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Other	Kinds	of	Correlation	in	SPSS		

Partial	Correlation	
Do you think that how well second language learners can pronounce words in their second 

language gets worse as they get older? I certainly didn’t suspect this might be the case when I 

performed an experiment designed to see how well 15 Japanese speakers living in the United 

States for 12 years or more pronounced words beginning in /r/ and /l/ (Larson-Hall, 2006).  

 

In every experimental condition the researcher wants to manipulate some variables while holding 

all other variables constant. One way to do this involves controlling for the variable before 

experimental participants are chosen. If I had thought age was a concern for pronunciation 

accuracy, I would have set experimental parameters to exclude participants over, say, age 50. 

When I found, after the fact, that pronunciation accuracy as well as scores on a timed language 

aptitude test declined with age, the only way left to hold the age variable constant was to use 

partial correlation to subtract the effects of age from the correlations I was interested in.  

 

I found a strong (as judged by effect size) and statistical negative correlation between length of 

residence (LOR) and production accuracy (as later judged by native speaker judges; r = − .88) as 

well as LOR and scores on a language aptitude test (r = − .55). This meant that, as the 

participants lived in the US longer, their scores went down on both measures. However, I also 

found that age correlated negatively with both production accuracy and aptitude scores! Of 

course age also correlated positively with LOR (the longer a person had lived in the US, the 

older they were; r = .74). Thus, in order to determine the true relationship between length of 
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residence and production accuracy, I needed to use a partial correlation. The partial correlation 

can tell me how LOR and accuracy vary together by subtracting out the effects of age.  

Calling	for	a	Partial	Correlation	
In SPSS, call for a partial correlation by choosing ANALYZE > CORRELATE > PARTIAL command. 

If you want to follow along, I’m using the LarsonHallPartial.sav file. The dialogue box is almost 

the same as the one for regular correlations, except that it asks you to put factors you want to 

control for in the box labeled CONTROLLING FOR (see Figure 1). In order to get a confidence 

interval, open the “Bootstrap” button and tick the “Perform bootstrapping” box. Change the 

confidence intervals type to BCa from the default Percentile.  

 

Figure 1 Calling for a partial correlation in SPSS. 
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The output shown in Table 1 is almost identical to the normal correlation matrix output except 

that degrees of freedom (df) are shown instead of N. The output shows that the correlations 

between length of residence (LOR) and production accuracy are now slightly smaller but still 

quite substantial, even given the lower limit of the confidence interval (r = − .75, 95% BCa CI  

[-.89, -.55]), while the correlation between the language aptitude score and LOR now has no 

effect, as the CI passes through zero and is quite wide (r = .03, [-.61, .74]). This seems to imply 

that age played a large role in explaining the relationship of LOR and the aptitude scores, but not 

as great a role in the correlation between LOR and production accuracy. There is still a strong 

negative correlation between length of residence and production accuracy even when the effects 

of age are statistically subtracted.  

 

 
 

Table 1 Output from a Partial Correlation in SPSS. 
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Reporting	Results	of	Partial	Correlation		
To report the results found for my data, I would say:  

A partial correlation controlling for age found a strong correlation between length of 

residence and production accuracy of R/L words. The Pearson r correlation coefficient was 

negative (r = − .75), meaning scores on production accuracy decreased with increasing length 

of residence, and a 95% BCa CI of [-.89, -.55] showed that there was an effect for this partial 

correlation. The width of the interval means the correlation coefficient is not precise, but 

even the lower limit of the CI shows that we can be confident that there is a strong 

relationship between accuracy and length of residence, and the effect size was large (R
2 

= 

.56). Controlling for age, the correlation between LOR and scores on the language aptitude 

test was very small and we can say there was basically no effect (r = .03, 95% CI [-.53, .57]).  

Point‐Biserial	Correlations		
It is also permissible to enter a categorical variable in the Pearson’s r correlation if it is a 

dichotomous variable, meaning there are only two choices (Howell, 2002). In the case of a 

dichotomous variable crossed with a continuous variable, the resulting correlation is known as 

the point-biserial correlation (rpb). Often this type of correlation is used in the area of test 

evaluation, where answers are scored as either correct or incorrect.  

   

Summary Calculating Partial Correlations in SPSS  

In the drop-down menu choose ANALYZE > CORRELATE > PARTIAL. Put the variable you 
want to control for in the CONTROLLING FOR box, and the other variables in the 
VARIABLES box. Open the BOOTSTRAP button and tick the “Perform bootstrapping” box. 
Change the type of confidence interval to “Bias corrected accelerated (BCa)”. 
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For example, in order to test the morphosyntactic abilities of non-literate bilinguals I created an 

oral grammaticality judgment test in Japanese. The examinees had to rate each sentence as either 

“good” (grammatical) or “bad” (ungrammatical), resulting in dichotomous (right/wrong) 

answers. Since this was a test I created, I wanted to examine the validity of the test, and see how 

well individual items discriminated between test takers. One way to do this is by looking at a 

discrimination index, which measures “the extent to which the results of an individual item 

correlate with results from the whole test” (Alderson, Clapham, & Wall, 1995). Such a 

discrimination index investigates whether test takers who did well overall on the test did well on 

specific items, and whether those who did poorly overall did poorly on specific items. It 

therefore examines the correlation between overall score and score on one specific item (a 

dichotomous variable). Scores are ideally close to +1.  

 

One way to determine item discrimination in classical test theory is to conduct a corrected point-

biserial correlation, which means that scores for the item are crossed with scores for the entire 

test, minus that particular item (that is the “corrected” part in the name).  

Calling	for	Point‐Biserial	Correlations	
In SPSS, this is easily done by choosing ANALYZE > SCALE > RELIABILITY ANALYSIS. Move the 

total test score and the dichotomous scores for each item to the ITEMS box on the right. Click the 

STATISTICS button, and be sure to check the box for “Scale if item deleted” under DESCRIPTIVES 

FOR. This will give you a box labeled Item-Total Statistics in the output, where you can see the 

Corrected Item-Total Correlation, which is the point-biserial correlation for each item. Oller 

(1979) states that, for item discrimination, correlations of less than .35 or .25 are often discarded 

by professional test makers as not being useful for discriminating between participants.  
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More modern methods of test item analysis have become more popular, however, now that 

computing power has increased. In particular, item response theory (IRT) provides a way to 

analyze test items by positing a latent or unmeasured trait that is linked to the dichotomous 

scores. McNamara and Knoch (2012) state that IRT as a tool for analyzing language tests 

“appears to have become uncontroversial and routine” (p. 569). Although there is not space in 

this book to detail how IRT works, interested readers are directed to edited collections by Baker 

and Kim (2004) and van der Linden and Hambleton (1997), and more recent articles by Ellis and 

Ross (2013). 

 

In other cases where you may have a dichotomous variable such as gender (male versus female) 

or group membership with only two categories (student versus employed, for example) that you 

want to correlate with a continuous variable such as TOEFL scores, it generally does not make 

sense to conduct a correlation (whether Pearson or Spearman) because you have so little 

variation in the dichotomous variable (there are some exceptions; see Hatch & Lazaraton, 1991, 

p. 450, for additional information). It would be better in this case to compare means for the two 

groups using a t-test or one-way ANOVA.  
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Inter‐rater	Reliability		
It often happens in second language research that you will have a set of judges who will rate 

participants. The judges may rate the participants’ pronunciation accuracy or writing ability or 

judge the number of errors they made in past tense, for example. In this case you will have 

multiple scores for each participant that you will average to conduct a statistical test on the data. 

However, you should also report some statistics that explore to what extent your raters have 

agreed on their ratings.  

 

If you think about what is going on with judges’ ratings, you will realize that you want the 

judges’ ratings to differ based on the participants that they rated. For example, Judge A may give 

Participant 1 an 8 and Participant 2 a 3 on a 10-point scale. You would then hope that Judge B 

will also give Participant 1 a high score and Participant 2 a low score, although they may not be 

exactly the same numbers. What you don’t want is for judges’ scores to vary based on the judge. 

If this happened, Participant 1 might get an 8 from Judge A but a 2 from Judge B and a 10 from 

Judge C. In other words, you want to see that the variability in scores is due to variation in the 

sample and not variation in the judges. Any variation that is seen in the judges’ scores will be 

considered error, and will make the rating less reliable. DeVellis (2005) defines reliability as 

“The proportion of variance in a measure that can be ascribed to a true score” (p. 317). Mackey 

and Gass (2005) define reliability as consistency of a score or a test. They say a test is reliable if 

the same person taking it again would get the same score. You can see that these two definitions 

of reliability are similar, for they both address the idea that a test result can be confidently 

replicated for the same person. Therefore, the more reliable a measurement is, the more it will 

measure the right thing (the true score) and the less error it will have.  
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Howell (2002) says the best way to calculate inter-rater reliability for cases of judges rating 

persons is to look at the intraclass correlation. This will not only take into account the correlation 

between judges, but also look at whether the actual scores they gave participants differed. We 

will look at Cronbach’s alpha as a measurement of intraclass correction. Cortina (1994) says 

that coefficient alpha is an internal consistency estimate, “which takes into account variance 

attributable to subjects and variance attributable to the interaction between subjects and items [on 

a test, or for our purposes here, judges]” (p. 98).  

  

In general, we might like a rule of thumb for determining what an acceptable level of overall 

Cronbach’s alpha is, and some authors do put forth a level of 0.70–0.80. Cortina (1994) says 

determining a general rule is impossible unless we consider the factors that affect the size of 

Cronbach’s alpha, which include the number of items (judges in our case) and the number of 

dimensions in the data. In general, the higher the number of items, the higher alpha can be even 

if the average correlations between items are not very large and there is more than one dimension 

in the data. Cortina says that, “if a scale has enough items (i.e. more than 20), then it can have an 

alpha of greater than .70 even when the correlation among items is very small” (p. 102).  

 

In this section I will use data from a study by Munro, Derwing, and Morton (2006). These 

authors investigated to what extent the L1 background of the judges would affect how they rated 

ESL learners from 4 different L1 backgrounds—Cantonese, Japanese, Spanish, and Polish. The 

judges themselves were native speakers also of four different backgrounds—English, Cantonese, 

Japanese, and Mandarin, but I will examine the data only from the 10 Mandarin judges here. The 

judges rated the samples on three dimensions—their comprehensibility, intelligibility, and 
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accentedness. I will examine only scores for accentedness here using the file 

MunroDerwingMorton.sav.  

Calling	for	Inter‐rater	reliability	
To calculate the intraclass correlation for a group of raters, go to ANALYZE > SCALE > 

RELIABILITY ANALYSIS. You will see the dialogue box for Reliability Analysis shown in Figure 

2. Move the scores for your participants to the “Items” box. The columns you enter here should 

consist of the rating for each participant on a different row, with the column containing the 

ratings of each judge. Therefore, variable M001 contains the ratings of Mandarin Judge 1 on the 

accent of 48 speakers, M002 contains the ratings of Mandarin Judge 2 on the accent of the 48 

speakers, and so on. Leave the “Model” menu set to ALPHA. Other choices here are SPLIT-HALF, 

GUTTMAN, PARALLEL, and STRICT PARALLEL, but what you want to call for is Cronbach’s 

coefficient alpha.  

 



  10

Figure 2 Dialogue box for Reliability Analysis in SPSS. 

 

Next, open the STATISTICS button and you’ll see the box in Figure 3. The most important thing 

to do here is to tick the “Intraclass correlation coefficient” box. When you do this, two drop-

down menus will become visible. In the first one choose TWOWAY RANDOM. This choice 

specifies both the item effects (the judges/the columns) as random variable and the subject 

effects (the participants/the rows) as random as well. Since both the rows and the columns 

contain subjects, they are both random effects (we want to generalize to more than just the actual 

judges and more than just the actual participants; I discussed the difference between fixed and 

random effects in Section 2.1.6 of the book). You should also tick on the boxes "Descriptives for 

. . . Scale if item deleted" and "Inter-item correlations", as shown in Figure 3. 

 

In the second drop-down menu you can choose whether you’d like a measure of CONSISTENCY or 
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ABSOLUTE AGREEMENT, but in truth this doesn’t matter for the Cronbach’s alpha result so just 

leave the default of CONSISTENCY chosen. Also tick the boxes that say “Scale if item deleted” 

and “Correlations.”  

 

 

Figure 3 Statistics for the reliability analysis in SPSS. 

 

The first box you will see in the output will just be a summary of how many cases were 
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analyzed. Of course you should check this to make sure that all the cases you thought were going 

to be analyzed actually were (there were 48 in the Munro, Derwing, & Morton data). The last 

box in the input contains Cronbach’s alpha, which is the major item you are interested in, 

although it is not labeled as such, but just as "Intraclass Correlation Coefficient" (see Table 2). 

Using the line that says "Average Measures", we see that Cronbach’s alpha is 0.89, 95% CI [.83, 

.93]. This is a high correlation considering that there are ten items (judges).  

 

Table 2 Cronbach’s alpha output from the reliability analysis in SPSS. 

 

Remember that we do not have an absolute rule of thumb for determining what an acceptable 

level of Cronbach’s alpha is, and we should look at the correlations between pairs of variables, 

and this is shown in the part of the output labeled "Inter-item Correlation Matrix", shown in 

Table 3.  
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Table 3 Inter-Item Correlation Matrix from a Reliability Analysis. 

 

By and large the paired correlations between judges are in the range of 0.30–0.60, which are 

medium to large effect sizes, and thus Cronbach’s alpha can be said to be fairly reliable. 

However, if the number of judges were quite small, say three, then Cronbach’s alpha would be 

quite a bit lower than what is obtained with 10 or 20 items even if the average inter-item 

correlation is the same. Try it yourself with the data— randomly pick three judges and see what 

your Cronbach’s alpha is (I got .65 with the three I picked).  

 

Why don’t we just use the average inter-item correlation as a measure of reliability between 

judges? Howell (2002) says that the problem with this approach is that it cannot tell you whether 

the judges rated the same people the same way, or just if the trend of higher and lower scores for 

the same participant was followed.  

 

The last piece of output I want to look at is shown in Table 4. This is the part of the output that 

shows what Cronbach’s alpha would be if each item (judge) individually were removed. If 

judges are consistent then there shouldn’t be too much variation in these numbers, and this is true 
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for the Munro, Derwing, and Morton (2006) data. However, if there were a certain judge whose 

data changed Cronbach’s drastically you might consider throwing out that judge’s scores.  

 

Table 4 Item-Total Statistics Output from a Reliability Analysis. 

 

Overall test reliability is often also reported using this same method. For example, DeKeyser 

(2000) reports, for his 200-item grammaticality judgment test, that “The reliability coefficient 

(KR-20) obtained was .91 for grammatical items [100 items] and .97 for ungrammatical items” 

(p. 509) (note that, for dichotomous test items, the Kuder–Richardson (KR-20) measure of test 

reliability is equal to Cronbach’s alpha). DeKeyser gives raw data in his article, but this raw data 

does not include individual dichotomous results on each of the 200 items of the test. These 

would be necessary to calculate the overall test reliability. Using the file LarsonHall2008 

described in Section 6.5.4 of the book I will show how to obtain an overall test reliability score if 

you have the raw scores (coded as 1s for correct answers and 0s for incorrect answers). I have 

deleted the scores of native speakers of Japanese on this test, as I think native speakers may score 

quite differently from learners of Japanese.  

 



  15

Use the same reliability analysis as for the inter-rater reliability (ANALYZE > SCALE > 

RELIABILITY ANALYSIS). Here I will enter all 40 of my items into the “Items” box as shown in 

Figure 3. If all I want is to get Cronbach’s alpha, there is no need to open the STATISTICS 

button (the boxes you might tick in the STATISTICS button to look at item-total statistics and 

inter-item correlation would be a way of doing test analysis, although a mostly outdated one 

now). The output gives a Cronbach’s alpha of 0.67, which can also be reported as a KR-20 score 

of .67. This is not very high considering how many items I have, so it would be hard to call this a 

highly reliable test (I made it up myself and it clearly needs more work! I actually presented a 

conference paper at AAAL 2008 where I used the R statistical program to analyze the data with 

IRT methods, and I would be happy to send you this presentation if you are interested).  

 

	

	
  	

Summary Calculating Inter-rater Reliability 

In the drop-down menu choose ANALYZE > SCALE > RELIABILITY ANALYSIS. Put all the items 
that contain judge’s ratings of the participants in the “Items” box. Open the STATISTICS button 
and tick the “Intraclass correlation coefficient” box. In the first drop-down menu choose 
TWO-WAY RANDOM, but leave the other drop-down menu alone. Also tick “Scale if item 
deleted” and “correlations”. Look for Cronbach’s alpha in the output. 

For overall test reliability simply put all of your test items (coded as 0s and 1s) into the 
“Items” box in the Reliability analysis and obtain Cronbach’s alpha, which you can also call 
the KR-20 measure of reliability. 
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