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Other Kinds of Correlations in R  

Partial Correlation  
	
Do you think that how well second language learners can pronounce words in their 

second language gets worse as they get older? I certainly didn’t suspect this might be the 

case when I performed an experiment designed to see how well 15 Japanese speakers 

living in the United States for 12 years or more pronounced words beginning in /r/ and /l/ 

(Larson-Hall, 2006).  

 

In every experimental condition the researcher wants to manipulate some variables while 

holding all other variables constant. One way to do this involves controlling for the 

variable before experimental participants are chosen. If I had thought age was a concern 

for pronunciation accuracy, I would have set experimental parameters to exclude 

participants over, say, age 50. When I found, after the fact, that pronunciation accuracy as 

well as scores on a timed language aptitude test declined with age, the only way left to 

hold the age variable constant was to use partial correlation to subtract the effects of age 

from the correlations I was interested in.  

	

I found a strong (as judged by effect size) and statistical negative correlation between 

length of residence (LOR) and production accuracy (as later judged by native speaker 

judges; r = − .88) as well as LOR and scores on a language aptitude test (r = − .55). This 

meant that, as the participants lived in the US longer, their scores went down on both 

measures. However, I also found that age correlated negatively with both production 
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accuracy and aptitude scores! Of course age also correlated positively with LOR (the 

longer a person had lived in the US, the older they were; r = .74). Thus, in order to 

determine the true relationship between length of residence and production accuracy, I 

needed to use a partial correlation. The partial correlation can tell me how LOR and 

accuracy vary together by subtracting out the effects of age.  

Calling for a Partial Correlation 
In R Commander a partial correlation is done by including only the pair of variables that 

you want to examine and the variable you want to control for. In other words, in order to 

get the correlation between LOR and aptitude while controlling for age, I will include 

only these three variables in the correlation. The partial correlation command in R will 

return a matrix of partial correlations for each pair of variables, always controlling for 

any other variables that are included. 

	

If you want to follow what I am doing, import the SPSS file LarsonHallPartial.sav and 

name it partial. The steps to performing a partial correlation are exactly the same as to 

performing any other correlation in R Commander: STATISTICS > SUMMARIES > 

CORRELATION MATRIX. Choose the two variables you are interested in seeing the 

correlation between (I want aptitude and LOR), and then the variable(s) you want to 

control for (age, although it actually doesn’t matter what order you pick these in), and 

click the Partial button (it doesn’t matter if you check the box for pairwise p-values; you 

will not get p-values with the partial correlation command). The syntax for this 

command, in the case of the partial correlation between LOR and aptitude while 

controlling for age, is: 
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partial.cor(partial[,c("age","lor","aptitude")], use="complete") 

 

This syntax should look familiar as it is almost exactly the same as the rcorr.adjust( )	

command; just the command	 partial.cor( )	 is new. The argument use="complete"	 is 

inserted in order to specify that missing values should be removed before R performs its 

calculations. As always, it’s best if you can impute missing values instead of removing 

cases with missing data.  

	

Figure	1	Pairwise	correlation	output.	

	

The output shown in Figure 1 gives the Pearson r value for the pairwise correlation. The 

results show that the correlation between LOR and aptitude are not important when age is 

removed from the equation (compare that to the non-partial correlation coefficient, which 

was r = -.55!). Note that no p-value is given in this command. That doesn’t bother us 

because the very low correlation means that the correlation is not important. However, 

the fact that we don’t have a confidence interval does bother us. 

	

What the fact that the effect size of the correlation is negligible with age partialled out 

means is that declines in scores on the aptitude test are almost all actually due to age. In 
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order to test the other correlation we are interested in, that between LOR and accuracy 

when age is controlled, we would need to perform another partial correlation with only 

those three variables included. Doing so shows that there is still a strong correlation 

between LOR and accuracy (r=-.75). 

	

For confidence intervals, we can use the psych package (Revelle, 2015). We’ll need to 

take just the partial correlation matrix that was calculated from the partial.cor( ) function 

and put it into an object. If you look at this object, you'll see that just the part $R is the 

matrix, so we will enter that into the corr.p( ) command, which returns p-values and 

confidence intervals, if we set short = F. 

 

library(psych) 

m	<‐ partial.cor(partial[,c("age","lor","aptitude")], use="complete")  

#use command from above 

cp <- corr.p(m$R, n=13)  

#set n=number of participants minus two (there were 15 in this dataset) 

print(cp, short=F) 

 

output omitted. . .  
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We want the correlation between LOR and aptitude so we would look at the third line in 

this output (which has age partialled out) and see that the confidence interval is  

[-.53, .57], clearly showing a lack of any correlation when age is partialled out. 

	

	

Reporting Results of Partial Correlation  
To report the results found for my data, I would say:  

A partial correlation controlling for age found a strong correlation between length of 

residence and production accuracy of R/L words. The Pearson r correlation coefficient 

was negative (r = −.75), meaning scores on production accuracy decreased with 

increasing length of residence, and a 95% BCa CI of [-.89, -.55] showed that there was an 

effect for this partial correlation. The width of the interval means the correlation 

Partial Correlation in R 
In R Commander, choose STATISTICS > SUMMARIES > CORRELATION MATRIX. 
Choose the radio button for “Partial.” 
Choose three variables—the two you want to see correlated with the third variable the one 
you want to partial out. 
By the way, you can partial out more than one variable at a time; just add another to the mix 
to partial out two, for example. 
R code (looking at correlation between two of the variables with the third partialled out): 
 
partial.cor(partial[,c("age","LOR","aptitude")], use="complete.obs") 
#(N.B. items in red should be replaced with your own data name) 
#also note that dataset partial is attached for this command 
 
To get confidence intervals, use the psych package and put the results from the partial 
correlation into an object m, whose $R component contains the partial correlation matrix: 
 
m <- partial.cor(partial[,c("age","lor","aptitude")], use="complete")  
cp <- corr.p(m$R, n=13) 
#set n=number of participants minus two  
print(cp, short=F) 
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coefficient is not precise, but even the lower limit of the CI shows that we can be 

confident that there is a strong relationship between accuracy and length of residence, and 

the effect size was large (R
2 
= .56). Controlling for age, the correlation between LOR and 

scores on the language aptitude test was very small and we can say there was basically no 

effect (r = .03, 95% CI [-.53, .57]).  

Point‐Biserial Correlations  
	
It is also permissible to enter a categorical variable in the Pearson’s r correlation if it is a 

dichotomous variable, meaning there are only two choices (Howell, 2002). In the case 

of a dichotomous variable crossed with a continuous variable, the resulting correlation is 

known as the point-biserial correlation (rpb). Often this type of correlation is used in the 

area of test evaluation, where answers are scored as either correct or incorrect.  

   

For example, in order to test the morphosyntactic abilities of non-literate bilinguals I 

created an oral grammaticality judgment test in Japanese. The examinees had to rate each 

sentence as either “good” (grammatical) or “bad” (ungrammatical), resulting in 

dichotomous (right/wrong) answers. Since this was a test I created, I wanted to examine 

the validity of the test, and see how well individual items discriminated between test 

takers. One way to do this is by looking at a discrimination index, which measures “the 

extent to which the results of an individual item correlate with results from the whole 

test” (Alderson, Clapham, & Wall, 1995). Such a discrimination index investigates 

whether test takers who did well overall on the test did well on specific items, and 

whether those who did poorly overall did poorly on specific items. It therefore examines 
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the correlation between overall score and score on one specific item (a dichotomous 

variable). Scores are ideally close to +1.  

 

One way to determine item discrimination in classical test theory is to conduct a 

corrected point-biserial correlation, which means that scores for the item are crossed with 

scores for the entire test, minus that particular item (that is the “corrected” part in the 

name).  

Point‐Biserial correlations using R  
Import the SPSS file LarsonHallGJT.sav as LHtest. To conduct the reliability assessment 

in R Commander choose STATISTICS > DIMENSIONAL ANALYSIS > SCALE RELIABILITY. 

Pick the total test score (totalscore) and the dichotomous scores for each item (for 

demonstration purposes I will show you the output just for the last three items of the test, 

Q43, Q44 and Q45). Below is the R code for this same procedure. 

 

reliability(cov(LHtest[,c("Q43","Q44","Q45","totalscore")], use="complete.obs")) 

 

 

The output first shows the overall reliability for these three items (it is low here but 

would be higher with more items). The point-biserial correlation for each item is the third 

column of data titled “r(item, total)” and the line above the columns informs us that, 
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appropriately, this has been calculated by deleting that particular item (say, Question43) 

from the total and then conducting a correlation between Q43 and the total of the test 

(also called the Corrected Item-Total Correlation). Oller (1979) states that, for item 

discrimination, correlations of less than .35 or .25 are often discarded by professional test 

makers as not being useful for discriminating between participants.  

 

More modern methods of test item analysis have become more popular, however, now 

that computing power has increased. In particular, item response theory (IRT) provides a 

way to analyze test items by positing a latent or unmeasured trait that is linked to the 

dichotomous scores. McNamara and Knoch (2012) state that IRT as a tool for analyzing 

language tests “appears to have become uncontroversial and routine” (p. 569). Although 

there is not space in this book to detail how IRT works, interested readers are directed to 

edited collections by Baker and Kim (2004) and van der Linden and Hambleton (1997), 

and more recent articles by Ellis and Ross (2013). 

 

In other cases where you may have a dichotomous variable such as gender (male versus 

female) or group membership with only two categories (student versus employed, for 

example) that you want to correlate with a continuous variable such as TOEFL scores, it 

generally does not make sense to conduct a correlation (whether Pearson or Spearman) 

because you have so little variation in the dichotomous variable (there are some 

exceptions; see Hatch & Lazaraton, 1991, p. 450, for additional information). It would be 

better in this case to compare means for the two groups using a t-test or one-way 

ANOVA.  
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Inter‐rater Reliability  
It often happens in second language research that you will have a set of judges who will 

rate participants. The judges may rate the participants’ pronunciation accuracy or writing 

ability or judge the number of errors they made in past tense, for example. In this case 

you will have multiple scores for each participant that you will average to conduct a 

statistical test on the data. However, you should also report some statistics that explore to 

what extent your raters have agreed on their ratings.  

 

If you think about what is going on with judges’ ratings, you will realize that you want 

the judges’ ratings to differ based on the participants that they rated. For example, Judge 

A may give Participant 1 an 8 and Participant 2 a 3 on a 10-point scale. You would then 

hope that Judge B will also give Participant 1 a high score and Participant 2 a low score, 

although they may not be exactly the same numbers. What you don’t want is for judges’ 

scores to vary based on the judge. If this happened, Participant 1 might get an 8 from 

Summary Conducting a Point-biserial Correlation with R 
In R Commander choose STATISTICS > DIMENSIONAL ANALYSIS > SCALE RELIABILITY.  
If doing test item analysis, pick the total test score and the dichotomous scores for each 
item. 
 
The R code is: 
reliability(cov(LHtest[,c("Q43","Q44","Q45","TotalScore")],  
use="complete.obs")) 
 
(N.B. items in red should be replaced with your own data name): 
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Judge A but a 2 from Judge B and a 10 from Judge C. In other words, you want to see 

that the variability in scores is due to variation in the sample and not variation in the 

judges. Any variation that is seen in the judges’ scores will be considered error, and will 

make the rating less reliable. DeVellis (2005) defines reliability as “The proportion of 

variance in a measure that can be ascribed to a true score” (p. 317). Mackey and Gass 

(2005) define reliability as consistency of a score or a test. They say a test is reliable if 

the same person taking it again would get the same score. You can see that these two 

definitions of reliability are similar, for they both address the idea that a test result can be 

confidently replicated for the same person. Therefore, the more reliable a measurement 

is, the more it will measure the right thing (the true score) and the less error it will have.  

 

Howell (2002) says the best way to calculate inter‐rater	 reliability for cases of judges 

rating persons is to look at the intraclass correlation. This will not only take into account 

the correlation between judges, but also look at whether the actual scores they gave 

participants differed. We will look at Cronbach’s	 alpha as a measurement of intraclass 

correction. Cortina (1994) says that coefficient alpha is an internal consistency estimate, 

“which takes into account variance attributable to subjects and variance attributable to the 

interaction between subjects and items [on a test, or for our purposes here, judges]” (p. 

98).  

  

In general, we might like a rule of thumb for determining what an acceptable level of 

overall Cronbach’s alpha is, and some authors do put forth a level of 0.70–0.80. Cortina 

(1994) says determining a general rule is impossible unless we consider the factors that 
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affect the size of Cronbach’s alpha, which include the number of items (judges in our 

case) and the number of dimensions in the data. In general, the higher the number of 

items, the higher alpha can be even if the average correlations between items are not very 

large and there is more than one dimension in the data. Cortina says that, “if a scale has 

enough items (i.e. more than 20), then it can have an alpha of greater than .70 even when 

the correlation among items is very small” (p. 102).  

 

In this section I will use data from a study by Munro, Derwing, and Morton (2006). 

These authors investigated to what extent the L1 background of the judges would affect 

how they rated ESL learners from four different L1 backgrounds—Cantonese, Japanese, 

Spanish, and Polish. The judges themselves were native speakers also of four different 

backgrounds—English, Cantonese, Japanese, and Mandarin, but I will examine the data 

only from the ten Mandarin judges here. The judges rated the samples on three 

dimensions—their comprehensibility, intelligibility, and accentedness. I will examine 

only scores for accentedness here using the file MunroDerwingMorton.sav.  

Calling for Inter‐rater Reliability 
To follow along, import the SPSS file MunroDerwingMorton.sav into R as “MDM.” To 

calculate the intraclass correlation for a group of raters, in R Commander choose 

STATISTICS > DIMENSIONAL ANALYSIS > SCALE RELIABILITY. Choose all of the variables 

except for “Speaker.” The columns you choose should consist of the rating for each 

participant on a different row, with the column containing the ratings of each judge. 

Therefore, in the MDM dataset, variable M001 contains the ratings of Mandarin Judge 1 

on the accent of 48 speakers, M002 contains the ratings of Mandarin Judge 2 on the 
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accent of the 48 speakers, and so on. The reliability( ) command will calculate 

Cronbach’s alpha for a composite scale. 

 

reliability(cov(MDM[,c("m001","m002","m003","m004","m005","m006","m007", 

"m008","m009","m010")], use="complete.obs")) 

 

 

 

Whereas for test analysis we were most interested in the third column, the corrected item-

total correlation, here we will be interested in the second column, which contains the 

standardized Cronbach’s alpha. For the Mandarin judges overall, Cronbach’s alpha is 

0.89 (the “standardized alpha” at the top of the printout). This is a high correlation 

considering that there are ten items (judges).  

 

Remember that we do not have any general rule of thumb for determining what level of 

Cronbach’s alpha is acceptable, and it is important to look at the correlations between 

pairs of variables. This means we should look at a correlation matrix between all of the 
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variables. Call for this in R code with the rcorr.adjust( ) command: 

 

rcorr.adjust(MDM[c("m001","m002","m003","m004","m005","m006","m007","m00

8","m009","m010")],type="pearson") 

 

 

Because the matrix is repeated above and below the diagonal line, you only need to look 

at one side or the other. By and large the paired correlations between judges are in the 

range of 0.30–0.60, which are medium to large effect sizes, and this Cronbach’s alpha 

can be said to be fairly reliable. However, if the number of judges were quite small, say 

three, then Cronbach’s alpha would be quite a bit lower than what is obtained with 10 or 

20 items even if the average inter-item correlation is the same. Try it yourself with the 

data— randomly pick three judges and see what your Cronbach’s alpha is (I got .65 with 

the three I picked).  

 

Why don’t we just use the average inter-item correlation as a measure of reliability 

between judges? Howell (2002) says that the problem with this approach is that it cannot 

tell you whether the judges rated the same people the same way, or just if the trend of 

higher and lower scores for the same participant was followed.  
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Another piece of output I want to look at is the reliability if each item (judge) 

individually were removed. If judges are consistent then there shouldn’t be too much 

variation in these numbers. This information is found in the first column of data next to 

each of the judges (m001, m002, etc.) in the output for the reliability( ) command above. 

Looking at this column I see that there is not much difference in overall Cronbach’s alpha 

if any of the judges is dropped for the Munro, Derwing, and Morton (2006) data (nothing 

drops lower than 86%), and that is a good result. However, if there were a certain judge 

whose data changed Cronbach’s drastically you might consider throwing out that judge’s 

scores.  

 

Overall test reliability is often also reported using this same method. For example, 

DeKeyser (2000) reports, for his 200-item grammaticality judgment test, that “The 

reliability coefficient (KR-20) obtained was .91 for grammatical items [100 items] and 

.97 for ungrammatical items” (p. 509) (note that, for dichotomous test items, the Kuder–

Richardson (KR-20) measure of test reliability is equal to Cronbach’s alpha). DeKeyser 

gives raw data in his article, but this raw data does not include individual dichotomous 

results on each of the 200 items of the test. These would be necessary to calculate the 

overall test reliability. Using the file LarsonHallGJT.sav file (imported as LHtest) I will 

show how to obtain an overall test reliability score if you have the raw scores (coded as 

1s for correct answers and 0s for incorrect answers).  

 
I could use the previous reliability( ) command but I’m going to introduce another 

possibility here. That is the alpha( ) command from the psych package. I like it because 
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I don’t have to list individual items, but can instead put the whole data frame into the 

command. For the LHtest data though, I just have to make sure I delete any variable (like 

ID or TotalScore) that are not individual items I want analyzed. Do this easily in R 

Commander by going to DATA > ACTIVE DATASET > SUBSET DATASET. In Figure 2 you 

can see I ticked off “Include all variables” and instead chose only the individual items. I 

then gave the new dataset a different name, LHtest.short.  

 

 

Figure 2 Getting rid of unwanted columns in your dataset using R Commander.  

 

Now open the psych package and use the alpha command on the subsetted data (this 

must be done in R). If you don’t have the psych package you can easily install it by 

typing: 

 
install.packages("psych") 
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which will work if you have root access in your computer to a directory that the package 

can be stored in.  

 

library(psych) 

alpha(LHtest.short) 

 

 

The beginning of the output shows me that with all 40 items I have a Cronbach’s alpha 

(under the “raw_alpha” column) of 0.69, which can also be reported as a KR-20 score of 

.69. This is not very high considering how many items I have, so it would be hard to call 

this a highly reliable test (I made it up myself and it clearly needs more work! I actually 

presented a conference paper at AAAL 2008 where I used R to analyze the data with IRT 

methods, and I would be happy to send you this presentation if you are interested).  
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