in the contrasts we find 2 “1”s and 2 

“-1”s, so that we are comparing CorrectAll:CorrectTarget::Arabic:Japanese, indeed, it 

appears we are comparing two rows and two columns at the same time, but I am not sure 

how to interpret this. Below is an example of what these contrasts look like (there are 18 

columns but I am only showing 13). 

 

 

Therefore, I cannot recommend this approach as a way to bootstrapping the comparisons 

between the interaction. 
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For a two-way analysis using percentile bootstrapping and M-estimators, the command 

pbad2way( ) can be used. The data need to be arranged in exactly the same way as for 

the previous command, so we are ready to try this command out: 

 

pbad2way(4,3,z,est=onestep, conall=T, alpha=.05, nboot=2000, grp=NA, 

pro.dis=F) #If you needed it, you #could use the grp term as described previously to 

specify certain groups 

 

The term conall=T means that all possible pairs are tested, but Wilcox (2012) notes that 

it can result in a numerical error, as it indeed does for my data: 

 

 

 

Wilcox (2011) says that when this happens there are two options. One is to use conall=F, 

which tests a different hypothesis and “is acceptable if all of the hypotheses are rejected. 

But if one or more are not rejected, the suggestion is to use pro.dis=T, which avoids the 

numerical error by replacing Mahalanobis distance with what is called projection distance. 

(Projection distance does not require the inverse of a covariance matrix.)” (Wilcox, 2011, 

p. 513). 

 

Obviously a three-way interaction will be more complicated. The command t3way( ) also 

requires data to be set up in a specific way, and it can be used to trim data but not for 

bootstrapping. The easiest way to do this again will be to create a list. Now we need to 
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arrange the data so that for level 1 of Factor A, we will find the first vector of the list 

contains level 1 for Factor B and level 1 for Factor C. The second vector will contain 

level 1 for Factor A, level 1 for Factor B, and level 2 for Factor C. See Table 1 (taken 

from Wilcox, 2005, p. 286) for more details on how a design of 2×2×4 would be set up: 

 

Table 2 Data arranged for a three-way ANOVA command from Wilcox. 

level 1 of 

Factor A 

Factor C 

Factor B x[[1]] x[[2]] x[[3]] x[[4]] 

x[[5]] x[[6]] x[[7]] x[[8]] 

 

level 2 of 

Factor A 

Factor C 

Factor B x[[9]] x[[10]] x[[11]] x[[12]] 

x[[13]] x[[14]] x[[15]] x[[16]] 

 

 

Let’s examine the Obarow data now, using a 2×2×2 design (so there will be 8 categories) 

with Gender included as Factor C. Using the previous fac2list() command, we should be 

able to arrange the data in an object y: 
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To understand the meaning of each contrast number, we’ll need to know how the levels 

are arranged: 

 

 

 

Now we can tell that group 1=male, no pictures, no music; group 2=male, no pictures, 

music; group 3=male, pictures, no music and group 4=male, pictures, music (and just 

repeat with female in place of male for groups 5-8). We’re ready to try the trimmed 

means ANOVA test, which can especially help with heteroscedasticity, according to 

Wilcox (2011). 

 

t3way(2,2,2, y, tr=.2) #If you need to, you can specify the grp argument as above 

Note that A=Gender, B=Pictures, & C=Music; further, AB=Gender:Pictures, 

AC=Gender:Music and BC=Pictures:Music. 
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Note: I rearranged the output to fit more of it on the page. 

 

Since it is a three-way ANOVA, it returns the results of main effects first, then all of the 

two-way interactions and then the three-way interaction. The test statistic Q is returned 

along with a critical value for Q and the p-value. You can see in the output that no 

interactions or main effects are statistical. Wilcox (2011) does not provide any methods 

for 3-way analyses using bootstrapping.  
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Summary Performing Robust ANOVAs using Wilcox’s (2011) Commands 
 

1 If your data is in the long form, rearrange data using Wilcox’s fac2list( ) command 
from the WRS package (N.B. items in red should be replaced with your own data 
name): 
z=fac2list(writing[,1 ],writing[,c(2,3)]) 
Specify the response (dependent) variable in the first argument and the independent 
variables in the second argument. Using the c( ) syntax you can list any columns you 
need. 

2 To calculate a two-way trimmed means bootstrap-t ANOVA, use: 
t2waybt(J, K, z, tr=0.2, nboot=599) 
where J=# of levels for Factor A, K=# of levels for Factor B, z=data in correct format 

3 To calculate a two-way percentile bootstrapping ANOVA using M-estimators, use: 
pbad2way(J,K,z,est=onestep, nboot=2000)  
This command may have problems with the covariance matrix; see text for details of 
how to fix 

4 To calculate a three-way trimmed means ANOVA, use: 
t3way(J, K, L, z, tr=.2)  
where L= levels for Factor C 

 


